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Abstract—In this paper, we present a systematic investigation of the incomplete generalized
Jacobsthal numbers and the incomplete generalized Jacobsthal-Lucas numbers. The main results,
which we derive here, involve the generating functions of these incomplete numbers. (© 2005 Elsevier
Ltd. All rights reserved.
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1. INTRODUCTION AND DEFINITIONS

Recently, Djordjevié [1,2] considered four interesting classes of polynomials: the generalized
Jacobsthal polynomials J,, (), the generalized Jacobsthal-Lucas polynomials jp m(z), and their
associated polynomials £, () and f, m(z). These polynomials are defined by the following
recurrence relations (cf., [1—3]):

(-'L') n lm( )+21:Jn*m,m (.’L‘)
(n2m; mnéeN,; Jom(z)zo Jom(z) =1, whenn=1,..., m—1),
(

]n,m :E) = jn—l,m (SU) + 2Ijn—m,7n (I)
(n2m; m,neN; jom(:E) =2, Jam(x) =1, whenn=1,...,m—1},
m(2) = Foim (@) + 22F_pmm () +3
(nz2m; mneN; Fom(.’L) =0, Fum(z)=1, whenn=1,...,m—1),

(1.2)

(1.3)
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fn,m (l‘) = fn—l,m (.T) + 2-'L'fn—m,m (I) +5

(mnzm; mneN; fom(x) =0, fam(z)=1, whenn=1,...,m—1), (14)
N being the set of natural numbers and
No:=Nu{0} = {0,1,2,...}.
Explicit representations for these four classes of polynomials are given by
[(n—1)/m]
n—1—(m-1)r ,
r=0
: ()_[nzh:n]n—(m—Q)k n—(m-—1)k @ )k (1.6)
jn’mx_kzo n—(m-1)k k ) '
[(n=m+1)/m]
n—m-+1—(m—1r r
Fn m n,m ’ :
(@) = Jn,m () +3 ZZ:O ( et )(u) (1.7)
and
((n=m+1)/m]
Fu () = s (@) +5 (T e 18)
= r+1

respectively. Tables for J, m, (z) and j, n, (2) are provided in [2].
By setting = 1 in definitions (1.1)—(1.4), we obtain the generalized Jacobsthal numbers

r

[(n—1)/m)]
Jn,m = Jn,m (1) = Z <7L 1 (m 1) 7') 21', (19)

=0

and the generalized Jacobsthal-Lucas numbers

[n/m]
) . n—(m-—2)rn—(m-1)7r\_,
nm = Jn,m 1) = E e 2", 1.10

and their associated numbers

[(n—m+1)/m]
n—m+1—(m-—1)r
Fom = Fum(1)=Jym (1 3 2" 1.11
= Fan @ = @43 3 (PTIIT a
and
[(n—m+1)/m]
n—m+1—(m-1r
= = T. 12
Frm = Fam (1) = Jnm (1) +5 ; ( i1 )2 (1.12)

Particular cases of these numbers are the so-called Jacobsthal numbers J, and the Jacobsthal-
Lucas numbers j,, which were investigated earlier by Horadam [4]. (See also a systematic inves-
tigation by Raina and Srivastava [5], dealing with an interesting class of numbers associated with
the familiar Lucas numbers.)

Motivated essentially by the recent works by Filipponi [6], Pintér and Srivastava [7], and Chu
and Vicenti [8], we aim here at introducing (and investigating the generating functions of) the
analogously incomplete version of each of these four classes of numbers.
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2. GENERATING FUNCTIONS OF THE
INCOMPLETE GENERALIZED JACOBSTHAL
AND JACOBSTHAL-LUCAS NUMBERS

We begin by defining the incomplete generalized Jacobsthal numbers Jr’jym by

k

~1l—=(m-1)r n—1
JEo=S (" 9" 0<k< : 2.1
L= (M) <k [™2imnen), e
so that, obviously,
JL(%—l)/m(n—l)/ml = T, (2.2)
Jk =0 (0 n <mk+1), (2.3)
and
Tristm = Imkti=1m (=1,...,m). (2.4)

The following known result (due essentially to Pintér and Srivastava [7]) will be required in our
investigation of the generating functions of such incomplete numbers as the incomplete generalized
Jacobsthal numbers J,’im defined by (2.1). For the theory and applications of the various methods
and techniques for deriving generating functions of special functions and polynomials, we may
refer the interested reader to a recent treatise on the subject of generating functions by Srivastava

and Manocha [9)].

