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Application of the Method of Moments
in Probability and Statistics

PERSI DIACONIS!

1. Introduction. The method of moments is a versatile tool, day-to-day, in
probability and statistics. Probabilists use moment methods to prove limit
theorems in non-standard problems, to characterize and manipulate measures,
and as a source of still challenging mathematical problems.

Statisticians use moments as a basis of curve-fitting algorithms (Pearson
curves through *“projection pursuit”), for estimating parameters (method of
moment estimators), and as theoretical tools to prove theorems in their subject.

My aim is to bring this subject to life through examples. These are drawn
from my own research in an attempt to explain how moments arise in applied
problems.

The first section is about probability; the basic method of moments is
illustrated for Buffon’s problem with a long needle. A convenient bookkeeping
device — “cumulants” — is described. Natural examples show that
distributions can match in many moments and still not be equal. Multivariate
moment calculations are shown useful for certain limit problems in statistical
mechanics.

The second section is about statistics. The method of moments is illustrated.
Its demise at the hands of robustness is documented. A recent rebirth through
projection pursuit regression is described. Some characterization theorems show
the theoretical applicability of the method of moments.

To read further, a beginner might try Billingsley (8, Sect. 30], Uspensky [6,
Appendix II] for applications in probability. Akhiezer {1], Krein (39], or
Shohat and Tamarkin [56) are rich sources of exposition and literature. A clear
modern account is in [40]. Berg, Christensen, and Ressel [4] show how the
method of moments fuses with contemporary mathematics.

1980 Marhematics Subject Classification. Primary 47A20
1 Rescarch partly supported by NSF grant DMS86-00235.
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2. The method of moments in probability.

2.1 Basics. In applied problems one often encounters a Sequence i, of
probability measures on a fixed space, say R the real numbers. As n increases,
the measures converge in some sense to a limit. The law of large numbers and
the central limit theorem are early instances.

It is widely acknowledged that the first proof of the central limit theorem up
to modern standards of rigor was given by Chebyshev in 1887. His argument
introduced the method of moments. Sencta [57] gives a careful history of
Russian contributions at this time. Lecam [41] presents an interesting defense
of the claim that Laplace proved the theorem. Laplace used transforms, but the
first uniqueness theorems suitable for probability are due to Levy in the 20%
century.

In modern notation, the method of moments can be stated thus: Let u be a
probability measure on the Borel sets of R. Define the k** moment of u as

uxk) = f x* uldx).

THEOREM 1. Let u, be a sequence of probability measures with moments of
all orders. Suppose that for each k, puy(c*) converges to a number py. Then,
there is a measure p with u(x*) =gu,. If u is determinate, i.e., is uniquely
determined by its moments, then for every bounded continuous function

[ fap.— f du. @1

Theorem 1 is proved and applied in Billingsley (5, pp. 342-353]. Convergence
in the sense (2.1) is often called weak star convergence. It is equivalent to
pp(—00,1] = p(=oo,t] for every ¢ that is a continuity point of .

In applications, it is often possible to get our hands on the average of simple
functions such as powers x¥. The theorem says that convergence of powers
yields convergence for any bounded continuous function when u is determinate.
For measures with a common compact support, this is straightforward: any
continuous function can be uniformly approximated by a polynomial. For
measures with unbounded support things are more subtle.

Billingsley shows how to derive the usual central limit theorem from
Theorem | i la Chebyshev. He also works out the central limit theorem in
some non-standard situations: sampling without replacement, and the number of
prime divisors of an interger chosen uniformly from {1,2,...N}

EXAMPLE 1. Buffons problem with a long needle. Suppose a needle of
length / is thrown onto a plane ruled by parallel lines distance d apart with
| >d. We derive the probability p (i) of exactly i intersections. This problem
arose in the defense area: the planar grid is a grid of detection lines (e.g., a light
or laser shining on a photoclectric cell). The needle might be a stream of
polluting material laid down at random by a ship or plane.
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It is straightforward to give exact expressions for p (i). Clearly the answer
only depends on a =//d. The number of interactions can range between 0 and
M =lal+1, where [a] denotes greatest integer. Let the angle §, 0 <0< x/2,
be determined by cosB;=ila, with 0<i<M-1. Let
6[ =2 sin(o,/r) - (21'0‘/1“).

