Available online at www.sciencedirect.com
e Journal of

*.° ScienceDirect Symbolic

Computation

" N
ELSEVIER Journal of Symbolic Computation 42 (2007) 587-620

www.elsevier.com/locate/jsc

MOPS: Multivariate orthogonal polynomials
(symbolically)

Toana Dumitriu®*, Alan Edelman®, Gene Shuman®

a Department of Mathematics, University of Washington, Seattle, WA 98195, United States
b Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
€ Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge,
MA 02139, United States

Received 15 October 2005; accepted 11 January 2007
Available online 3 February 2007

Abstract

In this paper we present a Maple library (MOPS) for computing Jack, Hermite, Laguerre, and Jacobi
multivariate polynomials, as well as eigenvalue statistics for the Hermite, Laguerre, and Jacobi ensembles
of random matrix theory. We also compute multivariate hypergeometric functions, and offer both symbolic
and numerical evaluations for all these quantities.

We prove that all algorithms are well-defined, analyze their complexity, and illustrate their performance
in practice. Finally, we present a few applications of this library.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction
1.1. Motivation

There is no need for us to review the impact that classical orthogonal polynomial and special
functions theory has had for applications in mathematics, science, engineering and computations.
By the middle of the last century, handbooks had been compiled that could be found on nearly
everyone’s bookshelf. In our time, handbooks join forces with mathematical software and new
applications making the subject as relevant today as it was over a century ago.

* Corresponding author. Tel.: +1 206 616 8164; fax: +1 206 543 0397.
E-mail address: dumitriu@math.washington.edu (I. Dumitriu).

0747-7171/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.js¢.2007.01.005

588 1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587—-620

We believe that the modern day extensions of these scalar functions are the multivariate
orthogonal polynomials or MOPS along with their special function counterparts.

The multivariate cases are far richer, yet at this time they are understudied, underapplied,
and important applications may be being missed. A few steps in the direction of writing and
analyzing software for the computation of multivariate special functions have already been
taken; for a fairly comprehensive list of software packages that are available, see Zabrocki’s
webpage (Zabrocki, 2007). However, at this time, there seem to be no systematic studies of such
algorithms, no handbooks, and no collections of applications, though since April 2004 entries
are being introduced into Eric Weinstein’s Mathworld website.!

Development and analysis of such software may thus be seen as an area of research ripe for
study. This paper is taking another step in this direction; undoubtedly better and more general
software will emerge in time.

1.2. Contributions of this paper

We are presenting here a collection of algorithms for computing a number of multivariate
orthogonal polynomials and special functions associated with Jack polynomial theory. Some
formulas that form the basis for particular (« = 1, 2) cases of these algorithms appeared in papers
(see James (1968, 1975)) and books (see Muirhead (1982)) before; some of the recurrences we
mention here have been known for a while (see Kaneko (1993)); most of them, in their general
form (o > 0), appear here for the first time.

To make the distinction between what is new and what was known before, we label every new
result as a Lemma or Theorem, and all old results as Propositions.

As far as we know, there has been no systematic attempt to write code that computes
multivariate Hermite, Laguerre, or Jacobi polynomials.

Regarding the Jack polynomials, several attempts at implementing computational formulas
have been made; we mention here the Symmetric Functions Maple package (Stembridge,
2007) by John Stembridge (which implements an algorithm for computing Jack polynomials
in elementary functions basis, and can convert the result to monomial basis) and the small Maple
package LUC (Zeilberger, 2007) by Doron Zeilberger, which implements an explicit formula
for the Jack polynomials (in monomial basis) found by Vinet and Lapointe (Lapointe and Vinet,
1995). We have found both of them to be slower than MOPS in calculating and expressing Jack
polynomials in monomial basis. In the case of the former, this is partly because conversion to
monomial basis is ulterior to the actual computation; in the case of the latter, the slow-down is
due to the explicit (rather than recursive) character of the computation.

We also note that, while SF 2.4 is faster at simultaneously computing all Jack polynomials
(expressed in elementary function basis) corresponding to a given partition size (up to partition
size 21), MOPS can achieve much higher partition sizes (35 and higher) in computations of
individual Jack polynomials (when expressed in monomial basis).

In addition to providing recurrence-based algorithms for computing multivariate orthogonal
polynomials, we prove that these recurrences are well-defined. This is a non-trivial issue, since
many of them involve division by polynomials in the recurrence parameters, which we prove to
be non-zero.

Finally, we provide a complexity analysis for our codes, and provide sample running times.

1 Mathworld, URL http://mathworld.wolfram.com/.

1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587-620 589

1.3. Orthogonal polynomials

We recall that scalar orthogonal polynomials are defined by a positive weight function w(x)
defined on an interval I/ C R. We define the inner product

(fs 8w =f1f(x)g(X)w(X)dx

and the sequence of polynomials pg(x), p1(x), p2(x), ..., such that pg(x) has degree k, and
such that {p;, p;j)w = 0if i # j. This sequence is the sequence of orthogonal polynomials with
respect to the weight function w(x).

There is a (scalar) complex version of this inner product (I C C) where we use g instead of
g; this induces a different set of orthogonal polynomials.

We now define the multivariate version of the inner product, and the corresponding orthogonal
polynomials. We take any weight function w(x) defined on a segment I, and create an
n-dimensional weight function which is symmetric in each of its n coordinates, and incorporates
arepulsion factor which depends on a “Boltzmann” constant 8 (or a temperature factor @ = 2/8)
which is not seen in the univariate case:

n
Wi onx) = [b —x P [Jwe. (1
1<i<j<n i=1
We define multivariate orthogonal polynomials p¥(xi, ..., x,) with respect to the weight
W(x1, ..., xp). The polynomials are symmetric: they take the same value for any permutation of

the n coordinates x;, and they satisfy

n
/I pe(xl, ..., xn)pﬁ(xl, e Xn) l_[lx; — xj|ﬂ 1_[w(x;)dxy ... dx, = Seps
" i<j j=1
where « represents the “multivariate degrees” of p¢ (the exponent of the leading term).

We begin with our fourth example: symmetric multivariate Hermite polynomials. We take
w(x) = e/ 2, so that the integral is over all of R". The polynomials are denoted HZ(x). Our
second and third examples are w(x) = x%e™* and w(x) = x? (1 — x)“2. These are the Laguerre
L%4 and Jacobi J¢"“!"*? polynomials. Special cases of the Jacobi polynomials are the Chebyshev
and Legendre polynomials.

Our first example, the Jack polynomials, generalizes the monomial scalar functions, x¥. These
polynomials are orthogonal on the unit circle: w = 1 and I = the unit circle in the complex
plane. Therefore /" may be thought of as an n-dimensional torus. The orthogonality of the Jack
polynomials may be found in formula (10.35) in Macdonald’s book (Macdonald, 1995, p. 383).

Tables 1-4 give the coefficients of the Jack, Hermite, Laguerre, and Jacobi polynomials in
terms of the monomial symmetric functions (for the first) and the Jack polynomials (for the last
three). We take all degrees up to total degree 4 for the Jack polynomials, up to total degree 3
for the Hermite polynomials, and up to degree 2 for Laguerre and Jacobi; the coefficients can be
seen by a simple call to the procedures, e.g.,>

> jack(a, [2], "J");

> hermite(a, [1, 1, 1], n, 'C");

> laguerre(a, [1,1], g, n, 'C’);
> jacobi(a, [1], g1, g2, 1, 'C");

2 Note the use of @ for « and g for y in the calls.

590

1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587—-620

Table 1
Coefficients of the Jack “J” polynomial expressed in monomial basis
k=2 m m
k =1 m“] [2] [1,1]
J[Oé] I1+a 2
][Di] 1 a
J[l,l] 0 2
k = 3 m[3] m[z,l] ’n[l,l’l]
J[Oé] I+a)2+4+a) | 314+ 6
J[Dé’l] 0 24+« 6
J[of,l,l] 0 0 6
k=4 mp4) mp3 1 mp o] mpy | Mg
J[‘fu I+ o)1 +20)(1 +3x) | 4(1 +a)(1 4 2a) 6(1+(>z)2 12(1 + @) 24
JE 0 2(1 4 a)? 4(1+a) 2(5 + 3a) 24
I3 0 0 20+ a)(14+a) | 42+a) 24
J&,I,IJ 0 0 0 23 +) 24
Jﬁ.l,l,ll 0 0 0 0 24

1.4. History and connection to random matrix theory

The Jack polynomials have a very rich history. They represent a family of orthogonal
polynomials dependent on a positive parameter «, and some of them are more famous than others.
There are three values of « which have been studied independently, namely, « = 2, 1, 1/2. The
Jack polynomials corresponding to o = 1 are better known as the Schur functions; the « = 2 Jack
polynomials are better known as the zonal polynomials, and the Jack polynomials corresponding
to o = 1/2 are known as the quaternion zonal polynomials.

In an attempt to evaluate the integral (2) in connection with the non-central Wishart
distribution, James (1960) discovered the zonal polynomials in 1960:

/ (tr(AHBHT)" (HTdH) = Z ceZe(A)Ze(B).)
O Kk

Inspired by the work of James (1960) and Hua (1963), in his own attempt to evaluate (2),
Jack was lead to define the polynomials eventually associated with his name (Jack, 1970). More
concretely, he discovered an explicit one-parameter () family of polynomials (which, for o = 2,
he called “pre-zonal”) and provided a procedure for obtaining from them the one-parameter
family of polynomials now bearing his name. Jack proved that the new, constructively defined
family of polynomials coincided with the Schur functions for « = 1, and conjectured that they
were the zonal polynomials for « = 2 (he proved this conjecture for a special case). He also
noted that for « = —1, the “pre-zonal” polynomials are the (not so well-known) augmented
monomial symmetric functions.

During the next decade, the study of Jack polynomials intensified; Macdonald (1995, p.
387) points out that in 1974, Foulkes (1974) raised the question of finding combinatorial
interpretations for the Jack polynomials. This question was satisfactorily answered in 1997 by
Knop and Sahi (1997).

