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Abstract

The Fine numbers and the Catalan numbers are intimately related. Two manifestations are the
identity Cn =2Fn + Fn−1; n¿ 1, and the generating function identities F =C=(1 + zC); C =F=
(1−zF). In this paper we collect and organize the previous literature, present many new settings,
and develop the theory and generating functions as well as asymptotics. Among the topics
developed are the hill-killer involution, the set of all path pairs, and some new results about
noncrossing partitions. c© 2001 Elsevier Science B.V. All rights reserved.
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0. Introduction

We started this project with the idea of giving a uni8ed presentation and history
of the eight or so previous results in the literature that mentioned the Fine numbers.
Along the way we discovered many more results and many new settings for the Fine
numbers.
In this paper we have included the uni8ed presentation and a selection of new results.

Those results, such as the Fine–Narayana numbers, that require Lagrange inversion will
be written up later since our discarded title, “More, much more, than you wanted to
know about the Fine numbers”, may already be totally applicable.

1. Examples

In this section we want to set out many examples of occurrences of the Fine numbers
(M1624 1 ). The 8rst few Fine numbers are 1; 0; 1; 2; 6; 18; 57; : : : and in typical Catalan

E-mail addresses: deutsch@magnus.poly.edu (E. Deutsch), lws@scs.howard.edu (L. Shapiro).
1 The number Mxxxx are identi8ers of the sequences in the Encyclopedia of Integer Sequences [43].
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fashion we will list the F4 = 6 examples. For background on the Catalan numbers
(M1459) there are many 8ne sources and we mention, for example, [8,21,23,39,45,46]
as readable introductions.
An extensive bibliography up to 1980 has been compiled by Gould [22].
We will discuss generating functions in Section 2 but one way to de8ne the Fine

numbers is by their generating function

F(z)=
∞∑
n=0

Fnzn =
1
z
1−√1− 4z
3−√1− 4z

:

Here are some combinatorial interpretations of the Fine numbers. Some of them will
be discussed in the paper.
(A) Dyck paths (mountain ranges) with no hills. Dyck paths are paths starting and

ending on the horizontal axis using steps (1; 1) and (1;−1), and never going below
the horizontal axis. A hill is a pair of consecutive steps giving a peak of height 1.

(B) Dyck paths where the 8rst peak, reading from the left, has even height.

(C) Standard Young tableaux of the shape (n; n) [45], where there is no column of

the form
k

k + 1
. Namely,

1 2 3 4
5 6 7 8

;
1 2 3 5
4 6 7 8

;
1 2 3 6
4 5 7 8

;

1 2 4 5
3 6 7 8

;
1 2 4 6
3 5 7 8

;
1 2 5 6
3 4 7 8

:
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(D) Noncrossing partitions of [n], where the 8rst block has even size. A partition is
a collection of nonempty subsets Bi, called blocks, such that

⋃
Bi = [n] and Bi∩Bj = ∅

for i �= j. If x and y are elements in the same block, then we write x ∼ y. A partition
is noncrossing if a¡b¡c¡d and a ∼ c; b ∼ d imply a ∼ b ∼ c ∼ d. If we connect
elements in the same block by arches, the noncrossing condition guarantees that the
arches never cross. It is well known that the noncrossing partitions are counted by
the Catalan numbers (see, for example, [45]). We use the abbreviation NCP(n) for
“noncrossing partition of [n]”.

(E) NCP(n) with no visible singletons. A singleton is a block consisting of a single
element. It is visible if there are no arches above it.

(F) Plane (ordered) trees with no leaves at level 1.

(G) Plane trees with root of even degree.
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(H) Binary trees (i.e., a rooted tree where each node has either a right child, a left
child, both, or neither) where the root and each direct right descendant of the root has
outdegree 0 or 2.

(I) Heaps of segments (or stackable 1 × m horizontal rectangles) with a unique
left justi8ed maximal (top) piece (these are counted by the Catalan numbers; see,
for example, [4,5,48]). The Fine condition is that there are no left justi8ed 1 × 1
pieces.

(J) Two-Motzkin paths are paths starting and ending on the horizontal axis but never
going below it with possible steps (1; 1); (1; 0), and (1;−1), where the level steps
(1; 0) can be either of two colors. (Regular Motzkin paths, counted by the Motzkin
sequence (1; 1; 2; 4; 9; 21; 51; : : : ;M1184) [45, p. 238], arise when the level steps have
but one color [17]). Use of three colors gives the tree-like polyhexes of Harary and
Read [24]. The Fine numbers occur when there are no level steps on the horizontal
axis.

