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1. Introduction

Throughout of this paper, we can use the following notations and definitions, which are given by Roman [3, pp. 1-125].

Let P be the algebra of polynomials in the single variable x over the field of complex numbers. Let P* be the vector space of
all linear functionals on P. Let (L|p(x)) be the action of a linear functional L on a polynomial p(x). Let F denote the algebra of
formal power series

fey=>"
k=0
Such algebra is called Umbral algebra. Each f € F defines a linear functional on P and

a = (FOI) (12)

for all k > 0.

The order o(f(t)) of a power series f(t) is the smallest integer k for which the coefficient of t“ does not vanish. A series f(t)
for which o(f(t)) = 1 will be called a delta series. When we are considering a delta series f(t) in F as a linear functional we
will refer to it as a delta functional.

It is well-known that (t"\x”> = n!d,, where § denotes Kronecker symbol. For all f(t) in F

00 k
f(t) _ Z <f(l;<)'|x >tk.
k=0 :

Q

k ok
ot (1.1)

—_—

Let f(t), g(t) be in F, then we have
(f(Hg®)px) = {f()lgt)p(x)). (1.3)

* Corresponding author.
E-mail addresses: rahimedere@gmail.com (R. Dere), ysimsek@akdeniz.edu.tr (Y. Simsek).

0096-3003/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.amc.2011.01.078



R. Dere, Y. Simsek /Applied Mathematics and Computation 218 (2011) 756-761 757

For y € C the evaluation functional is defined to be the power series e’t. By (1.2), we have

(& p(x)) = py). (1.4)
for all p(x) in P. The forward difference functional is the delta functional e — 1 and
(¢" = 1|p(x)) = p(y) - p(0). (1.5)

The Abel functional is the delta functional te’*. We have
(te"|p(x)) = p'(y)

The Sheffer polynomials are defined by means of the following generating function

o0

Sk(x) _] Xt
> k! t"_%e.

k=0

cf. [3] see also [1,2]).
Roman [3] proved the following theorem which is represented by the Sheffer polynomials (or Sheffer sequences)
explicitly:

Theorem 1. Let f(t) be a delta series and let g(t) be an invertible series. Then there exist a unique sequence s, (x) of polynomials
satisfying the orthogonality conditions

(8O (O Isa(x)) = nlon (1.6)
foralln k = 0.

The sequence s, (x) in (1.6) is the Sheffer polynomials for pair (g(t),f(t)), where g(t) must be invertible and f(t) must be
delta series. The Sheffer polynomials for pair (g(t),t) is the Appell polynomials or the Appell sequences for g(t).

The Appell polynomials, the Bernoulli polynomials, the Euler polynomials and the Genocchi polynomials belong to the
family of the Sheffer polynomials cf. [1-4].

The Sheffer polynomials satisfy the following relations:

sn(%) = g(t) X", 1.7)
derivative formula
tsn(X) = 5,(X) = nSp_1(x), (1.8)
recurrence formula
_(, &
sv1) = (x- £ )50 (1.9)
expansion theorem
o~ (h(t)[sk(x))
h(e) =3 s (1.10)

multiplication theorem, for o # 0

Sn(0x) = a”%snm, (1.11)
and
(h(t)|p(ax)) = (h(at)|p(x)). (1.12)

2. Genocchi Polynomials of higher order on 7

In this section, by using properties of the Sheffer sequences and also the Appell sequences, we prove many fundamental
properties of the Genocchi polynomials of higher order fo’)(x), which are defined by means of the following generating
function:

2t axt_ OCG(H) ¢ 21
me*;n(x)mz (2.1)

where [t| < 7. GV (x) = G,(x) denotes the Genocchi polynomials.
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By using (1.7) and (2.1), we arrive at the following Lemma:

Lemma 1
2t \°
(b) _
GP(x) (etH) X
Theorem 2

k—

t B i1 S(n—1,j)
(1 1016u0) =2tk =113 24 GESLE,

where G,(x) and S(u, v) denote the Genocchi polynomials and the Stirling numbers of the second kind, respectively.

By Lemma 1, we obtain
k k 2t
<(ef +1) \Gn(x)> - <(e‘ +1)'I5 +1x">.