LEMMA 1. Suppose la]l 2 2. Then
p©) =35 +1-Qak)

p(i)-61_1+6,+1-26, for 1ISi<M-2,
p(M—l) - a3 = 2p-15 p(M) - a1 -

For [al=1, the results for p(0) and p (M) above hold and p (1) is determined
by subtraction.

Lemma 1 follows from results in [35]. As is often the case with exact
formulas, it is not easy to get a feel for the answer from direct inspection. In
the application, a is large and we expect a fraction of a crossings — what
fraction (172 7) and how tightly peaked about the middle is the number of
crossings (e.g., is most of the mass within Va of the middle)? Moments are
useful indicators of such behavior. The exact form suggests some neat
approximation is possible. It is straightforward to calculate

pa(x¥) = % ik p; = ca* + 0(ak372) 2.2)
=0

with ¢ =T ((k +1)/2) IT(( +2) ) V. : :

Thus ¢; =2/x and c¢;=1/2. The mean is 2a/x, (= .63a). The standard
deviation p,(x?) —p,(x)? is (12— Q2/x))a, (=.1a). Here the usual rule of
thumb, “90% of the mass is concentrated within two standard deviations of the
mean”, does not give a very useful approximation.

The neat form of the moments suggests rescaling, by dividing by a. This
gives a new measure »,(0,11=4,(0,1al. Now (2.2) says v (x*) = c;. The
form of the c;’s suggest beta integrals and a bit of fooling around yields

1
2 k dx
Ck-';‘_{x ——(l_xz)% .

Now, the method of moments shows that for large values of a, the measures
v, are well approximated by the measure » which is absolutely continuous on
[0,1] with density given by 2/x(1—x?)"%. This is a very different
concentration of mass from the usual bell-shapes.

The point here is to record a typical instance of moment theory as it occurred.
After the fact, a geometric argument was found to “explain” the limiting arc-
sine density. Further details can be found in Diaconis (1976). See also Bell
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(1977) who improved the error in (2.2) to 0(a*~?).

A number of less trivial examples received their first proofs using the method
of moments. For example, Markov (1884) proved the first central limit theorem
for Markov chains this way. Hoeffding (1951) proved his versatile
combinatorial limit theorem this way; briefly, if a;; is a square array of side n
with row sums zero, and Z; a,zj- 1, then, the “random diagonal” Z; a;,(), where
x is a randomly chosen permutation, has an approximate standard normal
distribution if the a;; do not vary too much in size. Finally Mark Kac’s (1953)
first proof of what is known as the Feynman-Kac Formula involved lengthy
moment calculations.

All of the above now have more elegant and insightful proofs. Indeed, many
young probabilists now shun the method of moments as restricted and heavy
handed. There are some however who realize that moments generally get the
job done without taking five years off to develop special theory. Peter Major’s
work on Wiener-Ito integrals [48] or Svante Janson’s [30] book on random
graphs provide splendid recent examples.

2.2 Quality of approximation. The method of moments is a limit theorem,
yielding an approximation valid “at infinity”. It is natural to inquire about the
quality of the approximation, and search for correction terms. Some of the
deepest and most elegant work on the moment problem is devoted to these
questions. Much is known, but still the theory is not up to the demands of
applications.

The basic idea begins with Chebyshev’s upper and lower bounds for u0,11]
when u(x¥), 1<k <n, are given. Chebyshev stated these results in 1874.
They were proved independently by Markov (1884) and Stieltjes (1834) using
the analytic theory of continued fractions.

A modern approach developed by Krein [39], or Karlin and Shapley [34]
considers the set of all measures with n prescribed moments as a convex set.
Extreme points can be determined, and these yield upper and lower bounds.
Kemperman'’s lecture in this volume explains this approach in detail.