We mention brieMy one other occurrence (for details see Section 5).
(K) The total number of nodes of odd outdegree over all plane trees with n edges

is

2
3

(
2n− 1

n

)
+

1
3
Fn−1:

For n=3 the 2
310 +

1
31=7 cases are illustrated by
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2. A brief history of the Fine numbers

The Fine numbers seem to have 8rst appeared in a paper of Terrence Fine [19]
where he studied an abstract theory of interpolation. He considered similarity relations
(see also [32,35,47]), i.e., relations ∼ on the set [n] = {1; 2; : : : ; n}, which are reMexive,
symmetric, and such that if a ∼ b and a¡x¡b, then a ∼ x and x ∼ b. For instance,
assume n=5 and 1 ∼ 2; 2 ∼ 3; 4 ∼ 5. The diagram is

5 × ×
4 × ×
3 × ×
2 × × ×
1 × ×
1 2 3 4 5

The lower boundary is a subdiagonal (Catalan) path, showing that the number of
similarity relations is a Catalan number. Without going into details (see [19] for these),
it makes intuitive sense that interpolation from a single point is meaningless, so Fine
excluded blocks consisting of a single element. The number of similarity relations
without singleton blocks is counted by the Fine sequence. We would like to point out,
as shown by the above example, that a similarity relation need not be transitive.
The next appearance of the Fine numbers (with the exception of the 8rst two) was

as diagonal sums of the Catalan triangle given in Table 3 [40]. The connection between
these two appearances would probably not have occurred without Sloane’s Handbook of
Integer Sequences [42] which had just been published. Properties of the Fine numbers
arising from the study of similarity relations are considered also by Strehl [47], Rogers
[35], Kim et al. [28], and Moon [32]. The next time the Fine numbers appear in a
new context is in a paper by Meir and Moon [30], which we discuss in Section 4. The
context is degrees of vertices in plane trees. Much more recent is the paper of Dobrow
and Fill [16] which discusses the move-to-root algorithm for binary search trees. The
paper [14] considers the enumeration of Dyck paths according to various statistics and
the Fine numbers make several appearances. We would appreciate hearing about other
appearances of the Fine numbers in the literature. Since the Fine numbers and Catalan
numbers are so tightly linked, other occurrences seem likely.

Table 1

n\s 0 1 2 3 4 5

0 1 1 1 1 1 1
1 0 1 2 3 4 5
2 0 2 5 9 14 20
3 0 5 14 28 48 75
4 0 14 42 90 165 275
5 0 42 132 297 572 1001
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3. Generating functions and Dyck paths

The number of Dyck paths of length 2n is the Catalan number Cn = [1=(n+1)]( 2nn ).
Recall also that the Catalan generating function C =C(z)=

∑∞
n=0 Cnzn satis8es

C =1 + zC2 =
1

1− zC
=
1−√1− 4z

2z
: (1)

If f(z)=f=
∑∞

n=0 fnzn, then let [zn]f=fn. Another useful fact about the Catalan
numbers is that [zn]Cs = [s=(2n+ s)]( 2n+s

n ). This can be shown via Lagrange inversion
or more simply by induction using the array in Table 1 and the fact that for the ballot
numbers Cn;s = [s=(2n + s)]( 2n+s

n ) the equality Cs =Cs−1 + zCs+1 yields at once the
recursion relation Cn;s =Cn;s−1 +Cn−1; s+1. Some references for the ballot numbers are
[7, p. 21; 18, p. 69; 25,39, p. 128].
Let us now de8ne the Fine number Fn as the number of Dyck paths of length 2n

with no hills. We then have the generating function relation

F =1 + z(C − 1)F; (2)

where F =
∑∞

n=0 Fnzn. To see this, note that 1 counts the empty path that starts and
ends at the origin. The picture then is

We have n up steps and n down steps so we can mark each up step with a z. If the
path is nonempty, it must start with an up step. The section of the path between the
8rst up step and the 8rst down step returning to the horizontal axis must be a nontrivial
Dyck path, so that we do not have a hill. Once the path returns to the horizontal axis,
it must again avoid hills, so the generating function for this part of the path is F . More
formally, the path has a unique factorization of the form (up step, nontrivial Dyck path,
down step, hill-free path), which, following the usual combinatorial interpretation for
multiplying generating functions (see, for example, [20,39]) gives 1+z(C−1)F . Thus,

F =1 + z(C − 1)F =1 + z(zC2)F;

from where

F =
1

1− z2C2 =
C

1 + zC
; (3)

where we have made use of (1). Making use of the last expression in (1), we obtain

F =
1
z
1−√1− 4z
3−√1− 4z

:

Proposition 1. The generating function for Dyck paths whose initial peak is at height
k is zkCk .
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Proof (Idea).
We draw the picture for k =3.

Proposition 2. The Fine numbers count the number of Dyck paths whose ;rst peak
has even height.

Proof. By Proposition 1 the generating function is

1 + z2C2 + z4C4 + z6C6 + · · ·= 1
1− z2C2 =F:

Proposition 3. The generating function for Dyck paths whose ;rst peak has odd
height is zCF .

Proof.

zC + z3C3 + z5C5 + · · ·= zCF:

Proposition 4. The bivariate generating function �(t; z) for Dyck paths by number
of hills (marked by t) and number of up steps 2 (marked by z) is given by

�(t; z)=
F

1− tzF
:

Proof. The relation

�=F + Ftz�

can be easily justi8ed. Indeed, the 8rst term in the right-hand side counts the Dyck
paths with no hills, while the Dyck paths with at least one hill can be obtained by
concatenating a no-hill Dyck path, a hill (the 8rst one; marked by tz), and an arbitrary
Dyck path.

