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We introduce several new triangles of numbers of Seidel type and pairs of
triangles of Arnold type. We show their relations with representations as continued
fractions provided for the ordinary generating functions of classical numbers such
as Euler numbers, Springer numbers, and Genocchi numbers. ©® 1995 Academic

Press, Inc.

1. INTRODUCTION

Let us define the Euler numbers E, and the Springer numbers S,
through their exponential generating functions (egf), respectively E(x) and

S(x):
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The even (resp. odd) part of the Euler numbers is the secant (resp.
tangent) numbers. The even (resp. odd) part of the Springer numbers is
what Glaisher called the numbers P, (resp. Q,). In Glaisher’s lengthy
papers [G1] [G2], these numbers appear among many other sequences
related to Bernoulli numbers. In fact, Euler examined the P, numbers [E],
and they were also more recently studied by Shanks [Sh], but we shall
follow Arnold’s denomination for the entire sequence as Springer num-
bers. Springer [Sp] introduced these numbers for a problem about root
systems, and recently Arnold [A2] used them in the theory of singularities
of smooth functions.

In [A3] Arnold introduces two pairs of triangles of numbers that lead to
simple algorithms for computing Springer numbers. In this article we give
short and elementary proofs of both pairs of triangles based on Seidel’s
method [Sel, using only their exponential generating functions (egf), not
their combinatorial properties.

Then we transpose the method to the ordinary generating functions
(ogf) of the same numbers, and give their continued fraction representa-
tions. In particular we find a new continued fraction representation for the
ogf of Euler numbers, deduced from Arnold’s pairs of triangles. In addi-
tion we introduce a new pair of triangles for Euler numbers and define the
“median Euler numbers.”

2. ARNOLD’S PAIRS OF TRIANGLES

Like Arnold, we think that the reader can discover the algorithm
governing the following two pairs of triangles (we add arrows to make clear
the left—right /right-left reading):

0 1
1 1 < 1 0
0 1 2 - 2 3 3
11 11 10 8 5 8 6 3 0
0 11 22 32 40 40 48 54 57 57

Arnold’s pair L(b) and R(b)

Tl

11 8 4 0
0 16 32 46 57 57 68 76 80 80

Arnold’s pair L( 8) and R( 8)
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To be more concise, let us call LL the left side of the left triangle, LR its
right side. From left to right, the sides of a pair are LL, LR, RL, RR. On
the first values of the first pair, we can see:

—On the LL side, zeroes alternating with the Springer numbers
SZn +1
—On the LR and RL sides, the numbers 2"~ 'E,

—On the RR side, zeroes alternating with the Springer numbers §,,,.
On the first values of the second pair, one can see:

—On the LL side, zeroes alternating with the numbers 2*"E,,

—On the LR and RL sides the Springer numbers S,

—On the RR side, zeroes alternating with the numbers 2*"*'E, .

This will be proved in the sequel. We recall the elementary facts of the

Seidel algorithmic method [Se] [D] [DV]. Starting with an arbitrary se-
quence (a,), . ;. called the initial sequence, we construct the Seidel matrix
(a%), « -, associated with (a,) as follows:

(R1) The first line @) of the matrix is the initial sequence a,,.

(R2) Each entry a¥ of the kth line is the sum of the entry immedi-
ately above and of the entry above and to the right of it:

k

a,

=a, ' tan

The first column aj of the matrix will be called the final sequence.
__ProposiTiON 1 (Seidel).  The egf A(x) of the initial sequence and the egf
A(x) of the final sequence satisfy the relation

A(x) = e*A(x).

The proof is straightforward. By induction on k, the entries on the kth
line can be expressed in terms of those on the Oth line:

i=k
kK _ k 0
a, = Z (i)an+i'
i=0

The result follows when taking » = 0 in this identity.
Now impose the following auxiliary conditions:
(E1) A(x)is an even function and A(0) = 1.

(E2) A(x) — 1is an odd function (Note that condition (E1) implies
A0) = D).
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Under these assumptions, the Seidel matrix has the form

1 0 =* 0 = 0 1 0 -1 0 5 0 -6l
L T R 1 -1 -1 5 5 -—61

0 = * * * * 1] -2 4 10 -56

* * ok * L = =2 2 14 —46

0 = * * * x 0 16 -32

* * * * * * 16 —16

0 * * % x x 0

At the beginning the stars are unknown entries. In fact, the matrix is
uniquely determined by rule (R2) and conditions (E1) and (E2), and the
second step consists of computing the successive obliques. The first oblique
is, from N-E to S-W, 0 and 1; the second one is, from S-W to N-E, 0, —1,
and —1; the next one is, from N-E to S-W, 0, —1, —2, and —2. This
algorithm gives rise to what Arnold calls the “Euler—Bernoulli triangle,”
which we prefer to call the Seidel triangle for the Euler numbers, first
discovered by Seidel [Se], then rediscovered by Entringer, Arnold [A1], and
others:

1
1 — 0
0 - 1 - 1
2 o~ 2 o« 1 « 0
6 —-» 2 - 4 = 5 - 5
16 <« 16 <« 14 <« 10 « 5 €« 0
0 - 16 —-> 32 - 46 - 5 — 61 — 61

Seidel-Entringer—Arnold triangle for the Euler numbers

On the other hand, the only function A(x) satisfying (E1) and (E2) is
the function A(x) = 1/cosh x (because A(x) is even and e*A(x) — 1 is
odd, so e *A(x) — 1 = 1 — ¢*4(x)), and then A(x) = 1 + tanh x. There-
fore the secant and tangent numbers appear on the sides of the triangle.