Unfortunately, the numerical determination involves computation of zeros of
associated orthogonal polynomials. This is feasible for a small number of
moments, but appears to be quite difficult in general cases.

Here is an example in the most thoroughly studied special case: the normal
distribution.

EXAMPLE 2. Random rotations. The following problem arose in studying a
method for encrypting speech over telephones. One useful method due to Aaron
Wyner requires a source of n X n orthogonal matrices chosen according to Haar
measure on the orthogonal groups O(n). Sloane [59] contains a readable
account of this problem. _

It turns out that large random orthogonal matrices are expensive to generate
— all usable algorithms require O(n3) operations. If n =256, this is of order
10'® which is too slow for repeated real-time use.
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To understand a method of approximating a random rotation by k random
reflections it was important to understand the behavior of the trace of a random
rotation. '

Thus consider the following problem: choose an orthogonal matrix T' from
Haar measure on @(n). What is the distribution of Tr(I'), the trace of T, when
n is large? Intuitively, Tr(I)) is the sum of a lot of little things; if all goes well
it should have an approximate Gaussian distribution (the bell-shaped curve).
Colin Mallows and I [13] calculated the moments and showed

LEMMA. For0<k <2n+1,
1 7 )
(TrD*dT = xke ¥ Rgx . 2.3)
0'{.) Vv -'[-

REMARKS.

1. Here, the first 2n+ 1 moments equal the corresponding moments of the
standard normal distribution. Now, the method of moments shows that the
measure associated to the trace on @(n) converges to a limiting standard
normal distribution. This seems similar to Hoeffding’s result described above,
but the connections have not been worked out.

2. The proof of (2.3) involves a bit of character theory. Both sides vanish
when k is odd. For k even, the left side of (2.3) can be interpreted as the inner
product of the character of the tensor product of the usual n-dimensional
representation of @(n) with itself k times, and the trivial character. Brauer [6]
determined the decomposition of this representation, and so the multiplicity of
the trivial representation, as k!/2%2(k/2)!. But this is just the well-known
value of the right-hand side (integrating by parts).

This matching up of moments seems remarkable and suggests that the
distribution of the trace might be very well approximated by the corresponding
normal distribution. In this case, Chebyshev’s bounds have been carefully
developed. The following theorem is available.

THEOREM 2. If u is a probability measure with first n moments equal to the
moments of a standard normal measure:

.2
fx"e “Rgx, 1<k<n,
X —~o

plxk) =
then, for every t € (— oo, ),

-1 { -vn /_’_'.
| u(0, ¢} ﬁ;:’;e | <€ o

REMARK. Theorem 2 was first proved by Markov, improving an earlier result
of Chebyshev who gave the result with a non-uniform error. A very accessible
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proof from first principles is given by Uspensky [66, Appendix I1). It is known
that this result is sharp in the sense that there exist ‘measures u where the
difference is of order 1/3/n.

In the case at hand, there is good reason to suspect that the degree of
approximation is much better. It has been generally found by applied workers
that the bounds given by Chebyshev’s inequalities are very broad. The bounds
are achieved, but at discrete measures having n+1 atoms. There have been
several attempts to tighten the bounds using additional assumptions. Royden
(1953) uses restriction on the support. Mallows (1956a,b) gives improvements
using smoothness and unimodality. Both authors offer useful improvements, but
for day-to-day use, much further work needs to be done.

To explain this last point, I observe that the characters of naturally occurring
representations of other groups have moments equal to the moments of the
appropriate limiting measures. For example, if #(n) is the n-dimensional
unitary group, the trace of a random matrix M converges to a standard complex
normal and the moments match up:

f (Tr M)*(Tr M)*dM = L ff (x +iy)2(x —iy)Pe~ =~ dx dy
W(n) 4x

for positive integers a+b <n. 1 know of no available theory to give error
terms.