1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587-620 591
Table 2

Coefficients of the Hermite polynomial expressed in the Jack “C” polynomial basis

j— o o — o
a k=2 C[Zl C[l,ll 1 —C[]
k=1 | C
[1] o _n(n+a)
H[Z] 1 0 o
H["i] 1
n(n—1)
H[Di,l] 0 1 I4o
k=3 165 | an | S i
o 3(n+o)(n+2a)
A3 ! 0 0 920 (Fa)
o 6(n—1)(n+a)(a—1)
Aoy | O ! 0 — S 2000
o 3a(n—1)(n—2)
Hign | 0 0 1 Cra)(ta)
Table 3
Coefficients of the Laguerre polynomial expressed in the Jack “C” polynomial basis
— o — o
k=1 ‘ C[l] 1= C[J
o,y (ya+n+a—1)n
Ly \ —1 | Gedniecbn
— o o o — o
k=21 | Sy Iy 1=q
La,y 1 0 2(ya+n+2a—1)(n+o) (ya+n+a—1)(ya+n+2a—1)n(n+a)
[2] a(l+a) o2 (1+a)
LY 0 1 _ 2(yatnta—2)(n—1) (ya+n+a—1)(ya+n+a—2)n(n—1)
[1,1] T+a a(l+a)
Table 4
Coefficients of the Jacobi polynomial expressed in the Jack “C” polynomial basis
_ o _a
k=1 C[l] 1= C[]
Ja,gl 82 -1 (g1a+n+a—n
[1] gra+gra+2n—2+2a
— o o o — o
k=2 1% | Yy iy 1=q
Jot,gl.gz 1 0 2(g1a+n+2a—1)(n+a) (g1a+n+a—1)(gra+n+2a—n(n+a)
[2] (g1a+gra+2n—2+4a)(1+a) (g1a+gra+2n—2+4a)(g|a+gra+2n—2+3a)a(1+a)
Jot,gl .82 0 1 __ 2a(gjatnta—=2)(n—1) 2a(giat+nta—1)(ga+n+a—2)n(n—1)
[1,1] (g1o+gra+2n—4+2a) (14+a) (g1a+gra+2n—442a)(g1a+gra+2n—3+2a)(14+a)

Two of the most comprehensive sources of information on Jack polynomial properties are
Stanley’s paper (Stanley, 1989) (which appeared in 1989) and Macdonald’s book (Macdonald,

1995) (from 1995); these two authors generalized most of the known properties of the Schur
functions and zonal polynomials to Jack polynomials.

As mentioned, an important application of the Jack polynomials came in conjunction with
random matrix theory and statistics of the 2/«-ensembles. Below we mention a few of the many
researchers who have made significant contributions in this area.

592 1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587—-620

James (1964) was one of the first to make the connection between the zonal polynomials
(o« = 2 Jack polynomials) and the 1-ensembles, when he calculated statistical averages of zonal
polynomials over the 1-Laguerre ensemble (Wishart central and non-central distributions).

At about the same time, Constantine and Muirhead provided a generalization of the
hypergeometric series, using the zonal polynomials, and studied the multivariate Laguerre
polynomials for @ = 1 (for a reference, see Muirhead (1982)).

In a survey paper, James defined and described multivariate Laguerre, Hermite and Jacobi
polynomials for « = 1 (James, 1975). Chikuse (1992) studied more extensively the multivariate
Hermite polynomials for « = 1, and Van Diejen (1997) examined in detail the general « case for
the same.

In the early *90s, Kaneko (1993) studied the general @ binomial coefficients, and used them
in connection with the study of hypergeometric series and multivariate Jacobi polynomials.
He also studied Selberg-type integrals and established the connection with generalized Jacobi
polynomials. A few years later, Okounkov and Olshanski (1997) considered shifted Jack
polynomials for all o, and proved that they were the same as the generalized binomial
coefficients.

Kadell (1997) was perhaps the first to consider averages of many valued Jack polynomials,
with his study of the average of the Jack polynomial of parameter 1/k (with k an integer) over
the corresponding 2k-Jacobi ensemble. Later it was noticed that constraining k to be an integer
was unnecessary.

Lasalle (1991a,b,c) considered all three kinds of general o multivariate polynomials, and
among many other things computed generating functions for them.

The last results that we mention here are those of Baker and Forrester (1997), who studied
in detail the multivariate, general « Hermite and Laguerre polynomials, in connection with the
2/a-Hermite and Laguerre ensembles (some of their work built on Lasalle (1991a,c)). For a good
reference on multivariate generalizations of many of the univariate properties of the Hermite and
Laguerre ensembles, see Forrester (2001).

2. Multivariate functions: Definitions, properties, and algorithms
2.1. Partitions and symmetric polynomials

Definition 2.1. A partition A is a finite, ordered, non-increasing sequence of positive integers
A=A > A3 > = A

Throughout this paper, we will refer to [= [(A) = length()A) as the length of A, and to
k=|Al= Zf‘:l A; as the sum of A.

Remark 2.2. Naturally, one can remove the constraint “finite” from the definition of the
partition, and replace it with “of finite sum”, since one can always “pad” a partition with Os at
the end; in this context / becomes the index of the smallest non-zero component of the partition
A

We will work with two orderings of the partitions. The first one is the lexicographic one,
denoted by <.

Definition 2.3. We say that A < k in lexicographical ordering if for the largest integer m such
that A; = k; foralli < m, we have A, < kp,. If Xy < Ky, We say that A < k.

1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587-620 593

Remark 2.4. This is a total ordering of the partitions.
The second ordering is the dominance ordering, sometimes also called the natural ordering.

Definition 2.5. We say that A < « (or, equivalently, that ¥ “dominates” A) if, given m =
max{length(k), length(1)},

M\

A < ki, Yj<m, and

-

1 1

Ai Ki.

M=
Il
M

1 1

If any one of the inequalities above is strict, we say that & < «.

Remark 2.6. Note that we compare two partitions only if they sum to the same integer. Also
note that even with this constraint, < is only a partial ordering of the set of partitions of a given
number: for example, [4, 1, 1] and [3, 3] are incomparable.

The above summarizes what the user should know about partitions in order to use our library.

Definition 2.7. A symmetric polynomial of m variables, x1, ..., X, is a polynomial which is
invariant under every permutation of xp, ..., Xp,.

Remark 2.8. The symmetric polynomials form a vector space over R.

Over the course of time, combinatorialists have defined a variety of homogeneous bases for
this vector space; each such basis is indexed by partitions (which correspond to the term of
highest order in lexicographical ordering of the polynomial). By homogeneity we mean that
all terms of a polynomial in the basis have the same total degree (but this degree varies from
polynomial to polynomial).

Some of these homogeneous bases are displayed in the table below:

Name Definition for / = 1 Definition for [> 1
Power-sum functions Pa =21 xjk.' pr =TT P

- !
Elementary functions ey = Zj1<j2<~"<jxl Xjpoxj, o en=[lijen

Complete homogeneous functions /1, = Zj]<j2<.__</-~ Xjp o Xy, hy =]_[5_1 hy,;
—_— — /\1 =

Another important basis is given by the monomial functions m,

=Dt Ko
og€eS)
here S, is the set of permutations giving distinct terms in the sum; A is considered as infinite.
The last basis we mentioned distinguishes itself from the other ones in two ways; the
advantage is that it is very easy to visualize, and proving that it is indeed a basis is immediate.
The disadvantage is that it is not multiplicative.?

3Forx e {p, e, h}, x;x;. = xp, where p can be obtained in an algorithmic fashion from A and p (sometimes by mere
concatenation and reordering). In general, m;m,, is not a monomial.

594 1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587—-620

Monomials seem to be the basis of choice for most people working in statistics or engineering.
Combinatorialists often (but not always) prefer to express series in the power-sum basis, because
of connections with character theory.

2.2. Multivariate Gamma function

Before we proceed, we will need to define the multivariate Gamma function for arbitrary o;
the real and complex versions are familiar from the literature, and the arbitrary ¢ > 0 case
represents an immediate extension:

F;;(a) — pmm=1)/Qa) ﬁp (a _ - 1)) 3)

i1 &

Just as the univariate Gamma function generalizes to the multivariate one, the shifted factorial
(Pochhammer symbol, rising factorial)

_TI'(a+k
(@ = W

becomes the generalized shifted factorial. We call

“

length(x) P length(c) T" (a — % + ,Cl.)
(-5, -
o K;

@g=T] [1 —
i=1 i=1 r (a - %)
the generalized shifted factorial, or generalized Pochhammer symbol.

2.3. Jack polynomials (the multivariate monomials)

Jack polynomials allow for several equivalent definitions (up to certain normalization
constraints). In addition to the definition presented in the introduction (at the end of Section 1.1),
we present here two more (Definitions 2.9 and 2.10). Definition 2.9 arose in combinatorics,
whereas Definition 2.10 arose in statistics. We will mainly work with Definition 2.10.

Definition 2.9 (Following Macdonald (1995)). The Jack polynomials P are orthogonal with
respect to the inner product defined below on power-sum functions

(Prs Pu)a = @' P 2385,

where z; =]_[f(:} a;!i%, a; being the number of occurrences of i in A. In addition,

o o
P =m) + E Uy Moy
H=A

There are two main normalizations of the Jack polynomials used in combinatorics, the “J”
normalization (which makes the coefficient of the lowest-order monomial, [1"], be exactly n!)
and the “P” normalization (which is monic, and is given in Definition 2.9). To convert between
these normalizations, see Tables 5 and 6. In Table 5, I,, = (1,1, 1, ..., 1), where the number of
variables is m.

We use the notation « - k for x a partition of k, and py for Z?"zl ki(ki —1— %(i —1)).

1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587-620 595

S k=[4,31.1]

as)=2

l(s)=1

Fig. 1. The Ferrers diagram, arm-length and leg-length.

Definition 2.10 (Following Muirhead (1982)). The Jack polynomial C¢ is the only homoge-
neous polynomial eigenfunction of the following Laplace—Beltrami-type operator:

2

no,d2 2 x? d
D* — x?_ + = i —,
izZ] i dxl-z o lsi;':fm Xj —Xj dx;

with eigenvalue pZ + k(m — 1), having highest-order term corresponding to «. In addition,

Y Gl xm) = ()t
Kk, l(k)<m

Remark 2.11. The “C” normalization for the Jack polynomial allows for defining scalar
hypergeometric functions of multivariate (or matrix) argument. These are useful for computing
Selberg-type integrals and other quantities which appear in various fields, from the theory of
random walks to multivariate statistics and quantum many-body problems.