For the number fn;k of Dyck paths of length 2n with exactly k hills we obtain the
values from Table 2.

2 The number of up steps of a Dyck path is sometimes called its semilength.
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Table 2

n \ k 0 1 2 3 4 5 6

0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
2 1 0 1 0 0 0 0
3 2 2 0 1 0 0 0
4 6 4 3 0 1 0 0
5 18 13 6 4 0 1 0
6 57 40 21 8 5 0 1

Fig. 1.

The in8nite lower triangular matrix (fn;k)n;k¿0 is a Riordan array. 3 Namely,
(fn;k)n;k¿0 = (F; zF).
There is an involution on the set of Dyck paths which will be called the hill-killer

involution. First we partition the set Dn of Dyck paths of length 2n into
An = set of Dyck paths in Dn with no hills;
Bn = set of Dyck paths in Dn that start with a hill and have no later hills;
Cn = set of Dyck paths in Dn that have at least one nonstarting hill.
Note that |An|=Fn and |Bn|=Fn−1. We de8ne the mapping � :Bn∪Cn →An∪Bn

in the following manner: for a Dyck path �= �ud�∈Bn∪Cn, where � is a Dyck path,
� is a hill-free Dyck path, while u and d are the steps (1; 1) and (1;−1), respectively,
we set �(�)= u�d�. For a pictorial de8nition see Fig. 1.
Clearly, the restriction of � to Bn is the identity mapping and the restriction of �

to Cn is a bijection between Cn and An. Consequently, |Cn|= |An|=Fn and, therefore,

Cn =2Fn + Fn−1 for n¿ 1: (4)

Let �−1 :An ∪Bn → Bn ∪ Cn be the inverse mapping of �. Now the mapping

 :Dn → Dn

3 An in8nite lower triangular matrix A is called a Riordan array if its bivariate generating function G(t; z)
is of the form G(t; z)= g(z)=(1 − th(z)). We denote A= (g(z); h(z)). For more details see [41,44], as well
as [26,27,29,37,38]. With an emphasis more on rows and orthogonal polynomials rather than columns, the
Riordan group was known as the ScheQer group or umbral group. Several examples go back much further.
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de8ned by

 (�)=




�−1(�) if �∈An;

�(�)= � if �∈Bn;

�(�) if �∈Cn

is an involution on Dn, called the hill-killer involution. Its 8xed points are the paths
in Bn.

Remark. Relation (4) follows at once also from the identity

1 + C =(2 + z)F; (5)

which, in turn, is an easy consequence of (1) and (3). Incidentally, relation (5) has an
elegant combinatorial proof, suggested by Rogers. Namely, Dyck paths have 8rst peak
either of odd or of even height. Consequently, by Propositions 2 and 3, C =F + zCF .
Now, a little algebra gives C =F + zF(1 + zC2)=F + zF + z2FC2 =F + zF + F − 1.

Eq. (4) allows us to prove a useful asymptotic result.

Proposition 5.

Fn

Cn
∼ 4

9
: (6)

Proof. From Cn = [1=(n + 1)]( 2nn ) we obtain at once that limn→∞ Cn+1=Cn =4. Now,
from (4) we have

1=2
Fn

Cn
+

Fn−1

Cn
=2

Fn

Cn
+

Fn−1

Cn−1

Cn−1

Cn

and letting limn→∞ Fn=Cn =L, we have

1=2L+ 1
4L=

9
4L:

We have blandly assumed that L exists but the interested reader can 8ll in this gap by
applying, for example, the following theorem found in [2, p. 496].
Suppose that A(z)=Ranzn and B(z)=Rbnzn are power series with radii of conver-

gence �¿�¿ 0, respectively. Suppose bn−1=bn approaches the limit b as n→∞. If
A(b) �=0, then cn ∼ A(b)bn, where Rcnzn =A(z)B(z).
We know that 1 + C =(z + 2)F so we can take A(z)= 1=(z + 2) and B(z)=

1 + C.

There are about 60 or 70 known appearances of the Catalan numbers, the best
reference being Stanley’s [45]. Assuming that the hill-killer involution can be translated
successfully to them, each should yield a partition Cn =Fn ∪F∗

n ∪Fn−1, where there
is an involution  on Cn interchanging Fn and F∗

n and 8xing Fn−1, with |Cn|=Cn,
|Fn|= |F∗

n |=Fn, and |Fn−1|=Fn−1.