LEMMA 1. (See [7, p. 593].) Let {s,,}32, be a complex scquence satisfying the following nonho-
mogeneous recurrence relation:

Spn = Sp—1+28,_m + Ty (n2m; m,neN), (2.5)

where {r,} is a given complex sequence. Then the generating function S(t) of the sequence {s,}
is

m—1
S (t) = (So —ro + Z t (Sl — 81— T‘l) + G(t)) (1 —f - th)_l , (26)

=1
where G(t) is the generating function of the sequence {r,}.

Our first result on generating functions is contained in Theorem 1 below.

THEOREM 1. The generating function of the incomplete generalized Jacobsthal numbers J,’fym
(k € Np) is given by

RE ()= Jimt”
r=0

m—1
== TRt (['Jmk,m + Z £ (Jkstim — Jmkepio,m) | (1— ) = 2k+1tm> (2.7)
=1

. {(1 —t— 2™y (1— t)k“} -
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Proor. From (1.1) (with x = 1) and (2.1), we get

k
J;:,m—JJ;:_l‘m—Q']'s_mym:Z (TL —1- (nl - 1)"‘) 27‘

< r
_:ZO(n—2~£m—1)r>2r_§(n—l—mr—(m—l)r>2r+l
k k

= "—1—yn—UT)f_§:<n—2—gn-1w>y
e n-2—(m-1r Tmo
A
kn——m—rrkn——m——rr

:Z;< 1 i 1))2 _Z;< 2 i 1))2 .,
_é(nwiﬂ;—m)y (no2m DG D)

(2.8)

:_éz[cw—2—@nnr)+<n_2;gq_lﬁ>]y 2.8
_1_(n—Q—(m;lﬂk+1»2ﬁd+§3(n—l—fn—lﬂ)w

:é;(”—1—Sn—1w)y+1_é;<n—1—§n—1w>y
_1~<n—2—(mglﬂk+1§2Hl

:_<n_1_m;(m_1)k>2k+1

—1-m—-—(m—-1)k

=" m—(m—1) 28+l (n2m+1+mk; keNy).
n—1—m-mk

Next, in view of (2.3) and (2.4), we set

_ 7k — Tk _ 71k
S0 = ']mk-{—l,m’ S1 = Jmk:+2,ma ey Sm-1 = Jmk-{-m,m
and
— Jk
Sn = mk4n+1,m:"
Suppose also that

— k
To=r]{ =" =Tm-g =0 and Tn=2k+1(n m )

n—m

Then, for the generating function G (¢) of the sequence {r,}, we can show that
2k+ltm

G(t)= —.

(1—t)**t

Thus, in view of the above lemma, the generating function S¥,(¢) of the sequence {s,} satisfies
the following relationship:
2k+1tm m—1 2k+ltm

7:Jmmk+ tl Jm m - Ym —m+—-
(1_t)k+1 km (k) ; (Jmk1, ki—1m) (1“t)k+1

SE () (1 —t—2t™) +
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Hence, we conclude that
RE (t) = t™ 1Sk (1),

This completes the proof of Theorem 1.

COROLLARY 1. The incomplete Jacobsthal numbers J* (k € Ny) are defined by

k
1
Jk = J,’iQ:Z(n . T)Q’

(ogkg ["ﬂ; neN\{l})

and the corresponding generating function is given by (2.7) when m = 2, that is, by

BE (1) = %+! [J2k ot (Jopgr — Jo) (1— )" = 2k+1t2] : [(1 —t—26%) (1— t)k+1] 79

3. INCOMPLETE GENERALIZED
JACOBSTHAL-LUCAS NUMBERS

For the incomplete generalized Jacobsthal-Lucas numbers j¥ . defined by [cf. equation (1.10)]

(3.1)

k
o et 0)s
(srs 2] maen),

we now prove the following generating function.

H/\

THEOREM 2. The generating function of the incomplete generalized Jacobsthal-Lucas numbers
jﬁ,m (k € Np) is given by

o0
)= dhmt”
r=0

m—1
=t |:<jmk—1,m+ Z t (jmlc+l—-1,m_jmk+l—2,m)> (1 =) =2k tm (2 1) (32)

=1
. [(1 —t—2™)(1 - t)k“} o

Proor. First of all, it follows from definition (3.1) that

G = G, (3:3)
=0 (0 <n < mk), (3.4)

and
jyqukJrl,m = jnLk+l—l,7n (l = 17 sy m) . (35)

Thus, just as in our derivation of (2.8), we can apply (1.2) and (1.10) (with x = 1) in order to

obtain
e ® * _n—m+2k<n—m+k>2k+l.