For a discrete example, let = be chosen uniformly in the symmetric group S,.
The trace of the permutation matrix associated to x is the number of fixed
points of *=FP(x). It is well-known [17, p. 107] that the number of fixed
points has as limiting distribution the Poisson distribution with parameter 1. It
is not hard to show that the first # moments are equal: for 0 </ < n,

J—'- > [FP@Y --le— Ej"/j!.
Jj=0

n. €S,

It is also not hard to argue that the distributions are extremely close. We have
shown [13] that for every 4 € {0,1,2, - - - }.

#(x€S,: FP(x) € 4} 1 1 n
| 1 -T2 S ar
l n! e &, J! n!

It would be instructive to compare this with the extremal bounds. Alas, at
present writing this seems to require days of further work.

2.3 The Hausdorff moment problem and deFinetti’s theorem. In 1920, Felix
Hausdorff considered the moment problem on [0, 1]. Among other things, he
gave an elegant condition for a sequence co=1,¢y,¢y, * - - to be the moments
of a probability meausre u on [0, 1]:
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1
k™ f x* uldx). (2.4)
0

To understand Hausdorff’s condition, observe that such a representation implies
Ck decreasing, or Cr41 —Ck <O. Let Alcy =cCr41 —Ck»
Al =A(Acy) =cgag —2ck 41 +g.  Observe  Algy= fx"(x - 1)2%u(dx) 2 0.
Similarly,

1) Ac, = f x*Q=x)"uldx) 2 0. (2.5)

Hausdorff proved

THEOREM 3. A sequence co=1,cy,¢3, " - can be represented as a moment
sequence (2.4) if and only if (—1)" A"c; 2 0 for every k and r.

Hausdorf’s condition is appealing because it only involves the moments ¢;, not
general linear combinations = g ¢;, or quadratic forms Z¢; ¢; @4,

It turns out that Hausdorfls theorem is completely equivalent to a
fundamental theorem in Bayesian statistics called deFinetti’s theorem. The
purpose of this section is to explain the connection. DeFinetti’s theorem has
seen vast generalization. This suggests a wealth of novel moment problems
which seem untouched.

The theorem deals with a probability measure P on the space Z3 of infinite
sequences of zeros and ones with the usual product topology. Call P
exchangeable if it is invariant under permuting coordinates:

P{el) €25 ey ek} - P(ef(l)' €x(2)s o0 el’(k)}
for every sequence ey, ..., & € {0, 1}, all permutations =, and all .

THEOREM 4 (deFinetti). P is exchangeable if and only if for all n

1
Ple, -+ e = f x"(1-x)""uldx) 2.6)
0
where r=e, + -+ +e, and p is a unique probability measure on (0, 1]
which does not depend on nor ey, ..., €,.

In probability language, P is exchangeable if and only if it is a mixture of
coin tossing measures. In the language of convex sets, the set of all
exchangeable measures on Z3 is a convex simplex with extreme points given by
the product of identical factors.

DeFinetti’s theorem is important in the foundations of probability. Classical
Bayesian statisticians such as Bayes, Laplace and Gauss analyzed repeated
phenomena using expressions like the right-hand side of (2.6), where
x"(1=x)""" is called the likelihood, x is the parameter, and g is the prior.
Modern subjective Bayesians such as deFinetti, Savage, (and the present
author) prefer not to talk about unobservable parameters. They prefer
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assigning probability to observables such as “the next 3 flips of the coin are
0, 1, 0”. This is the left side of (2.6). Theorem 4 shows that if the probability
assignment is exchangeable, then the two approaches are equivalent. See
deFinetti [20] for a readable discussion of these philosophical issues.

Hausdorfl’s and deFinetti’s theorems are equivalent. To see this, define an
exchangeable probability on Z3 by setting ce=P(1,.., 1), a sequence of k
ones, and using the laws of probability, P (1) =P (1,0) +P(1,1), so

P(1,00=P(1)=P(0,1)=c,—c, 20, or

P(1,0,0 - P(1,00 - P(,0,D) =[P -PU,DI-{PQ, D -P(,1,1]

=P1)=-2P(U, 1) +P(,1,1) = Ac,.