250 E. Deutsch, L. Shapiro /Discrete Mathematics 241 (2001) 241–265

For example, returning to the (n; n) standard Young tableau, example (C) in Section
1, assume 8rst that the tableau has at least one column of consecutive integers and let

2k − 1
2k

be the last such column. Then we de8ne

 

(
a1 a2 · · · ak−1 2k − 1 c1 · · · cn−k

b1 b2 · · · bk−1 2k d1 · · · dn−k

)

=
1 a1 + 1 a2 + 1 · · · ak−2 + 1 ak−1 + 1 c1 · · · cn−k

b1 + 1 b2 + 1 b3 + 1 · · · bk−1 + 1 2k d1 · · · dn−k
:

If the tableau has no column of consecutive integers, then let k be the smallest positive
integer such that 2k is in the kth column. Then we de8ne

 

(
a1 a2 · · · ak−1 ak c1 · · · cn−k

b1 b2 · · · bk−1 2k d1 · · · dn−k

)

=
a2 − 1 a3 − 1 a4 − 1 · · · ak − 1 2k − 1 c1 · · · cn−k

b1 − 1 b2 − 1 b3 − 1 · · · bk−1 − 1 2k d1 · · · dn−k
:

The 8xed points have 8rst column
1
2
and no column of consecutive numbers there-

after. For n=3 we have

1 3 5
2 4 6

↔ 1 2 4
3 5 6

1 2 5
3 4 6

↔ 1 2 3
4 5 6

1 3 4
2 5 6

←-

4. A compendium of formulas

In this section we present a collection of formulas involving either the Fine function
F(z) or the Fine numbers Fn. To most of those that were not derived in the previous
section, we indicate references or we sketch the proof:

F(z)=
1
z
1−√1− 4z
3−√1− 4z

;

F(z)=
1 + 2z −√1− 4z

2z(2 + z)
;

F =
1

1− z2C2 =
C

1 + zC
;
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C =
F

1− zF
;

(2 + z)F =C + 1;

3BF =2BC + F;

where B=1=
√
1− 4z,

2Fn + Fn−1 =Cn

(see [14,32,35,40,47]).

2(n+ 1)Fn =(7n− 5)Fn−1 + 2(2n− 1)Fn−2; n¿ 2

(use the previous relation and the recurrence relation (n+ 1)Cn =2(2n− 1)Cn−1);
Fn

Cn
∼ 4

9
;

Fn ∼ 4n+1

9n
√
n%

(in the previous relation use Stirling’s formula for the factorials hidden in Cn);

Fn =
1

n+ 1

[(
2n

n

)
− 2

(
2n− 1

n

)
+ 3

(
2n− 2

n

)
− · · ·

+(−1)n(n+ 1)

(
n

n

)]

(see [14,32]);

Fn =
1

n− 1

(
2n− 2

n

)
+

2
n− 2

(
2n− 4

n

)
+

3
n− 3

(
2n− 6

n

)
+ · · · if n¿ 2

(see [14,32,40,47]);

Fn =
1
2

[
Cn − 1

2
Cn−1 +

1
22

Cn−2 − · · ·+ (−1)n−2 1
2n−2C2

]
(see [14,32,35,40]);

Fn =
∑

i1+i2+···+iq+q=n;

i1¿0;:::; iq¿0;q¿0

Ci1Ci2 : : : Ciq

(see [40]);

Fn =(−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C0 C1 C2 · · · Cn−1 Cn

1 C0 C1 · · · Cn−2 Cn−1

0 1 C0 · · · Cn−3 Cn−2

· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 C0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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(see [14]);∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F0 F1 F2 · · · Fn−1 Fn

F1 F2 F3 · · · Fn Fn+1

F2 F3 F4 · · · Fn+1 Fn+2

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
Fn Fn+1 Fn+2 · · · F2n−1 F2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=1;

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F1 F2 F3 · · · Fn−1 Fn

F2 F3 F4 · · · Fn Fn+1

F3 F4 F5 · · · Fn+1 Fn+2

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
Fn Fn+1 Fn+2 · · · F2n−2 F2n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=1− n:

Let '=(s0; s1; s2; : : :) be a sequence of nonnegative integers. Consider all paths start-
ing from the origin (0; 0), with diagonal steps (1; 1), (1;−1) and si types of horizontal
steps (1; 0) at height i, and never going below the horizontal axis. Then the numbers an

of these paths ending at (n; 0) are called Catalan-like numbers of type ' (see [1]). 4

Clearly, for '=(1; 1; 1; : : :) we obtain the Motzkin numbers and for '=(0; 0; 0; : : :) we
obtain the aerated Catalan numbers 1; 0; 1; 0; 2; 0; 5; : : : .
From our example (J) of Section 1 it follows that the Fine numbers are Catalan-like

numbers of type 0; 2; 2; 2; : : : . Now, Propositions 6 and 7 of [1] yield the above two
results.

5. Path pairs

In this section we want to discuss a lesser known setting for the Catalan numbers
which is in some sense a home for most of the Catalan relatives such as Motzkin
numbers (M1184) [45, p. 238], � numbers (M2587), [3,34] (called Riordan numbers
in [3]), SchrSoder numbers (large (M1659) and small (M2898)) [45, p. 178], and so
on. It also leads to a very natural way to see the Fine numbers and another instance
of the Cn =2Fn + Fn−1 decomposition.

De%nition 1. The set of all path pairs (APP) is the set of all pairs of paths such that

(A) both paths are composed of unit east and north steps;

4 In [1] there is a diQerent de8nition; however, this one, mentioned in [1], is more suitable for our purposes.
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(B) both paths start at (0; 0) and have a common endpoint;
(C) the upper path never goes strictly below the lower path.