Remark 2.12. Jackson (2003) pointed out that the D* operator also appears in algebraic
geometry, for example in the context of ramified covers. We thank the anonymous referee who
noted that this operator, modulo a similarity transformation, is the Hamiltonian of the quantum
Calogero—Sutherland model, which describes m identical particles on a circle.

Definition 2.13. Given a partition « with |«| = n, the Ferrers diagram corresponding to « is an
arrangement of n boxes in /() left-justified rows, the number of boxes in row i being the same
as «; (see Fig. 1).

Definition 2.14. Given the Ferrers diagram of a partition « (see Fig. 1), define a, (s) (the “arm-
length) as the number of squares to the right of s; [, (s) (the “leg-length”) as the number
of squares below s; hi(s) = Ic(s) + a(l + ac(s)) (the “upper hook length”) and h¥(s) =
Le(s) + 1 + aa, (s) (the “lower hook length”).

Finally, a further definition is needed in order to present the conversion table.
Definition 2.15. Let
cle,a) = [[rics),

SEK

[T75.

SEK

(o, k)

Je = cla, k) (o, k),
where i and A% have been defined above.

To explain the conversions between “J”, “P”, and “C”, we recall the definition of the
generalized Gamma function and generalized shifted factorial from Section 2.2.

596 1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587—-620

We can now present Tables 5 and 6; the entries have been filled out using James (1968), Baker
and Forrester (1997), and Stanley (1989).

Table 5
Values of the different normalizations of Jack polynomials of partition « and parameter « at I,

Normalization Basic property Valueat I, = (1,1,1,...,1)

w2k
C Sums to (x +xz+---+xn)k C(Im) =]Kk!<%)
K
J Has trailing coefficient n! JE¢(Im) =« (%)
K

P Is monic P () = 5 (%),

Table 6

Conversions between the three normalizations for the Jack polynomials; the a(V, W) entry above is defined as
VI, o xm) = a(V, WHWE(x1, ..., Xm)

C J P
ok k! ok k!
c . Jk c (k,a)
J a,ikk, c(k, @)
P c/(K,bt) 1
ok k! c(k,a)

2.4. Algorithm used to compute the Jack polynomials

From the Laplace—Beltrami equation, one can find an expansion for the Jack polynomials of
the type

Cg(xla -x27 MR xm) = ch’ﬂmk(-xlaXZa e 7xm)v

A<k

where A and k are both partitions of the same integer |« |, and the order imposed on partitions is

the lexicographic one. The coefficients cﬁ , depend on all three parameters; m; (x1, X2, ..., Xp)
is the monomial function corresponding to A.
Note that as a consequence of the above, if [(k) > m, C(x1, x2, ..., x,;) = 0 (“there is no

highest-order term”).
Using the eigenfunction equation

D*CY = (pg +k(m —1))CZ, 5)
where
Zk (k —1——(1—1))
i=1

one can obtain a recurrence for ¢y’ ; from which the Jack polynomials can be explicitly calculated.
The following result can be found without proof, as an exercise (Macdonald, 1995, Exercise
3(d), p. 327), and it was proved in Lapointe et al. (2000); we have re-discovered it independently.

1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587-620 597

Proposition 2.16. The coefficients cﬁy , satisfy the recurrence

2

== Y (40— =) ©)
P = Py, A<u<k
where . = (I1, ..., i, ... L, oo D), =, oo i+t o0 L — 8,0 L), and o has the
property that, when properly reordered, it is between A (strictly) and k in lexicographic order.

The proof of Proposition 2.16 is technical and we omit it; it is however noteworthy that the
proof was generalized to larger families of multivariate orthogonal polynomials in Van Diejen
et al. (2004).

Using two propositions found in Macdonald’s book (Macdonald, 1995, (10.13), (10.15)), we
can clean up the formula a little bit. Roughly, the content of the two propositions is that the Jack
polynomials, in “P”’ normalization, can be written as

P =my + Zug’)\m,\,
A=K
with uf , > O whenever k > A (the ordering imposed on partitions here is the dominance
ordering).
Thus it follows that recurrence (6) can be improved to

2
=t 3 (G0 ==))
P = Py A< =K

where A = (Iy, ..., L, ..., L, ... L)y =, ..., i+, 1 —t,..., Iy), and u has the
property that, when properly reordered, it is between A (strictly) and « in domination order.

This recurrence, at first glance, seems to be enough to compute all coefficients c,‘z" 5> ONCE €y
is found. However, for well-definedness, we need to show that p? # p¥ for any A different from
K.

We first need the following well-known proposition.

Proposition 2.17. The dominance ordering is a lattice on the set of partitions of a given number.
In particular, between any partitions k and A such that k > A, there exists a “path” on this

lattice, 0¥ =k = o' > .-+ = o' = A, such that 't differs from o' in the following way: there

exists i < iy such that o'*! and o' agree in all places but i1 and i, (0i+1)i1 = (Ui),-l — 1, and
(01+1)i2 = (Ul)iz + 1.

The fact that recurrence (6) yields a well-defined polynomial is proved below.
Lemma 2.18. If A < k, then p$ # pg, for all a > 0.

Proof. Let A < « be two partitions, let m = max{length(x), length(}.)}, and assume that there is
some o« > 0 such that

P = PL-

Since the two partitions sum to the same number, the above is equivalent to

m 2 2 2 m
ki —Af = — ki — A —1).
; , a;(, D —1)

598 1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587—-620

The right-hand side is non-positive (as an immediate consequence of the strict ordering).
We show that the left-hand side is positive by induction, thus obtaining a contradiction. For
that we will use Proposition 2.17, which shows that it is enough to prove that

kK2 —22>0

-

1

l

in the case when « and A differ only in two places, i; < i>. Note that if x;; = A;, + 1 and
ki, = Aj, — 1, this implies that x;; > k;, + 2. Hence

-

ki —Af =k} =27 +ki =A% =2k —1 =2k —1>2>0,

i=1

and we are done. [

Proposition 2.17 ensures thus that once c%, is determined, every other non-zero coefficient is
uniquely determined.

Finally, for ¢¢, we use the following formula (deduced on the basis of Table 5 and the fact
that PX has highest-order coefficient 1):

_ akk!

(e,)

o
CKK

Remark 2.19. It is worth mentioning that, from the recurrence (7), by letting « — 00, the
coefficient c,‘j" ;. goes to O faster than ¢’ ., forany A # k. Thus, at@ = 00, the Jack “P” polynomial
(which is monic) is the symmetric monomial. This could also be seen from the weight functions,
as at @ = oo, the “interdependence” term [[, <i<j<n |x; —x; |2/¢ (see for example (1)) disappears

and the variables separate.
2.5. Multivariate binomial coefficients

Many algebraic quantities (and the identities that they satisfy) can be extended from the
univariate case to the multivariate case through Jack polynomials. One such example is the
multivariate, or generalized, binomial coefficient.

Definition 2.20. We define the multivariate (or generalized) binomial coefficients ((’;) as

’

cg(x1+1,x2+1,...,xm+1)_i 3 k) C(x1, X2, .., Xm)
Cco(1,1,...,1) N o) C2(1,1,...,1)

s=0 ots, 0Ck
where o C « means that o; < k; forall i.
The generalized binomial coefficients depend on «, but are independent of both the number

of variables m and the normalization of the Jack polynomials (the latter independence is easily
seen from the definition).

1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587-620 599

The multivariate binomial coefficients generalize the univariate ones; some simple properties
of the former are straightforward generalizations of properties of the latter. For example,

<£)) -
((%) B

lic],
<K> —0 ifo Zx,
o
K .
<) = 0o if k| = o],
o

C) £0 iflk| = o]+ 1, iff o = k),

where k) = (k1,..., ki — 1, ..., ky). The above are true for all ¥ and «, and o subject to the
constraints.

2.6. Algorithm used to compute the multivariate binomial coefficients

One can prove, using the eigenfunction equation (5) and the definition of the generalized
binomial coefficients, that

o® K K
(%) (o) =4 0(2) ®

where [o| =5, k| =k,0® = (o1...,0; + 1,...,0p). All generalized binomial coefficients
can be found recursively, once one has a way to compute the so-called “contiguous” coefficients

)
v)

To compute the contiguous coefficients, we use Proposition 2 from Kaneko (1993), applied to
k = o, and simplified slightly:

0 .
o 1 oD
(%)=t ©

0 .
where g7 | is

@)
g0 = (l_[Ag<i)> <l_[Ba(o) .
SEo SE0

Ao hg(s), if s isnotin the ith column of o,
a® h*(s), otherwise.

Here

h* i (s), if s is not in the ith column of o,
B,iy =149

@ .
hg " (s), otherwise.
Knowing the contiguous coefficients allows computing all generalized binomial coefficients.

Remark 2.21. The generalized binomial coefficients are independent of the number of variables.
They are rational functions of «.

600 1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587—-620
2.7. Multivariate orthogonal polynomials

2.7.1. Jacobi polynomials
These polynomials represent the Gram—Schmidt orthogonalization of the Jack polynomials
C3 with respect to the Jacobi weight function

m(m—1)

n e (D14)"
du%(x1, ..., = &
/'L](xl Xm) Fr%(l-l-%)
I g +g+2(m—1)+2 "
x 1'"(g‘ g2+l)1) I1 [x;?‘(l —xi)gl] (10)
I+ gm—1D+ DIG(g2+ ;m— 1D+ 1) ;]
x nlxi—lez/o‘dxl...dxm, (11)
i<j
on the hypercube [0, 1]". For the purpose of well-definedness we assume
g1, 82 > —1L 12)

Define

then the Jacobi polynomials are eigenfunctions of the following Laplace—Beltrami operator:
D*+ (g1 + g +2)E — 6" — (g1 + De, (13)
with eigenvalue pZ + |« |(g1 + 82 + %(m -1 +2).

2.7.2. Algorithm used to compute the Jacobi polynomials
Using the fact that the Jacobi polynomials are eigenfunctions of the operator (13), one obtains
that these polynomials can be written in the Jack polynomial basis as

m—1
JEEE (xy, L X)) = (gl t— 7 1> Ce(In)

K
(—1)'cl, (X1, m)

X
oCk (gl + mTil + 1)(7 Cg(lm)

k]

where the coefficients ¢ satisfy the recurrence below.