More generally, let Py, =P (1,.,1,0,..,0) for a sequence of length 2 beginning
with k ones. SO Ppy=Cny Py—-i.n = Pn=1,n—1=Pn n=—4Ac,-;. By induction,

Pk',, - Pk.n—l - Pk+l.n - (- l)"-k A""‘ck . (2.7)

Now, if ¢; has all these differences positive, the numbers Py , satisfy the
consistency requirements to be a probability, and from Hausdorff’s theorem we
get deFinettis. Conversely, if Hausdorff’s condition is satisfied, deFinetti’s

theorem gives c; = f : x* u(dx). This argument was first given by deFinetti
{20]. It is nicely pres?ented by Feller [18, p. 225]. DeFinetti’s theorem has seen
sweeping generalization to more values than 2 (indeed to abstract spaces) to
other notions of invariance (every rotationally invariant measure on R™ is a
~ scale mixture of mean zero normals). The most general versions involve a
notion of partial exchangeability which characterizes things like mixtures of
Markov chains. When sufficiently abstracted, the general form of deFinetti’s
theorem becomes identical with the work of Dobrushin, Lanford and Ruelle on
Gibbs ensembles [58, Chapt. 1].

Useful surveys of this work appear in Aldous (1985), Diaconis and Freedman
(1984), Dynkin (1978), Kingman (1978) or Lauritzan (1984).

Recently, Ressel (1985) has made important connections between these
generalizations of exchangeability and semi-group theory as developed by Berg,
Christensen, and Ressell [4]. Representation theorems are presented as
integrals over the dual semi-group. Since many duais have been classified, this
gives a host of new results. Usually the results come out in a highly analytic
form, and much work remains to be done in translating things back to
probabilistic language.

Many of the generalizations have translation into unorthodox moment
problems, where only certain moments are given. It would be interesting to see
the machinery of the method of moments turned loose on these problems. A
reasonable place to start might be deFinetti’s theorem for Markov chains as
developed in [10].
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Let us return for a moment to HausdorfT's original papers. His interest lay in
yet another direction. He considered lower-triangular regular summability
methods A4 that commute with the usual Cesaro method C;: AC, =C 4, as a
matrix equation. Hausdorff argued that C ;A =AC, if and only if

ay, = ['r'] (=1)*"A""a,,. He used the integral characterization of positive a,,

to prove interesting summability results.

It would be instructive to have a direct probabilistic proof of Hausdorff’s
result. The equation AC, =C,A has a simple probability interpretation; why
does this imply that the rows of 4 are mixtures of coin tossing?

2.4 Cumulants, K-statistics, and self-similar processes. For an outsider,
moment theory has a messy feel to it. Consider a measure g on R®. The
moments of the sum of coordinates are

f(x1+ s +x,,)"u(dx, e dx,,).

Expanding and approximating the cross terms seems like hard work.

Moment theorists have developed a remarkable array of notational machinery
to expedite bookkeeping. By now, the machinery has taken on an elegant life of
its own, closcly connected to combinatorics (M&bius inversion on the partition
lattice) and orthogonal polynomials. This section serves as a brief introduction.

To begin with, the moment-generating function of 4 on R" is defined as

M(ols ey ou) - f e01x|+ e “(d-xl e dxu) - 2r“(x’) :'_'

where & =47' --- 6", rl=r! - !, and
ulx") -fx{‘ o xopldxy -0 dx,)

summed over 7, 20, .., r, 20.
The cumulants {x,} are defined by the identity

&
log M@, ..., 6,) = 3« T (2.8)

Thus, for n=1, xg=0, x;=pu(x), K =c? =pux?) —ux)?, ---. For p a
Gaussian measure, M () =e* *’2’2”, so all cumulants with r> 2 vanish.
Similarly for u an n-dimensional Gaussian measure, all teams higher than
quadratic vanish. This makes cumulants for Gaussian variables particularly
casy to work with. In proving limit theorems one must show only that higher
order cumulants tend to zero. It also forms the basis of a theory of testing for
Gaussianity developed by Brillinger and Tukey; see [7] for details.