Now we proceed along the same lines for Arnold’s pairs of triangles
generating the Springer numbers. To obtain the second pair we first note
that the generating function of the Springer numbers is

S(x) =e*

cosh2x’

Note that e *S(x) is an even function and that ¢*S(x) — 1 = tanh 2x is
an odd function. Conversely, let A(x) be a function having the following
two properties:

(S1) e *A4(x) is even, so that e*4(—x) = e *A(x).

(S82) e*A(x) — 1is odd, so that e*A(x) — 1 = —e *A(—x) + 1.
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From (S1) we have A(—x) = e **4(x), and A(x) = S(x) by (S2).
We now construct two Seidel matrices related to the sequence of
Springer numbers:

—on the left, the Seidel matrix obtained when the initial sequence is

(S,),
—on the right, the Seidel matrix obtained when the final sequence is

(S,).

1 8 S, S S, S 1 0 * 0 = 0 =«

* * * * * * Sl * * * * *

1] * * * * * S, * * * * * *

* * * * * * S3 * * * * * *

0 * * * * * S, * * * * * *

* * * * * S5 * * * * * *

On the right matrix, we find that §; = 1. On the left matrix we deduce that
the first oblique is, from N-E to S-W, 1 and 2, and the next one is, from
S-Wto N-E, 0, -2, §, = —3. Knowing S,, we compute the corresponding
oblique on the right matrix, §, = —3, —4, —4, and deduce the next
oblique from N-E to S-W, 0, —4, —8, §; = —11; then we go back to the
right matrix, and so on:

1 1 -3 -11 57 361 - 1 0 -4 0 80 0
2 -2 -14 46 418 - 1 -4 -4 80 80
0 -16 32 464 - -3 -8 76 160
-16 16 496 —-11 68 236 -
0 512 57 294 .-
512 361 -

This leads exactly to the algorithm of the second pair of triangles.
Similarly, the first Arnold’s pair of triangles correspond to the following
pair of Seidel matrices:

0 1 0 —-11 0 361 - i -1 -2 8 40 -256 -
1 1 -11 —11 361 - 0 -3 6 48 -216
2 -10 -22 350 - -3 3 54 —-168

-8 —-32 328 - 0 57 —-114

—40 296 - 57 =57

256 .- 0

On the left, the egf’s of the initial and final sequences are

4 sinh x
i(x) = cosh 2x
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and
A, ‘A : 1 h2 )
=" = —1- +t )
(%) = eA(x) 2( cosh 2x amh 2%
On the right the egf’s are
A : 1 h2
~ = - + — 14
() 2( cosh2x tan x)
and
I o cosh x
2(x) = ey(x) = cosh2x’

The algorithm of computation is now based on the facts that 4,(x) is odd,
Ay(x) =1 - A(x), and A,(x) is even, and these conditions lead to the
first pair of triangles.

3. CONTINUED FRACTIONS EXPRESSING THE
ORDINARY GENERATING FUNCTIONS

In this section we deal with the ordinary generating functions (ogf) of
the initial and final sequences of a Seidel matrix; more precisely we define

a(x) = Y, a'x""! and a(x) = Y arx" '

nz=0 n=0
These series are, in a formal sense, the Laplace transforms of A(x) and
A(x), and the analogue to Proposition 1 is

PROPOSITION 2. The ogf a(x) of the initial sequence and the ogf a(x) of
the final sequence satisfy the relations

(‘l(x)za(lix) and a(x)=c7(]+x).

For a proof, identify the coefficients of x"*! on both sides.

In the following we assume that the reader is acquainted with the formal
theory of analytic continued fractions (see Henrici [H]). We need the
following lemmas:
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LEMMA 1 (lemma for contractions). The following representations of a
series f(x) are equivalent:

X
f(x) = =
1+
X
1+
cyx
1+
CyX
1+
csx
1+ —
f - C
x) =
) ()
1+cx— 3
C3Cyx
1+ (¢, +c5)x —
; ¢ x* C
x)=x-— :
(x) =x CrCsx2 (Cz)
14+ (¢, tey)x— 5
C4CsX
14+ (c3 +¢4)x—
Proof. Note that the identity
x ¢, x?
=x —
L+ X 1 +c¢,x + ¢, A(x)
1+ ¢, A(x)

holds for each formal series A(x). It follows by induction on n that the
nth convergent of the first contraction (C,) (resp. of the second contrac-
tion (C,)) is the (2n — 1)st (resp. the (2n)th) convergent of the original
continued fraction.