Theorem 2.22. The coefficients c. , satisfy

o
Ko C,(g(i> ’

1 K o®
< = (o) (0)
((gz +g1+ %(m - D +2)k—5)+p2 — ,03‘> i allowable \° o

(14)

with the previous notation for py and oD, This recurrence is well-defined.

1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587-620 601

Once again, we omit the technical proof. The fact that the recurrence (14) is well-defined
follows from the lemma below.

Lemma 2.23. With the notation above, (g2 + g1 + %(m — 1) +2)(k —5)+ p? — pg is never 0
ifo Ck.

Proof. The proof is very similar to the corresponding proof of Section 2.4; the two crucial facts
here are that one needs to show it for the case k = o), and that g; and g are both larger than
—1 (due to (12)). O

Letting ¢, = 1 for all and « allows all the coefficients to be uniquely determined.

2.7.3. Laguerre polynomials
The multivariate Laguerre polynomials are orthogonal with respect to the Laguerre weight
function

m(m—1)

n« (I'(14 Lym |
A (1, .., X)) = a< (+) .
G+%) I+ 4
xe_zixil—[xiyl—hxl'—Xj|2/adx1...dxm, (15)
i i#]

on the interval [0, co)™. Note that for the purpose of well-definedness, we must have y > —1.
This weight function can be obtained from the Jacobi weight function (10) of the previous
subsection by substituting (g1 + g2 + %(m — 1D +2)"Yxq, ..., xm) for (x1, ..., x,) and then
taking the limit as go — oo. The same limiting process applied to the Jacobi polynomials yields
the Laguerre polynomials.
Under the transformation mentioned above, the Jacobi differential operator becomes

8" —E+(y + e, (16)
and the Laguerre polynomials are eigenfunctions of this operator with eigenvalue |« |.
2.7.4. Algorithm used to compute the Laguerre polynomials

The Laguerre polynomials have an explicit expansion in the Jack polynomial basis, which
depends on the generalized binomial coefficients:

Z =D5(5) C¥x1, .y xm)

Lo ()= +m__1_|_] C%(1)
s Xlyeoos Xm) =V o Kk \tm (,}/_‘_m_*l_'_l) Ca(lm)
K oCk o o o

Note that the coefficient of CZ (x1, ..., Xx;,) in LEY(x1, ..., xpm) is (=DF.

2.7.5. Hermite polynomials
The multivariate Hermite polynomials are orthogonal with respect to the Hermite weight
function

(1 +)"

dﬂ(l){l(xl, ey xm) = 27m/2 nm(mil)/aim/z Fa(l + m) (17)
m o
x e L2 g — oy [dy . d, (18)
i#)

on R™.

602 1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587—-620

This weight function can be obtained by taking (y + /vy x1, ¥ + /¥X2, ..., ¥ + /VXu) in
(15), and then letting y go to infinity; note that the only remaining parameter is .
Under this limiting process, the differential operator becomes

5 — E, (19)
where

2

5**_Zd2+ 3 1 d
- ; d)cl.2 o .xi—Xdei'

i#]

The Hermite polynomials are eigenfunctions of this operator with eigenvalue |«|.
Remark 2.24. Similarly,

Jim yTEPLEY (e y 7y) = (CDFHE G). 20)

2.7.6. Algorithm used to compute the Hermite polynomials
Using the corresponding Hermite differential operator (19), we obtain that the HY are

expressible as
CoX1, . Xm)

HY(x1, . xm) = e, T
o\Um

oCk

where the coefficients ¢f , satisfy the recurrence below.

Theorem 2.25. The coefficients ¢ , satisfy

o 1 5 00\ (60 ,
K, 0 k—s : O_(,') o K, 0O
14
LN feDDN fgO
+ Z (O’i —0j — a(z -])) (50)(o)C,(ig(i)(j) . (21)
i<j

This recurrence is well-defined. In the above, i < j take on all admissible values, and the choice

¢« = CZ(Iy) determines the normalization.

The proof is technical and we omit it.
Alternatively, we can obtain the coefficients directly through the limiting process described in
Remark 2.24; below we have an equivalent formula.

Theorem 2.26. Define X = (x1, ..., x). Denote by [r*1F (r) the coefficient of the power s of r
in the polynomial F(r). Then

k+s

C1Ly) & .
[CEXO]HE(X) = CI‘;EI ;Z(—l)k j
o \'m j:X

X Z <lli> (Z) [r%‘f] F(r,a,m,k,0), 22)

oCuCr;pubj

1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587-620 603

where
(r+2m+a—1D)
r+im+a—-1),

The proof starts with the asymptotical formula (20) and identifies the coefficients of the Jack
polynomials on both sides.

We use formula (22) to calculate a single coefficient, c,‘i"[], for reasons of smaller
computational complexity (in computing integrals with respect to the Hermite weight function;
see Section 3.3).

Note thatif 0 € k or k # s (mod 2), then formula (22) yields that the coefficient of C$ (X)
in H¥(X) is 0.

F(ryo,m,k,0) =

2.8. Hypergeometric functions

The hypergeometric functions are perhaps the easiest to generalize from univariate to
multivariate. For the multivariate versions, a good reference is Forrester’s unpublished book
(Forrester, 2001).

Definition 2.27. We define the hypergeometric function ,Fj of parameters aj, ..., a, and
by, ..., by, and of variables (x1, ..., x;) by

o0
@i - (ap
o . . — A A ol
qu (al,...,ap,bl,...,bq,x1,...,xm)—kEZOKE'_k K G0e - (b Cl(x1, ooy Xp).

Note that this is a formal definition; p < ¢ is needed in order for the hypergeometric series
to converge everywhere, and when p = ¢ + 1, there is a non-trivial convergence radius. When
p > q + 2, the series converges everywhere except at 0, with one notable exception, constituted
by the polynomial hypergeometrics, i.e. those for which some a; is a negative integer, which
forces the series to terminate after a finite number of terms.

This definition of a hypergeometric function assumes an argument

(X1, ..., %) € R™;
similarly one can extend the definition to hypergeometric functions of arguments in
XLy oo Xy Vlsoeos Yy oo) ERT X R™ x -

by inserting an additional CZ (y1, ... ym)/CZ(1, ..., 1) for each extra vector in R™.
Hypergeometric functions provide answers to many statistics and statistics-related questions;

below are two examples.

1. Krishnaiah and Chang (1971) proved in 1971 that the density of the smallest root of a real
(o« = 2) Wishart matrix with m variables and n degrees of freedom such that p = % is
an integer, is proportional to

2
p(x) = xP" e M2, Ry (—p, %; —21m_1/x> .

Note that the joint eigenvalue density of the matrix described above is given by du§ with
a=2and y = p.

In Dumitriu (2003) we extend this to any « and any positive integer y = p. We obtain that
for this case the density of the smallest eigenvalue is proportional to

604 1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587—-620

p(x) = xPm e=¥m/2) pe (—p, "o —21m,1/x) . (23)
o
2. The largest eigenvalue (/1) distribution for a Wishart real matrix with m variables and n
degrees of freedom (0 =2, y = "*’5’*1) can be expressed as

_ Lu[5m+ D] xymns2 11 1
Pll; <x]= Fm[%(n—i-m-l- 1)] <§) 1F1 (En §(n+m+ 1); —Exlm>.

The above is a corollary of a stronger theorem proved by Constantine Constantine (1963),

and it can also be found in Muirhead (1982, p. 421).
This result generalizes for any « and y (as noted in Dumitriu (2003)) to

Pll; <x] =

Fm[é(’" - +1] (x)m(y+(m—1)/a+1)
Ly + 2m —1)+2] \2

-1
><1F1<)/+(m)

2 1
+1,a+—-(m—1)+2; ——xlm>.
o 2

2.9. Computing expected values of polynomials

Let Py (x1,...,Xx,) be a symmetric polynomial in m variables, with highest-order term
corresponding to the partition A. To compute the expected value of P, with respect to one of
the distributions du§ (10), du§ (15), or du§, (17), we write

P)»(xls ---,xm) = ZCK,O[C;?(-XD -~-»xm)y
K

and by applying the linearity of expectation, we obtain

E[Py(x1,....xm)] = ZCK,QE[C,‘?(xl, o xm)]

In the univariate case the Jack polynomials are simply monomials, and we have the following
(well-known) moments for the Hermite, Laguerre, and Jacobi weight functions:

1 k_—x2/2 k/2
— [x*e dx = 2k — DIl = (= D2 Hy(0),
21 /]R
1 k
_— x*x¥e¥dx = (y +)y = LY (0), and
'ty +1) Jio,00) k
I'Q+a+b) ‘a (a+1l'@+b+2)

Kxt(1 = x)Pdx =
TF'a+1DI®B+1) Joa F'a+DI'a+b+k+2)
In the above, k > 0.

A similar triad of formulas can be established for the multivariate case. In the Laguerre and
Jacobi cases, the univariate formulas generalize easily:

= Jb(0).

m—1
/ Co(xt, oo xp)duf (X1, .o xm) = (v + — + 1D C¥(Iy) = LY (0), (24)
[O,oo)’"

G +2=t+n
/ C,?(xl,---,xm)dlﬁ(xly ces X)) = 201 < C,?(Im)
[0.11m g1+ g+ 5m—1)+2)

J%8182(0)., (25)

1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587-620 605

For a good reference for the first formula, see Baker and Forrester (1997); the second one was
obtained by Kadell (1997).
For the Hermite case,

/ Co(x1, ..., xm)dp% = (=DF2HX(0), (26)
Rn

but to the best of our knowledge, no simpler closed-form formula is known. We compute the
right-hand side as the Oth-order coefficient of the polynomial HY(xy, ..., x;), using formula
(22). Note that if « sums to an odd integer, the above is trivially 0.

The procedures expHjacks, expLjacks, and expJjacks compute the expected value of an
expression (allowing not only for addition, but also for multiplication and powers) involving
Jack polynomials (all having the same parameter « as the distribution). They consist of the two
steps described in the first paragraph of this section: the first one is reducing the expression to a
weighted sum of Jack polynomials (if the expression is a weighted sum of Jack polynomials, this
step is skipped), and the second step is replacing each Jack polynomial with its expected value,
using the formulas (26), (24), and (25).