— -2 = 3.6
]n,m Jn—l,nl ]n—m,m n—m+ k n-—-m ( )
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Let
So :jmk—l,m1 S1 :jmk,mw--asmfl :jmk+m,m7
and
Sp = jmk+n+l,m‘

Suppose also that

ro=ri =" ="Tp_1=0 and T =

n-m+2k/n—m+k ok+1
n—-m+k\ n-m ’

Then, the generating function G(t) of the sequence {r,} is given by

2k+1tm (2 — ¢
G(t)= (1——t§k+1—)

Hence, the generating function of the sequence {s,} satisfies relation (3.2), which leads us to
Theorem 2.
COROLLARY 2. For the incomplete Jacobsthal-Lucas numbers jfm, the generating function is
given by (3.2) when m = 2, that is, by

Wy (t) = t* [(j2k—1 +t (Jor — Jak—1)) (1 — t)k+1 — 2R (2 - t)] ' [(1 —t—2t%) (1- t)k“} B )

4. TWO FURTHER PAIRS OF INCOMPLETE NUMBERS

For a natural number k, the incomplete numbers F,’f’m corresponding to the numbers F, ,,
in (1.11) are defined by

k
& & n—m+1—(m-1,r\_,

=J 0
Fom n,m+3rzzo< i1 2

HA

k

A

{%} ;m,n e N) , (4.1)

where
Ff . =JF.=0, (n<m+mk).

THEOREM 3. The generating function of the incomplete numbers F,’f’m (k € Np) is given by
tmk+18k (1) where

m—1
an (t) = [ka,m + Z tl (ka-}—l,m - ka+l—1,m)] (1 —t— 2tm)—1
=1

(4.2)
3t (1 — ¢)F+! —ok+lgm (1 _ ¢ 4 3gm=1)

(1 —t—2tm) (1 —¢)Ft+?

PrOOF. Our proof of Theorem 3 is much akin to those of Theorems 1 and 2 above. Here, we let

k
S0 = ka+1,m = Fmk,
k
81 = F7nk+2,rn - ka*—l,my ceey
k
Sm—1 = ka+m,m = ka+m—-1,m7

and

_ ok
Sn = ka-l—n-}—l,m'
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Suppose also that

To=T1 =" =7Tp-1=0
and
rn = (”‘m”)z’““+3<”“m+2+k>2’“+1.
n—m n—m+k

Then, by using the standard method based upon the above lemma, we can prove that

X, 2L (1t 4 3emT)
G(t)=) mt" = (1 )72
n=0

Let Sk (t) be the generating function of F,’f)m. Then, it follows that

SE (1) = sg+tsy 44 st + -,
tSE (1) =tso+t2s1 4 4t s 1+,
2AmSE () = 2™sp 4+ 2" sy £ 4 2 sy e,

and

G)=ro+rit4+ - +rt" +-..,

The generating function t™*+15* (1) asserted by Theorem 3 would now result easily.

COROLLARY 3. For the incomplete numbers F,’f’g defined by (4.1) with m = 2, the generating
function is given by

t2k+IS§ (t) —_ t2k+1
[For +t (Farg1 — For)] (1 — )2 4382 (1 — )2 — 264142 (1 — ¢ + 3¢2) (4.3)
(1t —2t2) (1 — ) +? '

Finally, the incomplete numbers f,’fm (k € Ng) corresponding to the numbers f,, . in (1.12)
are defined by

k
[y L (n~|—1—m;l(m—1)r>2r (O§k§[n_1];m,neN>. (4.4)
: : > .

r=0

THEOREM 4. The incomplete numbers f,’fm (k € Nyg) have the following generating function:

m—1
W, (8) = ¢™*+1 [fmk,m >t (fkrtm — fmk+l_1,m>] (1-t—2m)~
=1
gt (SR =2 (e )
(1—t—2tm) (1 —t)*? '

(4.5)

PRrROOF. Here, we set
_ fk _
So = fmk+1,m = fmk,m,

k
S1 = fmk+2ym = fmk—+—1,ma

k
Sm—1m = mk+m,m — fmk+m—1,m,
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_ fk —
Sn = mk+n+1l,m — fmk+n,m-

We also suppose that

and

To=71=:"=Tp-1=0
YS! n—m+k 4 5. gkt n—2m+2+k
" n—m n—92m+1 '

Then, by using the known method based upon the above lemma, we find that

oM (1 — ¢ 4 5tm )

G0 = e

is the generating function of the sequence {r,}. Theorem 4 now follows easily.

In its special case when m = 2, Theorem 4 yields the following generating function for the
incomplete numbers investigated in [6,7].

COROLLARY 4. The generating function of the incomplete numbers f,’f’Q is given by (4.5) when
m = 2, that is, by

W2}c (t) — t2k+1

[for +t (forar — for)] (1 — )72 4562 (1 — )T — 2k +142 (1 4 41) (4.6)
(1—t—22) (1 —¢t)f+? '
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