Here are the 5 path pairs of length 2.

We can encode a path pair as follows:
A= step apart, upper path goes north, lower path east;
T= step together, upper path goes east, lower path north;
E= both steps east;
N= both steps north.
For example, ANTEATEN is the code for the path pair below:

Reading from the left we must never have more T’s than A’s and at the end the
number of T’s is the same as the number of A’s.
By a joint step of a path pair we mean a pair of superposed steps (one from each

path of the pair). For example, in the path pair ANTEATEN both E’s and the last N
represent joint steps.

Proposition 6. If APP(n) is the set of path pairs of length n, then |APP(n)|=Cn+1.

Proof. There is a simple bijection between APP(n) and the set of Dyck paths of length
2n+2. 5 As before, let u and d denote the steps (1; 1) and (−1; 1), respectively. Then
we convert a path pair to a Dyck path by converting A �→ uu, T �→ dd, E �→ du, and
N �→ ud and then adding a u to the start and a d to the end of the resulting word.

Remark. Let us remove the condition on the APPs that the two paths have a common
endpoint. Let an;k be the number of such path pairs of length n having endpoints k

√
2

5 This bijection was suggested by one of the referees.
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Table 3

n\k 0 1 2 3 4 5

0 1
1 2 1
2 5 4 1
3 14 14 6 1
4 42 48 27 8 1
5 132 165 110 44 10 1

apart. It is easy to see that

an+1; k = an;k−1 + 2an;k + an;k+1 for k¿ 1; (7)

since the two paths can get one step further apart (A), both go E or N, or become one
step closer (T). Similarly, an+1;0 = 2an;0 + an;1. Using these recursions we can verify
by induction that

an;k =
k + 1
n+ 1

(
2n+ 2

n− k

)
: (8)

When k =0, we recover APP and we obtain again |APP(n)|= [1=(n + 1)]( 2n+2n )=
Cn+1. The 8rst few values of an;k (these are again ballot numbers) are given in
Table 3.

Remark. The matrix A=(an;k)n;k¿0 is a Riordan array and can be written
A=(C2; zC2). Indeed, this is guaranteed by the relation (7) (see [31,36]) leading to
A=(C2; zC2). This, in turn, yields the following two properties of the matrix A
(see [44, pp. 269–270]) : (i) the generating function of the diagonal sums of A is
C2=(1 − z2C2)= (F − 1)=z2 and thus, these diagonal sums are Fine numbers (this
property of the matrix A can be found in [40]); (ii) the generating function of the
alternating row sums of the matrix A is C2=(1 + zC2)=C.

Closely related to the APP is the subset of path pairs meeting only at the origin
and the endpoint. We will call these fat path pairs (denoted FPP) but they are usually
called parallelogram polyominoes and there is an extensive literature on them. See, for
example, [4,10] and the many references there.
There is a straightforward bijection between APP(n) and FPP(n+ 2). Namely, take

a path in APP(n) and add an A at the beginning and a T at the end. Returning to our
example following the de8nition of APP, we have

APP(2)= {NN;NE; EN; EE;AT};

which becomes

FPP(4)= {ANNT;ANET;AENT;AEET;AATT}
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or, equivalently,

With the extra two steps, the generating function for FPP is z2C2.
By placing other restrictions or modi8cations on the APP, we obtain interesting

sequences.
(A) No E steps. This yields the Motzkin numbers 1, 1, 2, 4, 9, 21, 51, 127; : : : .
(B) No E or N steps. Aerated Catalan numbers 1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42; : : : .
(C) Bicolored columns (i.e. each column, including columns of height 0, is either

green or red). Small SchrSoder numbers 1, 3, 11, 45, 197; : : : (M2898). (If only parallel-
ogram polyominoes are considered, then the sequence 1, 2, 6, 22, 90, 394; : : : (M1659)
results which is the sequence of large SchrSoder numbers).
(D) Removing the restriction that the upper path never goes strictly below the lower

path, we obtain the central binomial coeTcients 1, 2, 6, 20, 70, 252; : : : (M1645).
(E) To realize the Catalan sequence 1, 1, 2, 5, 14, 42; : : : itself the appropriate con-

dition is: no joint N’s (i.e., no N steps are possible when the two paths are together.)

(F) Let the paths cross and bicolor the columns again, including columns of height
0. This yields the central Delannoy sequence 1, 3, 13, 63, 321; : : : (M2942; see [7, p.
81; 45, p. 185] for more details).
The case of greatest interest for this paper is as follows:

Proposition 7. The number of path pairs of length n with no joint steps is the Fine
number Fn:

Proof. We consider again the bijection between APP(n) and the set of Dyck paths
of length 2n + 2, de8ned in the proof of Proposition 6. It is easy to see that, in this
bijection, to joint E steps there correspond valleys at level 0 and to joint N steps there
correspond peaks at level 2. Consequently, to a path pair of length n with no joint
steps there correspond elevated Dyck paths (i.e., with the exception of the end-points,
they stay strictly above the horizontal axis) of length 2n + 2, with no peaks at level
2. Removing the 8rst and the last step of this Dyck path, we obtain a Dyck path of
length 2n with no hills.
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Remark. As an alternate proof, we can view these path pairs (called Fine pairs) as
concatenated fat pairs and so the appropriate generating function is