The procedures expH, expL, and expJ compute the expected value of an expression involving
monomials (allowing for addition, multiplication, and powers), and there are three steps involved:
the first is writing the expression in monomial basis, the second rewriting the result in Jack
polynomial basis, and the third replacing the Jack polynomials by their expectations, using (26),
(24), and (25).

Example. Suppose we want to compute the expected value of
z(at, x1, X2, x3) = J 7 (x1, X2, x3) Py 4y (x1, X2, X3)

over the 2/«-Hermite distribution. First we have to express z as a linear combination of Jack “C”
polynomials. Note that the number of variables, as well as «, must be the same in the two terms
of z.

First, we express the two terms in monomial basis:
T (1, x2, x3) = (24 o) mpp1(x1, x2, x3) + 6 myy, 1,1 (x1, X2, X3),
602
(1+a)2+w)

Their product thus becomes a linear combination of sums of products of two monomials,
which are in turn converted into a linear combination of monomials. Note that here we use the
fact that there are three variables:

Cliig(x1, x2,x3) = myi,1,11(X1, X2, X3).

mpa,17(x1, X2, X3) m1,1,17(X1, X2, X3) = m32,1)(x1, X2, x3), while
mp (L X2, X3)2 = mp 2oy (x1, X2, x3).
Putting it all together, in monomial basis,
602 3602
o mp32,11(x1, X2, x3) + R ETS)

All that is left now is to convert from the monomial basis back to the Jack polynomial basis.
We obtain that

z(a, x1, X2, X3) = mp2.21(x1, X2, X3).

1 2+43a)(1+2a)>
120 o(l+a) (3.2.1]

z(o, X1, X2, X3) = (x1, x2, x3)

606 1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587—-620

We are now able to finish the work:
36(— 1)(a + 3)

Enzlenxax)] = —=4=0re 0

3. Complexity bounds and running times

In this section we will analyze the performance of the main algorithms, which we divide into
four parts:

. algorithms that compute polynomials;
. algorithms that evaluate integrals;

. conversion algorithms;

. numerical algorithms.

RESELOS I \S I

Our complexity bounds are upper bounds, but we believe many of them to be asymptotically
correct. They work well for the numerical evaluation of the parameters involved (i.e. o, m, y,
g1, &2); symbolic evaluation of the polynomials is considerably slower. We are not aware of the
existence of a good symbolic performance model for Maple, and hence it would be difficult to
predict how much slower symbolic evaluation is than numerical evaluation. Once parameters
are introduced (like m, the number of variables, or «, the Jack parameter), the quantities to
be computed become rational functions of these parameters, of degrees that can go up to the
partition size |«|. Storage then becomes an issue, and hence one would expect the running times
for symbolic evaluation to be orders of magnitude slower than for numerical evaluation, since
the coefficients we deal with must be written and stored on “slow” memory (e.g. disk space), and
the “transport” time to and from “slow” memory greatly increases the overall running time.

For each algorithm we provide a complexity analysis, and we illustrate the performance in
practice by providing running times for different tests (both numerical and symbolic); then we
examine the running times and draw a set of conclusions.

Each time we use N/A for an entry in a running times table, we have done so because that
particular computation has exhausted the memory available to Maple, and hence (regardless of
the time it took up to that point) the computation was not finished.

The computer on which we have performed our tests is a Pentium 4 by Dell, 1.8 GHz, 512
MB; the version of Maple used for the tests is Maple 8.

The last thing worth mentioning is that Maple has an option remember, that is it allows for
storage and recall of a quantity that was computed previously, and that MOPS is taking advantage
of that.

3.1. Algorithms that compute polynomials

In this category we have the algorithms that evaluate jack, gbinomial, hermite, laguerre,
and jacobi. We analyze here gbinomial, though it is not a polynomial in (xy, ..., Xx;,), because
it is the main building block for hermite, laguerre, and jacobi, and its complexity determines
their computational complexity.

Throughout this section, we will follow the notation given in Table 7.

To make estimates, we have used Ramanujan’s formula:

Pyt ~ NS
TV

27)

1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587-620 607

Table 7
Notation to be used throughout Section 3
k= |x| Size of partition k
s =|o]| Size of partition o
[= length(x) Length of partition
n Number of variables used for computation
Dy Number of partitions of k smaller in lexicographical ordering than «
Py Number of partitions of k dominated by «
P Number of partitions of the number k (each partition of
k is dominated by [k])
Uy Number of subpartitions of «
Uk,o Number of subpartitions of « which are superpartitions
for o (this implies o is a subpartition of «)
Ay Number of subpartitions of x which sum to a number with

the same parity with k

and the inequalities
A¢ =Uc = Py, Pe =Py, and Uco < Py (28)

for asymptotical estimates.

1. jack. The algorithm uses recurrence (6), together with the ‘boundary conditions’ ¢, , = 0 if

k % A in dominance ordering, and ¢, , = % The length of the recurrence is at most
O (ki (k erl)), with k1 being the first entry in the partition, and the algorithm will check each of

the possible partitions p (at most ki (k'zH)) to see if they are dominated by « and dominating

A (this involves / additions and / comparisons). The rest of the computation has complexity
O (k).
Thus the complexity of the algorithm is O (k1k> P,.).
Using the inequalities (28), the best asymptotical upper bound that we can get for the
complexity of computing a Jack polynomial is thus O (k3e™ VIT3) which is superpolynomial.
In Table 8 we illustrate the running times for both numerical and symbolic computations.
For numerical computations, we have chosen to make o = 1, so that the Jack polynomials
are the Schur functions. Note that we do not test the partition [k]; for that particular partition
we have a closed-form formula for the Jack polynomial, due to Stanley (1989), which has
complexity O (k P) ~ O (e"V2k/3),
Table 8
Running times (in seconds) for the Jack polynomial computation

k K Running time, @ = 1 Running time, & symbolic Ratio
15 Kk =[14,1] 2.48 4.54 1.83
Kk =1[8,7] 1.79 3.17 1.77
Kk =1[3,3,3,3,3] 0.39 0.50 1.28
20 k =1[19,1] 16.97 30.45 1.79
k = [10, 10] 11.53 20.32 1.76
Kk =1[4,4,4,4,4] 291 4.02 1.38
25 Kk =[24,1] 93.42 189.66 2.03
k=19,8,8] 46.85 79.85 1.70
k=1[5,5,5,5,5] 16.08 24.18 1.50
30 Kk =[29,1] 634.32 1819.65 2.86
k =[10, 10, 10] 214.10 418.19 1.95

Kk =1[6,6,6,6,6] 73.54 113.55 1:54

608 1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587—-620

Remark 3.1. Note that the ratio of the running times increases when the partition size
increases. At k = 30, the number of partitions is 5604, and each of the monomial coefficients
is a rational function of «. Issues like storage and memory access become important, and
influence negatively the running times. Another important factor is that in order to make things
easier to store and access, not to mention easier to read and interpret, we use the procedures
“simplify” and “factor”, which are relatively costly.

Extrapolation. Since the speed/memory of a top-of-the-line computer seems to go up by a
factor of 103 every 10 years, one can predict that within a decade, using MOPS, computing

J(O'[59,1) will take about 30 minutes.

2. gbinomial. We use (8), together with the boundary conditions listed in Section 2.5 and with
the contiguous binomial coefficient formula (9). From (8), it follows that computing a single
contiguous binomial coefficient has complexity O (k), and one needs to compute no more than
I such coefficients per subpartition ¢ of k which is a superpartition of o.

Thus one immediately obtains the bound O (kiU) for the complexity of computing ({';)
This is smaller than O (k? Ue n12p)-

Note that by computing (¥), one also obtains (;’i)’ for each o € 1 C k. So we have chosen
for our tests to compute ([1’,(1]) for different «, as this yields all the binomial coefficients having
Kk as top partition (except (g), but that requires only an additional complexity O (kl)).

By using the inequalities (28), we obtain an asymptotical upper bound of O (ke™v?¥/3) for
computing all the generalized binomial coefficients corresponding to partitions of k.

Remark 3.2. Once again, size and length of the partition increase the symbolic running
times; however, note that the running times are relatively small, even for partitions of 30
(see Table 9). We believe that the generalized binomial coefficients are rational functions of
o which can always be factored in small-degree factors, so that they are easy to store and
operate with.

Table 9
Running times (in seconds) for the generalized binomial coefficient computation
k K Running time, Running time, UK [12]
a=1 o symbolic
15 [6,4,2,2,1] 0.22 1.12 139
[3,3,3,3,3] 0.05 0.18 56
[10, 5] 0.03 0.15 51
20 [6,4,3,2,2,1,1,1] 1.01 6.68 418
[4,4,4,4,4] 0.17 0.6 126
[12, 8] 0.07 0.28 81
25 [7,5,4,3,2,2,1,1] 3.41 23.37 1077
[5,5,5,5,5] 0.41 1.67 252
[16,9] 0.15 0.62 125
30 [8,6,4,3,2,2,1,1,1,1,1] 11.87 89.61 2619
[6,6,6,6,6] 0.91 3.95 462

[20, 10] 0.24 1.20 176

1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587-620 609

3. jacobi. To compute the Jacobi polynomials, we use the format of Section 2.7.2 and recurrence
(14). One can easily see that at each step, one needs to compute at most / contiguous binomial
coefficients, each of which has complexity O (k); in addition, one needs to compute another
at most / binomial coefficients; each of these takes only O(l), as the contiguous coefficients
needed have already been computed at the previous step. Thus the total complexity is O (kl)
(since I < k) at each step, for a total of O (kIU, [y2))-

Hence computing numerically the Jacobi polynomials is comparable to computing the
generalized binomial coefficients ([1'51]); however, the constant for the Jacobi polynomial
complexity is considerably larger (our best guess sets it around 8).

The best asymptotical upper bound we can obtain using the inequalities (28) is thus once
again O (ke” VK3).

The Jacobi parameters we chose for each of the computations whose runtimes are presented
in Table 10 are O and 1.