By using (1.3) and (1.8), we get

(e +1)"1Gux)) = 2"2 ,_1 2k”< 1)Jx’”> (22)

Setting

S(n—1.j) =j1!<(et - 1)j|x”*1>,

where S(n — 1,j) denotes the Stirling numbers of second kind cf [3, pp. 59], [5], in (2.2), we arrive at the desired result.
By using (1.8), we arrive at the following lemma:

Lemma 2

Remark 1. A second proof of Lemma 2 is also obtained from (2.1) by using derivative with respect to x. By Lemma 2, one can
see that

Lemma 3

T \eoy— 1 e
<€t+l>Gn (X)*z(n_"_])cnﬂ (X)

Proof. By (2.1) and Lemma 1, we obtain

1 @/ 1 2t \°
<e‘+1>G” (X)fe‘+1<ef+1> X

After some calculations in the above equation, we get

1 @ 120\
<el+l>G” ®=gles1) *

Using Lemma 2, we obtain the desired result. 0

An integral representation of <E‘“2—;‘ |G£,”>(x)>is given by the following theorem.

Theorem 3

el —1 1 /¢
G“’)x>:—/6(b)xdx
(516 w) =5 [ o
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Proof. By using Lemma 2, we have

e —1 e—1 1
(For160 0 ) = (S5 It ).

By (1.3), we obtain

etr —1 1
<T |G,(1b>(x)> “nii1 <eat - 1|G:(21(X)>~

The desired result follows now from (1.5). O

A recurrence formula for G (x) is given by the next theorem.

Theorem 4 (Recurrence formula).

G =2 ((n - a+ DG M) + @ - )m+ D).

n+1

Proof. Setting
ef+1\*
g0 = (“5)
in (1.9), one can obtain

et — (e' + 1)\ ~q
00 =(x -0 6

—GP(x) —a <—(ete+ 5o %) G (x)

a a
=XG\ (x) + 1) Gy (%)

G(G)

n+1

759

(2.3)

Consequently, in the above equations using Lemma 3, Remark 1 and e'G" (x) = 2nG"7" (x) — G (x), we arrive at the desired

result. O

We now ready to prove multiplication formula for the Genocchi polynomials as follows:

Theorem 5 (Multiplication formula). For every positive odd integer «,
S J
G =o' 1" = .
2(0X) = o Z( 1)"G, <x+ a)
Jj=0
Proof. If we substitute (2.3) into (1.11) and let a = 1, then we obtain
e+1) (3)
_ n o
Gn(ox) = o ( 5t )

ei+ 1
From the above equation, we get

nq e +1
er+1

Gn(x) = o Gn(x).
o—1 i
Galox) = o™ 1Y " (=1)"e3Gy (x).
=0
By (1.4), we arrive at the desired result. O

Recall that the Euler polynomials E” (x)of higher order a are defined by the generating series

2 Veu_ f:;:"@(x)ﬂ
et +1 B LT

n=0

Lemma 4

2 a
E9(x) = (—e[ — 1) X"

Proof of Lemma 4 was given by Roman [3, pp. 101].
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The next theorem expresses the Genocchi polynomials in terms of the Euler polynomials and the Stirling numbers of the
first kind.

Theorem 6

et+1 ef+1
= (et g (e
= 24 (=1 tkxm
= (] (ef+1)“k2:; k
Using
thn = (n)’(x”*k.’

where (n), =n(n—1)---(n — k+ 1) in the above, we have

- £ (05 (e

j=0 k=0
By using Lemma 4 and
k

W) =Y s(k,my™,

m=0

where s(k, m) denotes the Stirling numbers of the first kind, in the above, we obtain the desired result. O

Theorem 7

(e +1)G@(x) = 2nG“ " (x).
Proof. By using (1.7), we obtain

a-1
(€' +1)G9(x) = (2t) (ﬁ) X"

By using Lemma 1 and Lemma 2, we obtain the desired result. O
By substituting a = 1 into Theorem 7, we arrive at the following corollary:

Corollary 1
Gn(Xx +1) 4 Gu(x) = 2nx"". (2.4)

Remark 2. If we set a =1 in (2.1), then one can arrive at the proof of the above Corollary 1 as follows:
(o] tn
2te¥ = 2; (GrlX+1) + Gal¥))
n=
From the above we arrive at (2.4) cf. ([1,2]).
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