1 + z2C2 + (z2C2)2 + (z2C2)3 + · · ·= 1
1− z2C2 =F:

For n=4 we have the 5 fat path pairs above and the sixth is ATAT i.e.,

We get a pretty picture for a decomposition Cn+1 =2Fn+1 + Fn in this setting. We
have |APP(n)|=Cn+1 and the Fine pairs are counted by Fn. Consequently, the other
path pairs, namely those that have at least one joint step, are counted by 2Fn+1. For
example, two disjoint sets counted by Fn+1 are

FE
n+1 = all path pairs whose 8rst joint step is E;

FN
n+1 = all path pairs whose 8rst joint step is N:

The “hill-killer” involution takes the 8rst joint E step or joint N step and toggles E
and N.
It should be noted that there is a very simple bijection between APP and the

2-Motzkin paths of example (I). Namely, up ↔ A, down ↔ T, and the 2 colors
for the level steps correspond to E and N.

6. Odd blocks

In this section we 8nd the total number of blocks of odd size counting over all the
Cn possible noncrossing partitions of [n].
Lemma 1.

[zn](zBF)=
2
3

(
2n− 1

n

)
+

1
3
Fn−1:

Proof. We need the equality 3BF =2BC + F (see Section 4; it follows at once from
the de8nitions of B; C, and F , namely B=1=q; C =(1 − q)=2z; F =(1 − q)=z(3 − q)
where q=

√
1− 4z). Then, making use of the well-known equality [zn]BCs =(2n+s

n )
(see, for example, [33, p. 154]; [49, p. 54]), 6 we have

[zn](zBF)=
2
3
[zn−1](BC) +

1
3
[zn−1]F =

2
3

(
2n− 1

n

)
+

1
3
Fn−1:

6 The following combinatorial proof has been supplied by one of the referees. Every path from (0,0) to
(n; n + s) (with (1,0) and (0,1) steps) can be factored by cutting it at the last time it returns to the main
diagonal; the 8rst part is counted by B and the second part can be further factored into s parts (each going
up by “one diagonal”), each counted by C.
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We now return to noncrossing partitions which we now view as points 1 through n
arranged in order around a circle. The noncrossing condition can be viewed as follows.
If for each block we form the convex hull generated by the points in the block, then
these convex hulls must be disjoint. Here is an example.

How many NCP’s have 1 as a singleton block? The appropriate generating function
is zC with z marking the point 1 and C accounting for all NCP’s on the remaining
elements.
The next question is: how many singleton blocks are there counting over all of

NCP(n)?

Lemma 2. The generating function for the total number of singleton blocks in all
NCP’s is zB and thus there are ( 2n−2

n−1 ) singleton blocks arising from NCP(n).

Proof. If the generating function of a sequence (an)n¿0 is f(z), then, obviously, the
generating function of the sequence (nan)n¿0 is zdf=dz. We have just seen that 1 is a
singleton block in [zn](zC) NCPs. The same holds for each of the points 1; 2; : : : ; n and,
consequently, the number of singleton blocks in all NCP(n)s is n[zn](zC)= [zn]z(zC)′=
[zn](zB).

Let On denote the total number of blocks of odd size over all the Cn possible
noncrossing partitions of [n] and let O=O(z) be the corresponding generating function,
i.e., O :=

∑∞
n=0 Onzn.

Theorem 1. The generating function O for the total number of odd blocks in all of
NCP is zBF and the total number On of odd blocks in all of NCP(n) is [zn]zBF =
2
3(

2n−1
n ) + 1

3Fn−1.

Proof. In Lemma 2 we have seen that the generating function for the total number of
singleton blocks in all of NCP is zB.
Next we ask for the number of NCPs where 1 is in a block of size 3. The picture

in Fig. 2 indicates that the appropriate generating function is z3C3.
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Fig. 2.

If we want to count the total number of blocks of size 3 in all NCP’s, then the
generating function is

z
(z3C3)′

3
= z(zC)2B:

Similar reasoning shows that the generating function counting blocks of size 2m+1 is
z(zC)2mB. Now

O= zB+ (zC)2zB+ (zC)4zB+ · · ·= zB
1

1− z2C2 = zBF:

The second statement of the theorem follows from Lemma 1.

It turns out that 2
3 (

2n−1
n ) + 1

3Fn−1 is also the answer to the question of how many
vertices of odd outdegree are there in all plane trees with n edges. Noting that zBF =
z + 2z2 + 7z3 + 24z4 + · · ·, the seven cases for n=3 are illustrated in Section 1,
example (K).
There is a lovely bijection of Dershowitz and Zaks [12] between plane trees and

noncrossing partitions which leads to an immediate proof. Number the nodes in preorder
(the worm climbs the tree, as Martin Gardner puts it) starting by labeling the root by
0. Then, looking on this as a family tree, put siblings in the same block. An example
is given in Fig. 3. Using this correspondence, we see directly that a node of odd
outdegree corresponds directly to a block of odd size, the set of its descendants.
This result is closely related to a result of Meir and Moon [30]:

Proposition 8. The total number of nodes of odd degree (i:e:; outdegree +1; except
at the root) over all plane trees with n edges is

4
3

(
2n− 1

n

)
+

2
3
Fn−1 = 2On:
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Fig. 3.