Table 10
Running times (in seconds) for the Jacobi polynomial computation
k K Running time, Running time, Running time, Uy
a=1 m=1 m symbolic o, m symbolic
10 [4,2,2,1,1] 0.27 0.74 22.12 42
[4,3,3] 0.11 0.35 1.88 30
[7, 3] 0.10 0.30 1.57 26
15 [6,4,2,2,1] 1.05 11.08 N/A 139
[3,3,3,3,3] 0.39 0.87 63.07 56
[10, 5] 0.19 1.01 27.98 51
20 [6,4,3,2,2,1,1,1] 5.94 N/A N/A 418
[4,4,4,4,4] 0.63 8.24 N/A 126
[12, 8] 0.26 3.51 N/A 81
25 [7,5,4,3,2,2,1,1] 18.61 N/A N/A 1077
[5,5,5,5,5] 1.23 N/A N/A 252
[16, 9] 0.45 N/A N/A 125

Remark 3.3. While the running times for numerical evaluation are reasonable, they explode
when a symbolic parameter is introduced. The coefficients of the polynomial are rational
functions of that parameter or combination of parameters, of order up to k(k — 1)/2. We
recall that there are U, [2) of them, a potentially superpolynomial number, which explains
the tremendous increase in the running time.

4. laguerre. We use the format given in Section 2.7.4; it is easily established that the complexity
of computing the Laguerre polynomial is dominated by the cost of computing the binomial
coefficients, that is O (klU, [)2}), and once again the best asymptotical upper bound we can
obtain using the inequalities (28) is thus O (ke™ V2k/3).

The Laguerre parameter we chose for each of the computations whose runtimes are
presented in Table 11 is 1.

Remark 3.4. For the Laguerre polynomials, even in the all-symbolic case, the computation
is very easy, and the storage required is relatively small. This explains why it is possible to
obtain them without much effort, in any one of the cases.

610 1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587—-620

Table 11
Running times (in seconds) for the Laguerre polynomial computation
k K Running time, Running time, Running time, Uy
a=1 m=I1 m symbolic o, m symbolic
10 [4,2,2,1,1] 0.12 0.23 0.54 42
[4,3,3] 0.07 0.14 0.31 30
[7,3] 0.07 0.10 0.28 26
15 [6,4,2,2,1] 0.49 0.82 2.95 139
[3,3,3,3,3] 0.18 0.27 0.84 56
[10, 5] 0.11 0.22 0.81 51
20 [6,4,3,2,2,1,1,1] 2.26 3.37 16.08 418
[4,4,4,4,4] 0.44 0.69 2.74 126
[12, 8] 0.20 0.37 1.79 81
25 [7,5,4,3,2,2,1,1] 7.23 11.06 67.92 1077
[5,5,5,5,5] 0.96 1.53 8.06 252
[16,9] 0.32 0.69 4.21 125

5. hermite. We use the format given in Section 2.7.6 and recurrence (21). We only do work for
those coefficients that correspond to subpartitions o of x such that |o| = k (mod?2). There
are A, of them. For each, we compute at most (é) contiguous coefficients, each computed
with O (k) complexity. The complexity of the rest of the computation is O (k). Hence the total
complexity is O (kI*A,).

Remark 3.5. A, = O(Uy); Ax ~ U, /2.

Hence one asymptotical upper bound that we can obtain for the complexity of computing
a Hermite polynomial is O (k%e™V2/3).

Remark 3.6. Note that when m is parametrized, but « = 1, the computation is almost as fast
as in the all-numerical case (see Table 12). That happens because the dependence on m is
very simple, and it only involves Pochhammer symbols, which do not get expanded (so that
the storage required is minimal). However, the dependence on « is more complicated, and the
rational functions obtained as coefficients are complex and hard to store. Hence the running
time for the all-symbolic computation increases dramatically.

Table 12
Running times (in seconds) for the Hermite polynomial computation
k K Running time, Running time, Running time, Ay
a=1 m=I1 m symbolic o, m symbolic
10 [4,2,2,1,1] 0.21 0.24 0.75 22
[4,3,3] 0.09 0.11 0.33 16
[7,3] 0.05 0.06 0.24 14
15 [6,4,2,2,1] 0.41 2.83 42.92 88
[3,3,3,3,3] 0.13 0.17 1.83 38
[10, 5] 0.10 0.12 1.10 30
20 [6,4,3,2,2,1,1,1] 1.93 2.39 N/A 211
[4,4,4,4,4] 0.35 0.51 N/A 66
[12, 8] 0.18 0.25 13.49 43
25 [7,5,4,3,2,2,1,1] 6.23 7.53 N/A 1077
[5,5,5,5,5] 0.90 1.20 N/A 252

[16, 9] 0.29 0.50 106.56 125

1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587-620 611
3.2. Conversion algorithms

There are five conversion algorithms, m2jack, jack2jack, m2m, p2m, and m2p.

1. m2jack. This algorithm computes and then inverts the change of basis matrix from monomials
to Jack polynomials, taking advantage of the fact that the matrix is upper triangular. At each
turn, the algorithm extracts the highest-order monomial remaining, computes the coefficient
of the corresponding Jack polynomial, and then extracts the monomial expansion of the Jack
polynomial from the current monomial expression.

Let « be the highest-order monomial present in the initial expression, and let us assume
that the expression is homogeneous.

Then the complexity of the computation is dominated by the complexity of computing
the Jack polynomial expansion in terms of monomials for all partitions of k smaller in
lexicographical ordering than «.

It follows that an upper bound on the complexity is given by O(D.k*D,) =
O (k2e V23V,

The performance in practice is exemplified below.

Partition sum Partition Runtime Runtime Ratio
(@ =2) symbolice of the two
k=6 Kk =[6] 0.14 0.45 0.31
k=17 Kk =1[7] 0.29 1.04 0.27
k=38 K =[8] 0.63 291 0.21
k=9 Kk =1[9] 1.21 7.49 0.16
k=10 k =[10] 2.62 20.25 0.12
k=11 Kk =[11] 4.77 54.75 0.08
k=12 Kk =[12] 8.82 186.09 0.04
k=15 Kk =[15] 52.65 7177.02 <0.01

2. m2m. The algorithm takes an expression involving products of monomial functions and writes
it in monomial basis by deciding which partitions appear in the expansion and by counting
the number of times they appear. Hence this algorithm is an alternative to adding the m basis
as the dual of 4 in the SF package, and using the tom procedure afterward (though the tom
procedure is more general than this).

We have tested m2m against tom, and we have found that on partitions where the sum-to-
length ratio is high, m2m performs much better, while on partitions with the sum-to-length
ratio is small, the tables are reversed. Hence we recommend to the user who wants to use our
library, but might be working with partitions of the latter case, to also obtain and install SF
and use it for computations.

Below is a performance comparison. The number of variables n used in m2m, each time,
was the sum of the partition lengths (which is the smallest number of variables that requires
obtaining all terms).

Input n Runtime m2m Runtime tom Ratio

m[5,2,1,1]-m[4] 5 0.07 0.28 0.25
m[3,2,1] - m[5] 4 0.03 0.10 0.30
m[5,3,2]-m[4, 3] - m[2] 6 3.52 35.27 0.10
m(7,3,1]-m[4,2] 5 0.30 9.89 0.03
m[4,3,2]-m[6, 4] 5 0.29 35.72 <0.01
m([2,2,1]-m[1, 1] 5 0.05 0.03 1.66
m[3,1]-m([2,2,1] 5 0.12 0.05 2.40
m(2,1,1,1]-m[2, 1] 6 0.22 0.04 5.50
m(3,2,1]1-m[2,1,1,1] 7 2.95 0.10 29.5

m[3,1,1]-m[2,1]-m[1,1,1] 8 1355 0.13 104.23

612 1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587—-620

3. p2m. The algorithm expands a product of simple power-sum functions into monomial basis.
This is an alternative to adding the m basis as the dual of & in the SF package, and calling
the tom procedure with power-sum functions as inputs. As was the case with m2m, our
algorithm performs much better on partitions with high sum-to-length ratio, and tom performs
better on partitions with low sum-to-length ratio, as can be clearly seen from the performance
comparison below.

Input Runtime p2Zm Runtime tom Ratio

pa-p3-pp 003 0.14 0.21
ps-ps-py 020 5.46 0.04
p7-pa-p3 001 0.46 0.02
p2-pi-py 004 5.40 <0.01
pa-p3-p1 012 0.10 1.20
ps-p3-p; 096 0.17 5.64
p3-p2-p) 197 0.04 49.25
Py pf 16.27 0.15 108.46

4. m2p. The algorithm converts an expression of monomials into power-sum functions; it is
an alternative to the top option in the SF package. As before, for high sum-to-length ratio,
our algorithm performs better, whereas the reverse is true for low sum-to-length ratio. It is
perhaps worth noting that for this case, the ratio sum-to-length has to be between 1 and 2 for
a significant outperformance of our m2p by top to occur. This can be seen in the performance
examples below.

Input Runtime m2p Runtime top Ratio
m[l,1,1,1,1,1,1,1] 3.61 0.04 90.25
m(3,2,2,2,1,1]-m[2,1,1,1] 2.19 0.11 19.91
m[2,2,1,1,1]-m[2, 1] 0.120 0.03 4.00
m[l,1,1,1]-m[1,1,1] 0.03 0.02 1.50
ml[4,3,2,2] 0.06 0.18 0.33
m[10, 1] 0.01 0.10 0.10
m[5,4,3] - m[3]? 0.02 0.23 0.08
m[5,4,3,3] 0.08 3.21 0.02
m([3,3,2,1]-m[5, 2] 0.07 5.57 0.01

5. jack2jack. This algorithm takes an expression in Jack polynomials, and turns it into a
linear combination of Jack polynomials, by taking each multiplicative term, expanding it in
monomial basis, then using m2m to get rid of the resulting multiplicative factors, and finally,
m2jack to convert the linear combination of monomials back into Jack polynomial basis.

Input n Runtime (symbolic) Runtime (o = 1)
J[2,1]-C[1,1,1] 3 0.04 0.03
J[3,2,1]-C[3] 5 3.53 0.45
C[2]2-J[4,2] 5 11.44 1.17
C212-J[3, 1] 8 29.09 3.35
P[3,2]-J[2,1,1] 7 15.00 2.10
P[2,1]-J[4,2]-C[2] 5 28.95 2.07

3.3. Algorithms that evaluate integrals

Here we have expHjacks, expLjacks, expJjacks, expH, expL, and expJ.

1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587-620 613

These algorithms depend on the length and complexity of the input. Let P be the polynomial
one wishes to analyze; one must first convert P to a linear combination of Jack polynomials, and
then replace each Jack polynomial with its expectation.