The cumulants are polynomials in the moments. This is most easily expressed
using the language of partitions. Let o be a partition of a finite set S; for
example, o=1{(1,2), 3), @)} is a partition of S={1,2,3,4} into blocks
a,=(1,2), a,=@3), g3=(4). For a partition c=0,0, - g of {1,..,n},
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write

5
ke = I % (@)
ae|

where 7 (c(a)) = (ry - - - r,) is defined by r;=1 if i € g(a) and zero otherwise;
for example, o= {(1,2), (3), (4)} has «, =xy100 ko010 Xoo01- The relation between
cumulants and moments can then be expressed

10 [

& = Zhe,n 0 I x| 2.9)

€ a(a)

where fi(o, 7) is the M&bius function of the partition lattice under the partial
order of refinement [62]. Formula (2.9) can be proved by exponentiating both
sides of (2.8) and comparing coefficients.

Formula (2.9) is brilliantly presented and developed by Speed (1983) who
uses this combinatorial approach to prove all of the standard facts about
cumulants in a unified way.

These properties include vanishing of high-order cumulants if some set of
coordinates is independent of the others, an appropriate multilinearity of
cumulants, and an intriguing reduction of the cumulants of polynomials to
products of cumulants of individual coordinates due to Leonov and Shiryaev
(1959). It would take us too far afield to develop this here. It is elegantly
derived by Speed.

A host of statistics problems involve finding a symmetric function K of
observables X, X», ..., X, which averages to the corresponding cumulant «:

[ kG, - xduldx, - dx,) =x.

For example, the sample mean (X, + - - + X,)/n does the job for the first
cumulant for independent coordinates. In the independent case this is the
theory of K-statistics developed by R. A. Fisher and co-workers. There has
been an active development in higher dimensional cases to cover situations like
Tukey'’s “polykays”. This is now closely related to the modern theory of
symmetric functions and representation theory. The best access is Speed (1986)
who gives an elegant self-contained treatment and extensive references to the
literature.

There is another line of work which applies moment theory to construct
remarkable examples of processes which are self-similar in the sense popularized
by Mandelbrojt. To explain the idea, recall that the sum of independent
Gaussian variables is again Gaussian. If x; are Gaussian, one can consider
sums like E“v' 1H, (), 0< 1 <1, with H,, the m't Hermite polynomial, and

x; having mean zero, and covariance r = E (x;x;4;) behaving as k™"L (k) as
k — oo, where 0 <» <1 and L is slowly varying. It can be shown that when
»> 1/m the sum, adequately normalized, converges to Brownian motion. When
0 < » < 1/m the sum converges to a non-normal seif-similar random process.
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Such processes are currently being used to model many different types of
real-world phenomena. Taqqu [65] contains a survey of these matters.

The situation is much richer in several dimensions, c.g., for averages of
variables X ; on a lattice. The possible limits are under active study by
mathematical physicists using the language of renormalization; Major {48] and
Sinai [58] contain accounts from this point of view.

The point of bringing these results into the present discussion is this: very
intricate moment/cumulant calculations lie at the heart of many of these results.
The crucial tool used is Dobrushin’s “diagram formula”. This is explained by
Major [48, Chapt. 5] or Fox and Taqqu (1985) for example. This formula is
very similar to the Leonov-Shiryaev computations in the cumulant world. For
some reason there seems to be no contact between these two closely related
areas.

3. Moments in statistics.

3.1 Introduction. Applied workers have long used the mean and standard
deviation as numerical summaries of a bunch of numbers. The mean serves as a
surrogate for the typical or central value, the standard deviation serves as a
measure of how variable the numbers are about the mean.

Perhaps because of the success of the method of moments as a theoretical
tool, statisticians started using higher order moments to measure “skewness” or
asymmetry about the mean and “kurtosis” to measure the relative size of the
extremes of the distribution.