Proof (Outline). (i) The generating function for the total number of roots of odd degree
in all plane trees is zCF .
(ii) The generating function for the total number of nonroot nodes of even outdegree

(and thus of odd degree), at height k¿ 1 in all plane trees is zkC2kF . The picture for
k =2 is

(iii) Thus, the generating function is

zCF +
∞∑
k=1

FzkC2k = zCF + F
zC2

1− zC2 = zCF + zFCB

= zCF(1 + B)= 2zFB=2O:

This requires two identities, C=(1− zC2)=B and C(1+B)= 2B, along the way. These
are easily established and we omit their veri8cation.

It would be good to have a direct two-to-one correspondence but we have not found
one.
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7. Fine path statistics

A Fine path is a Dyck path without hills. In this section we will prove some results
about the average behavior of certain statistics. We also compare the results for Fine
paths and Dyck paths. We are assuming that all paths are equally likely to be chosen.
First, we consider the statistic number of returns, denoted XR. A return (to the

horizontal axis) consists of a nontrivial path, a point on the horizontal axis, and another
path (possibly trivial). Then the generating function for the total number of returns of
all Dyck paths of a given length is

(C − 1)C =C2 − C =
1
z
C − 1

z
− C:

To 8nd the expected number of returns, we divide the total number of returns by the
total number of paths. We obtain

E(XR)=
Cn+1 − Cn

Cn
=

3n
n+ 2

→ 3:

Dyck paths are closely related to plane trees. Through a well-known bijection (the
“glove” bijection), the number of returns of a Dyck path corresponds to the degree of
the root of the corresponding tree. In this case the last result goes back to Dershowitz
and Zaks [11], namely,

E(degree of the root)=
3n

n+ 2
:

In the same way, for Fine paths we obtain the generating function (F−1)F . However,
in this case exact results in closed form do not seem to exist and so we settle for
asymptotic results as n gets large. Denote [zn]F2 = gn. Since, as one can easily check,
z(z + 2)F2 − (1 + 2z)F + 1=0, we have

gn−2 + 2gn−1 =Fn + 2Fn−1 for n¿ 1:

Dividing by Fn−1, yields

gn−2

Fn−2

Fn−2

Fn−1
+ 2

gn−1

Fn−1
=

Fn

Fn−1
+ 2

and now taking limits and denoting limn→∞ gn=Fn =L, yields 1
4L + 2L=4 + 2, from

where L=8=3. We again have casually assumed that limn→∞ gn=Fn exists. Tannery’s
theorem [6] could be applied to 8ll in the gap. Now

E(XR)=
[zn](F2 − F)

[zn]F
→ 8

3
− 1=

5
3
:

Next, we consider the statistic height of the ;rst peak, denoted XH. The generating
function for Dyck paths whose initial peak is at height k is zkCk (see Proposition 1).
Then the generating function for the sum of the heights of the 8rst peaks of all Dyck
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Fig. 4.

paths of length 2n is

zC + 2z2C2 + 3z3C3 + · · ·= zC
(1− zC)2

= zC3 =C2 − C: (9)

This is the same as the result obtained at the statistic “number of returns” and, therefore,

E(XH)=
3n

n+ 2
→ 3:

Alternatively, there are several bijections on the set of Dyck paths that show that the
statistics “height of 8rst peak” and “number of returns” are equidistributed (for recent
examples see [13,15]).
For Fine paths we might expect the number of returns to be smaller (as we saw 5=3

compared to 3) while the height of the 8rst peak to be larger than for Dyck paths. We
proceed as in the case of Dyck paths. The generating function for Fine paths whose
initial peak is at height k is zkCk−1F . Then the generating function for the sum of the
heights of the 8rst peaks of all Fine paths of length 2n is

2z2CF + 3z3C2F + 4z4C3F + · · ·

=
z2CF(2− zC)
(1− zC)2

= z2C3F(2− zC)= z2C2F(1 + C)= zF(C + 1)(C − 1)

= zF(C2 − 1)=F(C − 1)− zF =
1
z
F − 1

z
− zF: (10)

Here we have used repeatedly relations (1) and for the last equality relation (2). Now

E(XH)=
Fn+1 − Fn−1

Fn
→ 4− 1

4
=
15
4
;

since from Proposition 5 it follows that limn→∞ Fn+1=Fn =4.
Alternatively, we can obtain the generating functions for the sum of the heights of

the 8rst peaks for all Dyck/Fine paths of length 2n from the corresponding bivariate
generating functions. Marking each up step by z and each up step before the 8rst peak
by t, for Dyck paths we obtain the bivariate generating function

.(t; z)=.=
1

1− tzC
(11)