Case 1. Suppose P is in monomial format, as an expression which involves sums and products
of monomials. First we convert P to a linear combination of monomials using m2m, and then
we convert that linear combination of monomials to a linear combination of Jack polynomials
using m2jack.

For any term of the form m;im,2...myp, with AL A2 AP not necessarily distinct
partitions, when we expand it in monomial basis, the largest possible number of terms is Dy,
where p is the partition which results from the superposition of A2 AP, e ny =
M+ Al =2 +25 + - 440, ete. Letu = .

After the expansion in monomial basis, applying m2jack on the resulting expression has
complexity 0(u4Di) = O(uze3”\/2/73ﬁ).

Remark 3.7. This however is a very relaxed upper bound, and if we start off with P being a
sum of a few (n) monomials, the call to m2m is not executed, and the complexity of the call to
m2jack is O (nu*D2) = O (nu?e¥ V231,

As explained in Section 2.9, the first step is common to expH, expL, and expJ. The second
step is different and its complexity is much higher for expH than for expL or expJ. However, as
we can see from the running times in the table below, the calls to m2m and m2jack (made in the
first step) are much more expensive than the substitutions, and so the overall running times are
comparable.

In these examples, we consider a symbolic parameter a, a symbolic number of variables n,
y=1,andg; =g = 1.

Input Runtime expH Runtime expL. Runtime expJ
m[6] 0.94 0.70 0.80
m(3,3,2] 1.98 0.85 0.96
m[5,2,1] 5.69 3.20 4.20
m(3,1,1,1]-m[2] 4.23 1.84 2.59
m[4,1]-m[1,1,1] 3.94 2.18 3.58
m[S, 1] m[2] 8.86 6.04 9.82
m[3]% - m[2] 8.80 7.00 13.04
m(4,2]-m[3,1] 39.85 35.71 68.82

Case 2. Suppose P is in Jack polynomial format; then we use jack2jack to write it as a linear
combination of Jack polynomials, and finally we replace each Jack term by its expected value.
The first step, as before, is common to all three procedures (expHjacks, expLjacks, expJjacks).

While in the case of expHjacks the complexity of computing the expectation is
O (ute?™ V23w), in the cases of expLjacks and expJjacks the same complexity is only O (u).
This explains the significant differences recorded in the first three rows of the table. It is also
worth noting that in the case of an odd u, the time it takes to compute the expected value of a
Jack polynomial with Hermite weight is 0, as the value of the output is known in advance to be 0.

The complexity of expressing a product of Jack polynomials in a Jack polynomial basis is
much higher than the computation of a single Jack polynomial expected value. This explains
why, in the last few rows of the table, the entries are no longer so different in magnitude.

In the examples below, we considered a symbolic parameter a, a symbolic number of variables
n,y=1and g =g = 1.

614 1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587—-620

Input Runtime expHjacks Runtime expLjacks Runtime expJjacks
C[4,3,2,1] 0.30 0.03 0.03
C[6,6,2] 1.06 0.04 0.04
C[7,5,3,1] 4.70 0.04 0.05
C[10,3,2,1] 4.47 0.05 0.05
C[3,1]- P[2,2] 14.75 12.75 12.93
C[4,2]-J[1,1] 31.86 29.05 30.11
JI2,1,1]1- J[4] 76.62 81.93 80.14
C[2,2]- J[4] 53.79 54.30 55.07

3.4. Numerical algorithms

Some of the symbolic/numerical evaluation routines analyzed in the previous sections
include options for polynomial evaluation on numerical values of the x variables. The routines
that compute the polynomials Jack, Hermite, Laguerre, and Jacobi have options that allow
for numerical values of the x variables. This makes it possible to compute quantities like
C[33’2] (2.53, —1.09, 7.33); this feature can be used for graphics (when one needs to plot some
statistic of a random matrix, as we demonstrate in the next section).

The algorithms that we have used to implement these options have been developed and
analyzed by Demmel and Koev (2003) for the Jack polynomials; to evaluate the other
polynomials, we use the regular expansion in terms of Jack polynomials, then substitute the
numerical values for each Jack polynomial.

4. Applications

We have written this library for the user who would like to do statistical computations, form
or test conjectures, and explore identities. The great benefit is that all computations can be
done symbolically, keeping « as a parameter; the downside of symbolic computations, as we
have mentioned before, is that the storage space required is very large, and computations are
consequently slowed down. Our experience, however, was that on a machine that is far from top-
of-the-line nowadays (see the specifications in Section 3), we have been able to increase the size
of the partition enough to make and then satisfactorily test conjectures.

Below are some examples of computations that we imagine are of the type a researcher might
want to use in forming conjectures, or of the type that might be useful in practice.

Some of the applications, like the computation of the moments of the trace, can be done with
symbolic o and n (number of variables); others, like the computation of the moments of the
determinant, need an actual value for n, but allow for symbolic « computations; yet others, like
the level density computation, need all numerical parameters. For each computation, we have
tried to indicate upper bounds for the size of the necessary numerical parameters.

1. Moments of the determinant. One of the many interesting problems in random matrix theory is
computing the moments of the determinant of a square random matrix. If the eigenvalues are
chosen to have the 2/a-Hermite distribution (given by the weight function 1.%,), the problem
of computing the determinant is non-trivial. Closed-form answers are known for the cases
o = 1/2,1, and 2 (see Andrews et al. (2003), Delannay and Le Caér (2000), Mehta and
Normand (1998)); however, the general o case does not have an explicit answer (except for
some particular situations like in Dumitriu (2003, Chap. 8)).

1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587-620 615

Since the kth moment of the determinant’s distribution is given as the integral of
mpm (X1, ..oy X)) = Cf}cm](xl,...,xm)/C[km](Im) over the corresponding 2/«-Hermite
distribution, MOPS can be used in evaluating it for specific values of k and m.

For example, for k = 2 and m = 5, the answer can be obtained by typing in

> factor(expHjacks(a, C[2,2,2,2,2], 5)/jackidentity(a, [2,2,2,2,2], 5));

and the output is

at +10a3 +45a2 + 80a + 89

>
ad

The duality principle between « and 1/« proved in Dumitriu (2003, Section 8.5.2) linking
the expected value of the kth power of the determinant of an n x n matrix to the expected
value of the nth power of a k x k matrix is illustrated below:

> factor(expHjacks(1/a, C[5,5], 2)/jackidentity(1/a, [5,5], 2));
with output

> —a(a%+10a% + 4522 + 80a + 89
Note the remarkable similarity between this value and the one obtained 6 lines above.
Remark 4.1. In practice, we have observed that computations with o symbolic and k-m < 22
can be performed relatively fast (under two minutes on the computer with specifications given
at the beginning of Section 3); for k-m > 22 and o symbolic, the amount of memory available
begins to play an important role. For actual values of « (for example, @ = 1), the computation
for k = 10 and m = 5 took under 40 seconds.

2. Expectations of powers of the trace. Consider the problem of computing the expected value of
the 6th power of the trace of a Hermite (Gaussian) ensemble (here n is an arbitrary integer).
This amounts to making a call to expH, simplifying, and expanding the answer in Taylor
series for a clear format. In short, a one-line command:

> taylor(simplify(expH(a, m [6], n)), n);
with answer
1523 - 3222432215 —54a+32a2+432 , 22a-22 3 5 4
n+4 n“ + n" 4+ —n-.
a3 33 23 33
Remark 4.2. This computation emphasizes best the power of MOPS. It is very quick (it took
0.8 seconds on the test machine; see the specifications in Section 3) and it allows for both «
and n to be in symbolic form. The same computation for the 12th power of the trace with «
and n symbolic took less than 8 minutes.

Integrals of powers of the trace are related to Catalan numbers and maps on surfaces of
various genuses, and are of interest to (algebraic) combinatorialists (Forrester, 2001; Goulden
and Jackson, 1997).

3. Smallest eigenvalue distributions. One of the quantities of interest in the study of Wishart
matrices* is the distribution of the smallest eigenvalue. There is an extensive literature on
the subject, starting with the work of James (1964) and Constantine (1963). More recent
references are Silverstein (1989) and Edelman (1991). In Dumitriu (2003), we find a closed-
form answer for general « and integer values of y, in terms of a hypergeometric » Fy function
(see also (23)).

4 The joint eigenvalue distribution of Wishart matrices is given by the Laguerre weight Mzz,y with @ = 1 (complex
case) or @ = 2 (real case).

616 1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587—-620

n=3, m=6,f=2 n=2, m=10,f =2
. 0.12 .

025
0.2
015
0.1

0.051

0 0 . .
= -5 0 5 10 15 20 25 30 35

Fig. 2. Histograms of the smallest eigenvalue distribution for the complex Wishart ensembles of size (3, 6) and (2, 10)
(o = 1), together with the exact distributions as given by (23).

We wrote a small Maple script calling MOPS (presented below) implementing the formula,
and used it to compute the exact distribution of the smallest eigenvalue of a Wishart matrix
for « = 1 (the complex case) forn = 3, m = 6, and n = 2, m = 10, which we plotted in
MATLAB. We have also used a Monte Carlo simulation to plot in MATLAB histograms of
the smallest eigenvalue of matrices from the corresponding Wishart ensemble, for comparison
(see Fig. 2). For the histograms, we have chosen in each case 30,000 samples from the
corresponding Wishart ensemble.

smalleig:=proc(n,k,x) local r,t,i, y,inte;
if (n>1) then r:=[-2/x];
end if;
for i from 2 to (n-1) do
r:=[op(r),-2/x];
end do;
t:=x"((k-n)*n) * exp(-x*n/2) * ghypergeom(1, [n-k, n+1],[1,r,’m’);
return simplify(t);
end proc;

scaledsmalleig:=proc(n,k,x) local inte, yy, z;
yy :=z->smalleig(n,k,z);
inte := integrate(yy(z), z=0..infinity);
return(smalleig(n,k,x)/inte);

end proc;

zz:=scaledsmalleig(3,6, x);
plot(zz, x=0..10);

4. Level densities. Level density formulas are well known in terms of orthogonal polynomials
for « = 1/2, 1, 2. Baker and Forrester (1997) have computed these densities in terms of a
multivariate Hermite polynomial for § = 2/« an even integer (i.e. « is the inverse of an
integer). We have found an equivalent formulation for the level density of the n x n Hermite
ensemble for which « is the inverse of an integer (equivalently, 8 = 2/« is an even integer).