Karl Pearson systematized these ideas, and associated a natural 4-parameter
family of measures, now called Pearson curves. These are parameterized by
their first 4 moments. Given some data, one computes the moments of the data
and finds the Pearson curve with matching moments.

An carly success of these methods was “Student’s” determination of the
sampling distribution of the ¢-statistic. He computed the moments empirically,
using samples randomly drawn from numbers on slips of paper. He fit the
matching Pearson curve and observed that this fit the distribution very well. It
turns out that the t-distribution is actually a member of Pearson’s family of
curves, so the approximation was exactly correct. This was rigorously proved 10
years later by R. A. Fisher (1915).

A modern application of this approach is given by Solomon and Stephens
(1980). They consider a variety of problems in geometric probability where a
few moments can be computed theoretically. They find a simple distribution
which matches these moments and use it to answer other questions. For
example, if many random lines are dropped in the plane they form polygons.
One may inquire about the average area of such a polygon. A technical
description involves a Poisson field of lines with intensity parameter 7; see e.g.,
{60, Chapt. 3].
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Miles (1973) gave the first 3 moments of the area as
x N il Nt xl
u(A)-fz,u(A) 21_4,;4(.,4) 7
From these, and the known lower bound on the left end point (namely zero) it is
possible to fit a Pearson curve, and use it to give approximate results for the
proportion of polygons with area smaller than rx. Solomon and Stephens
showed this compared quite well with a Monte-Carlo investigation.

The literature on Pearson curves (and other families) is vast. We refer to
(36, Chapt. 6] or Solomon and Stephens (1980) and the references therein.

There is a much more general principle known in statistics as the “method of
moments”. It applies when a sample is thought to come from one of a family of
measures known up to a few parameters. Often, one can find simple functions
of the observations whose averages are known functions of these parameters.
Using sample averages, one gets a suitable number of equations and solves them
for the known parameters. References and examples can be found in [38].

This is a handy first-pass method. It suffers from two flaws. The first was
pointed out by R. A. Fisher (1922): moment estimators are usually not the most
accurate from the point of view of mean-squared error. Usually there are a host
of more accurate estimators (e.g., the method of maximum likelihood). The
second problem involves what statisticians nowadays call robustness: if a small
change in a few of the observations makes a big change in the final estimate,
onc must be wary. Moment estimators, even such standbys as the mean and
sample standard deviation, are notoriously sensitive. A careful discussion of
these issues is in [28].

These two problems have cut down on the use of moment methods. However,
there has been a recent revival; the idea is to transform data to a bounded scale
(say [0,1]) by a known monotone function. Perform the estimation on the
transformed data, and then (if needed) transform back.

A successful use of this idea can be found in Jerry Friedman’s (1985) new
algorithm for finding ‘“interesting” or “structured” projections of high-
dimensional data. Theory developed by Diaconis and Freedman (1984b) or
Huber (1985) says that most projections of most data sets will appear like the
bell shape curve. Thus the interesting projections are far from normal. Jones
(1986) suggested using the L? distance of a projection from the normal density
as an index of “interest”. This approach failed because of robustness: a few
stray values made the index go wild. Friedman (1985) transformed things to
the unit interval and approximated the density by an expansion in Legendre
polynomials. This leads to an index that can be easily computed in terms of the
first few moments of the sample. This quick computation is crucial since one is
faced with finding the best direction to project in 10 or 20 dimensions. The
moment-based methods work wonderfully. Here, there is no need to transform
back — the data are graphed in the interesting direction on the original scale.
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The next example gives an application of the kinds of upper and lower bounds
derived by Chebyshev to a very practical problem.