(see, for example, [14] for details). For Fine paths from Fig. 4 we obtain the generating
function

/(t; z)=/=1 + tz(.− 1)F =1 +
t2z2C
1− tzC

F: (12)
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Table 4

n\k 0 1 2 3 4 5 6 7

0 1
1 0 0
2 0 0 1
3 0 0 1 1
4 0 0 3 2 1
5 0 0 8 6 3 1
6 0 0 24 18 10 4 1
7 0 0 75 57 33 15 5 1

DiQerentiating (11) and (12) with respect to t and setting t=1, we obtain again the
expressions in (9) and (10), respectively. From (12) we obtain [tk ]/= zkCk−1F (as
before) and then

[tkzn]/= [zn−k ]Ck−1F =
�(n−k)=2�∑

�=0

k − 1 + 2�
2n− k − 1− 2�

(
2n− k − 1− 2�

n− 1

)

(see formula (B7) in [14]). The 8rst few values are given in Table 4.
The row sums are the Fine numbers, while deleting the 8rst two rows and columns

yields the Riordan array (CF; zC). This follows at once from [tk ]/= zkCk−1F .
Now we consider the statistic number of peaks, denoted XP. We use the method

of bivariate generating functions. Let 0(t; z) be the bivariate generating function for
Dyck paths according to semilength (marked by z) and number of peaks (marked by
t). From a picture similar to that in Fig. 4 we obtain at once

0=1 + z(0− 1 + t)0

and, taking into account that 0(1; z)=C, by implicit diQerentiation we obtain(
@0
@t

)
t=1

=
zC

1− 2zC
= zBC =

B− 1
2

;

where again B=1=
√
1− 4z=

∑∞
n=0 (

2n
n )z

n. Thus

E(XP)=
1
Cn

[zn]
(
@0
@t

)
t=1

=

1
2

(
2n

n

)

Cn
=

n+ 1
2

:

This is a known result (see, for example, [9,11,14]). 7

In the case of Fine paths, in a similar manner, for the bivariate generating function
2(t; z) we 8nd

2=1 + z(0− 1)2;

7 A simple combinatorial proof has been supplied by one of the referees: just take into account that the total
number of Dyck paths of length 2n having a peak with a prescribed abscissa is Cn−1 and there are 2n− 1
possible abscissae for a peak.
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and, taking into account that 2(1; z)=F , by implicit diQerentiation we obtain(
@2
@t

)
t=1

= z2BCF2 =
1
2
zF ′;

where the last equality follows, for example, by diQerentiating the relation 1=F =
1− z2C2 (see (3)). Now,

[zn]
(
@2
@t

)
t=1

=
1
2
nFn

and then

E(XP)=
n
2
:

8. A partial list of Fine number occurrences

We conclude with a partial list of occurrences of the Fine numbers. The criterion
for inclusion was a very brief description. The interested reader can consider them as
exercises. In some of the examples there are variations with the initial terms. We would
like to mention that an interesting occurrence in the setting of staircase polyominoes
had also been developed by one of the referees:

Dyck paths with no hills.
Dyck paths with leftmost peak of even height.
Dyck paths with an even number of returns.
Dyck paths with no hills (i.e. Fine paths) with leftmost peak of height 3.
Plane trees with no leaves at level 1.
Plane trees with root of even degree.
Plane trees with no node of outdegree 1 on the leftmost path.
Plane trees with root of degree 3 and no node of outdegree 1 on the leftmost
path.
Plane trees with no leaves at level 1 and leftmost leaf is at level 3,
Plane trees with root of degree at least two and leftmost subtree has no leaf at
level 1.
Plane trees in which the leftmost subtree has a leaf at level 1.
Plane trees having the leftmost leaf at even level.
Plane trees having at least one leaf at level 1 that is not the rightmost child of
the root.
Noncrossing partitions with no visible singletons.
Noncrossing partitions with an even number of visible blocks.
Noncrossing partitions with no visible singletons and 8rst block has size 3.
Noncrossing partitions in which the size of the 8rst block is even.
Noncrossing partitions in which the 8rst block has at least two consecutive points.
Noncrossing partitions in which the 8rst point where a block ends is even.



264 E. Deutsch, L. Shapiro /Discrete Mathematics 241 (2001) 241–265

Noncrossing partitions in which the 8rst block has no cyclically consecutive points
(i.e. consecutive in the circular representation).
Two-Motzkin paths with no level steps at level zero.
Two-Motzkin paths having a red level step that precedes all green level steps and
all down steps.
Two-Motzkin paths with an odd number of red level steps at level zero.
Two-Motzkin paths with no red level steps at the beginning or at the end and
having no consecutive red level steps at level zero.
APPs with no joint steps.
APPs with an odd number of joint E steps.
APPs with no joint E step at the beginning or at the end and having no consecutive
joint E steps.
APPs having an N step that precedes all E and T steps.
Parallelogram polyominoes with no columns of height 1.
Parallelogram polyominoes in which the number of edges shared by two consec-
utive columns or two consecutive rows is at least two.
321-avoiding permutations without 8xed points.
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