1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587-620 617

1.4

Fig. 3. Level densities forn = 4, = 1, 1/2, 1/3, 1/4, 1/5; “bumps” increase as « decreases.

This formula is presented below:

/ (1 é) 2
on(x) = ——=(=1)""* ———e " THT, 1 (x1n),
! 2 ra+2z [@/ay=

where the partition [(2/«)"~!] is the partition that consists of 2/« repeated n — 1 times.

To compute the Hermite polynomial, we used the formula (22), and in order to get all
the eigenvalues roughly in [—1, 1] we scaled both the variable and the density function by
2nB = /4n/a (see the script).

We have used the script below to produce Fig. 3, which is an exact plot of the level densities
forn =4,and 8 = 2,4,6, 8, 10 (equivalently, « = 1, 1/2, 1/3, 1/4,1/5).

leveldens:=proc(a,k::list, n, x) option remember;
local s,u,ut,ul ks,ss,j,i,sp,result,t,t1,r,jp,ull,c,bbb;
if(not(‘MOPS/parvalid‘(k))) then return;
end if;
result:=0; ks:=sum(k[i],i=1..nops(k)); sp:=*MOPS/subPar*(k);
we compute the Hermite polynomial evaluated at x /,,, using formula (22)
for s in sp do
ss:=0; c:=0; ss:=sum(s[i],i=1..nops(s));
if not((ss mod 2) = (ks mod 2)) then next;
end if;
for j from ss to (ks+ss)/2 do
jp:=*MOPS/Par*(j);
ull:=(convert(jp,set) intersect convert(sp,set));
ul:=[];
for ut in ull do
if ‘MOPS/subPar?‘(s,ut) then ul:=[op(ul),ut];
end if;
end do;
t:=0;
for u in ul do
t1:=*MOPS/GSFact‘(a,r+(n+a-1)/a,k)/‘MOPS/GSFact‘(a,r+(n+a-1)/a,u);

618 1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587—-620

t:=t+‘MOPS/GBC*(a,k,u)**MOPS/GBC*(a,u,s)*coeff(t1,r,(ks+ss)/2-j);
end do;
c:=c+t*(-1)j;
end do;
bbb:=factor(c*(-1)"(ss/2)*x"(ss));
result:=result+bbb;
end do;
result:= result*(-1)"(ks)*(-1)"(ks/2) * exp(-x"2/2) * 1/sqrt(2*Pi);
result:=result * factor(GAMMA (1+1/a)/GAMMA (1+n/a));
end proc;

we scale both the variable and the density function by /2n8
z:=(x,b)->sqrt(2*4*b)*leveldens(2/b, [b,b,b], 4, x*sqrt(2*4*b));
plot(z(x,2), z(x,4), z(x,6), z(x,8), z(x,10), x=-1.2..1.2, y=-.1..1.4);

For illustration purposes, here is the exact (scaled) density for « = 1/4 and n = 5, plotted
above:

402
~/10e~%9% x
50685458503680000./7

(2814749767106560000000000000000 x32 — 2814749767106560000000000000000 x 3+
1720515795143884800000000000000 x28 — 696386684568207360000000000000 x 26+
194340604354756608000000000000 x4 — 36625240845346406400000000000 x 22+
4740055701777285120000000000 x20 — 658121972672102400000000000 x 13+
162266873453346816000000000 x 16 — 31084533121233715200000000 x 14+
2673909486122434560000000 x 12 — 136819200341311488000000 x 10+
29341248756019200000000 x3 — 1130060455927603200000 x 6+
67489799891754240000 x* — 2060099901411552000 x2 + 32632929952848225).

5. Conjectures. We present here a conjecture that we formulated with the help of MOPS. This
conjecture was proved later by Richard Stanley.

Conjecture 4.3. Let k be an integer, o a positive real, and consider the representation of the
monomial function

M) = Z fraCy.

Ak
Then for all

1 length()\) i—1
f)»,a - _n()\') 1_[<_ o))Li)

i=1

where n(L) is an integer which does not depend on .
Acknowledgements

We would like to especially thank Plamen Koev for many fruitful discussions, suggestions,
and brainstorming sessions; we would also like to thank Eric Rains and John Stembridge
for discussions that made this package better and Richard Stanley for beautiful mathematical
insights.

Some of the work was conducted while Ioana Dumitriu was a Miller Research Fellow,
sponsored by the Miller Institute for Basic Research in Sciences at U.C. Berkeley.

Finally, the authors would like to thank the National Science Foundation (DMS-0411962).

1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587-620 619

The first author acknowledges support of the Miller Institute for Basic Research in Sciences.
The second author acknowledges the support of NSF under grant number DMS-0411962.

References

Andrews, G.E., Jackson, D.M., Goulden, I.P,, 2003. Determinants of random matrices and Jack polynomials of
rectangular shape. Studies Appl. Math. 110 (4), 377-390.

Baker, T., Forrester, P., 1997. The Calogero—Sutherland model and generalized classical polynomials. Comm. Math.
Phys. 188, 175-216.

Chikuse, Y., 1992. Properties of Hermite and Laguerre polynomials in matrix argument and their applications. Linear
Algebra Appl. 176, 237-260.

Constantine, A.G., 1963. Some noncentral distribution problems in multivariate analysis. Ann. Math. Statist. 34,
1270-1285.

Delannay, R., Le Caér, G., 2000. Distribution of the determinant of a random real-symmetric matrix from the Gaussian
orthogonal ensemble. Phys. Rev. E 62, 1526-1536.

Demmel, J., Koev, P., 2003. Efficient and accurate evaluation of Schur and Jack polynomials. Preprint.

Van Diejen, J.F., 1997. Confluent hypergeometric orthogonal polynomials related to the rational quantum Calogero
system with harmonic confinement. Comm. Math. Phys. 188, 467—497.

Van Diejen, J.F., Lapointe, L., Morse, J., 2004. Determinantal construction of orthogonal polynomials associated with
root systems. Composition Math. 140, 225-273.

Dunmitriu, I., 2003. Eigenvalue statistics for the beta-ensembles. Ph.D. Thesis, Massachusetts Institute of Technology.

Edelman, A., 1991. The distribution and moments of the smallest eigenvalue of a random matrix of Wishart type. Lin.
Alg. Appl. 159, 55-80.

Forrester, P., 2001. Random matrices. Preprint.

Foulkes, H.O., 1974. A survey of some combinatorial aspects of symmetric functions. In: Permutations. Gauthier-Villars,
Paris.

Goulden, 1., Jackson, D.M., 1997. Maps in locally orientable surfaces and integrals over real symmetric matrices.
Canadian J. Math. 49, 865-882.

Hua, L.K., 1963. Harmonic Analysis of functions of several complex variables in the classical domains. Transl. Math.
Monogr. 6.

Jack, H., 1970. A class of symmetric polynomials with a parameter. Proc. R. Soc. Edinburgh 69, 1-18.

Jackson, D.M., 2003. Personal communication, April.

James, A.T., 1960. The distribution of the latent roots of the covariance matrix. Ann. Math. Stat. 31, 151-158.

James, A.T., 1964. Distributions of matrix variates and latent roots derived from normal samples. Ann. Math. Stat. 35,
475-501.

James, A.T., 1968. Calculation of the zonal polynomial coefficients by use of the Laplace—Beltrami operator. Ann. Math.
Stat. 39, 1711-1718.

James, A.T., 1975. Special functions of matrix and single argument in Statistics. In: Askey, R.A. (Ed.), Theory and
Application of Special Functions. Academic Press, New York, pp. 497-520.

Kadell, K., 1997. The Selberg—Jack polynomials. Adv. Math. 130, 33-102.

Kaneko, J., 1993. Selberg integrals and hypergeometric functions associated with Jack polynomials. SIAM J. Math. Anal.
24, 1086-1110.

Knop, F., Sahi, S., 1997. A recursion and a combinatorial formula for the Jack polynomials. Invent. Math. 128, 9-22.

Krishnaiah, PR., Chang, T.C., 1971. On the exact distribution of the smallest root of the Wishart matrix using zonal
polynomials. Ann. I. Math. Stat. 23, 293-295.

Lapointe, L., Lascoux, A., Morse, J., 2000. Determinantal expression and recursion for Jack polynomials. Electron. J.
Combin. 7.

Lapointe, L., Vinet, L., 1995. A Rodrigues formula for the Jack Polynomials and the Macdonal-Stanley conjecture.
IMRN 9, 419-424.

Lasalle, M., 1991a. Polyndmes de hermite généralisés. C. R. Acad. Sci. Paris, Sér. 1 313, 579-582.

Lasalle, M., 1991b. Polyndomes de jacobi généralisés. C. R. Acad. Sci. Paris, Sér. 1 312, 425-428.

Lasalle, M., 1991c. Polyndmes de laguerre généralisés. C. R. Acad. Sci. Paris, Sér. I 312, 725-728.

Macdonald, I.G., 1995. Symmetric Functions and Hall Polynomials. Oxford University Press Inc., New York.

Mehta, M.L., Normand, J.-M., 1998. Probability density of the determinant of a random hermitian matrix. J. Phys. A 31,
5377-5391.

Muirhead, R.J., 1982. Aspects of Multivariate Statistical Theory. John Wiley & Sons, New York.

620 1. Dumitriu et al. / Journal of Symbolic Computation 42 (2007) 587—-620

Okounkov, A., Olshanski, G., 1997. Shifted Jack polynomials, binomial formula, and applications. Math. Res. Lett. 4,
69-78.

Silverstein, J.W., 1989. On the weak limit of the largest eigenvalue of a large dimensional sample covariance matrix. J.
Multivariate Anal. 30, 307-311.

Stanley, R.P., 1989. Some combinatorial properties of Jack symmetric functions. Adv. Math. 77, 76-115.

Stembridge, J., 2007. Symmetric Functions Maple package. Downloadable from:
http://www.math.Isa.umich.edu/"jrs/maple.htmlI#SF.

Zabrocki, M., 2007. List of maple functions for computing Macdonald polynomials. Webpage
http://garsia.math.yorku.ca/MPWP/maplefuncs.html.

Zeilberger, D., 2007. LUC, a Maple package. Downloadable from: http://www.math.rutgers.edu/ zeilberg/tokhniot/LUC.