EXAMPLE 3. Panel study data. Sometimes data consist of many short series,
$ay X, X3, ..., Xso00,» Where x; € Zi2 is a binary 12-tuple. Such data arise, for
example, in economic investigations where the i'® person is followed for a year,
and each month one records 1 if employed and 0 if not. In analyzing such data
it is natural to consider simple models such as: x; has the same distribution as
flipping a coin with chance of heads p; depending on the i*! person. For coin
flips, the order doesn’t matter, so the only information available about p, is
S; =# ones in x;. Clearly P(S;=j} = p/(1—=p,)'>"J. Of course, we don’t know
the p,’s, only the observed S;’s. Stili, one can hope to get some information
about the p;’s as follows. If the people are a sample from a larger population,
and u represents the distribution of the p,’s in this larger population, then for a
newly chosen person

P{S=j}= f P/ =p)'*/ u(dp).

From the observed sample, one easily gets unbiased wtimz}tw of the first 12
moments (by the method of moments!) as u(x/) =2 [12,: -’] Cj+i with C; the

proportion of observed vectors with j ones.

From these estimates one can use moment theory to give upper and lower
bounds on the underlying measure u.

The above approach is classical. Burt Singer has applied the ideas in more
complex cases, for instance where cach person is allowed to be its own separate
Markov chain. Then the moment problems alluded to at the end of the
- discussion on deFinetti’s theorem (which are still unsolved) come into focus.

The ideas sketched out above have many further ramifications. One direction
is Herbert Robbins’ theory of empirical Bayes theory. The story is fascinating
but too long to go into here. Robbins (1986) is a nice survey.

A second direction makes use of many results from the geometry of moment
spaces. This is work by Bruce Lindsay (1983a,b). He is concerned with the
estimation of mixing measures p for more general families than binomial. Thus
one observes x; - - - x, from the mixture density

J f10) @9,

where f,y(x) is known. One wants to estimate Q. Lindsay (1986a,b) continues
this work, making even more direct use of the tools of moment theory.

As a final example, here is an application of moment methods in the theory of
statistics. Following Goldstein (1975), Diaconis and Ylvisaker (1985) studied
the following problem: Let X and Y be independent random variables. Assume
that there exist constants a and b such that

EX|X+Y)=a(X+Y)+b. 3.1)
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In the application, Y represents a parameter, and X represents measurement
error. One observes X +Y. Then, the best guess at Y (using the mean-squared
error criterion) is E(Y|X+Y). The problem was to show that for a given
underlying (known) measure u for X there is a unique measure for Y resulting
in the linear regression (3.1).

The uniqueness result is false without assumptions. However, it is true if the
distribution of X has moments of all order that satisfy the Carleman condition,
poui u(x?)~128 = oo which is sufficient for u to be a determinate measure.

It is natural to inquire if the Carleman condition is really needed or if it is
enough that u be determinate. This question produced some fascinating
esoterica (it is open). With the reader’s indulgence, we take a few steps down
this Garden path. Any unproved assertions can be found in Diaconis and
Ylvisaker (1985).

Suppose that g is determinate and (3.1) holds. One easily shows [33,
Lemma 1.1.1] that the linearity (3.1) gives the following conditions on the
Fourier transforms:

P N,
py(t) = pay(®) '™ for ¢ in a neighborhood of 0.

Observe that if a =1/n for n 2> 2 an integer this becomes
ﬁx(t) -ﬁy(t)"—.l .

This shows that Y has moments of all orders, and allows them to be determined
from the moments of X. It shows more: by a fundamental theorem in moment
theory , if uy is not determinate, then, for every real s there is a probability »,
with the same moments as uy and an atom at s, 5O », (=1 has an atom at
(n—1)s. Since s is arbitrary, there is a probability with the same moments as
ux and an atom at any preselected point. This contradicts determinateness of
Kx-

If it were true that being determined by moments was inherited by
convolutions then (at least) general rational values of a could be handled, for
ﬁ"x-ﬁ; in a neighborhood of zero, and X determinate, would then imply that Y’
is determinate. Alas, Christian Berg (1985) provided a probability u which is
determinate but u* u not!

There is really no end to the problems and applications of the method of
moments in these fields. I hope the wealth of applications convinces some
readers that there is need for much further theory in practice.
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