LEMMA 2. The two equalities

x X x
f(x) = c\x ’ f(1+Cx)_ dx
1+ —mM—m— 1+ —————
X dyx
1+ ——— 1+ ———
C3X dix
1+ — 1+ —
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are equivalent to the system

d =c +C, dd, = cc,, dy+dy=c,+c;+C,...

dyy 14y, = €2y 1C2ps dyy +dypiy =Cop e +Conins

Proof. Replace x by (x/1 + Cx) in (C,) and make the identifications.
These preliminaries allow us to find continued fractions for the ogf of
Euler numbers and Springer numbers. First consider the series

s(x) = L (=D)"Ep x4 s =x — x>+ 585 — 61x7 + -
nz20
t(x)=x+ Y (-1 "Ep. x¥ 24 - =x+x?—2x* +16x° — -+ .
nx1

The next proposition (in fact, its corollary, Corollary 3.1) is a classical
result. Propositions 4 and 5 seem to be new.

PROPOSITION 3. The series t(x) has the continued fraction representation

t(x) =x+x>—2x* + 16x° — 272x% + -

X
B x
l_
1+ al
2x
1= 2x
1+ 3y
- 3x

1+—_—‘

Proof. Consider the Seidel matrix for the Euler numbers. According to
Proposition 2 we have @(x) = #(x) and a(x) = s(x) = t(x/(1 + x)). From
the parity characterizations (E;) and (E,) in the preceding section, we
know that t(x) is the only series f(x) such that f(x) —x is even and
f(x/(1 + x)) is odd. Assume that f(x) is a continued fraction as in Lemma
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1. The first condition (f(x) — x is even) yields
c, = —1, ¢, +c, =0, c;+c¢c, =0,..., Copoy + €y, =0,....
According to Lemma 2, the second condition says that

c, +tey+1=0, c,tes;+1=0,..., €yt Cppiy +1=0.

We deduce by induction that ¢,,_; = —n and c,, = n. This gives the
continued fraction for #(x).

COROLLARY 3.1. The series t(x) and s(x) have the continued fraction
representation

X
t{x) =
(x) =
1-x+ 5
4x
1-—x+ -
n2x?
1—x+ -
X2
=x+
2x?
1+ 3
6x
1+ -
n{n + 1) x?
1+(—._)___.
3 5 7 x
s{(x) =x—x"+5x - 61x" 4+ = e
1+
4x?
1+ -
n’x?
1+

The continued fractions for #(x) are the contractions of that of Proposi-
tion 3. Replacing x by x/(1 + x) in the first contraction, we obtain the
continued fraction for s(x). Historically these results are due indepen-
dently to Rogers and Stieltjes, but they are derived in a different way. For
a recent combinatorial proof, see [F1].
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COROLLARY 3.2. The ogf of the Springer numbers has the continued
fraction representation

x+x2=3x = 11x* + 57x° + 361x% — -
X

4x?
16x?

1 —x+
1 —x+ -

4nx?

1—x+

Proof. 1n the right matrix of the second pair for Springer numbers, the
ogf of the initial sequence is a(x) = 1s(2x). The ogf of the final sequence
is then

1 2x
a(x) = 53(1 ) =x+x2~3x = 11x* + 57x° + 361x° — - .
— X

The result follows from the continued fraction for s(x).

Now consider the first Arnold pair of Seidel matrices related to the
Springer numbers. The series a,(x) = x — a,(x) is characterized by the
two properties:

(S) aflx/1 + x) =afx) = L(=D"S,,, ,x2""? =x? — 1x* +
361x® — --- is an even series;

(Sy) a)x/1—x)=X(-1D"S,,x*""'=x—3x*+57x" — -~ is an
odd series.

Let e(x) be the series

e(x) = 1(x) = s(x) = T (=1)" (Eay 5" + Epyi®™™)

n>1
=x?+x —2x* = 55° + 16x° + 61x7 — -
so that a,(x) = x — e(2x).

Assume that a,(x) has a continued fraction representation as in
Lemma 1:

a,(x) =x —x* —2x> + 8x* + 40x° — 256x° — ---
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X

cx

1+
C,X

1+
C3X
1+
C4X
1+
CsX
1+ —

In the first contraction, replace x by (x/1 — x). This gives

x
a,(x/1 —x) =
((x/1=x)
1+ (¢, —Dx — 5
C1CyX
14+ (cy+c3—Dx—
This series is odd, if and only if
¢ =1, €, +cy=1, ¢, tes=1,..., Cyp tCopyy =1,....
Taking the second contraction, we get
2
_ cx*
a(x) =
(x) P
14+(c, tcy)x— 3
C4CsX
T+(cs+cey)x— 3
: CeCrX
1+(cs+cg)x— —
If x is replaced by x/(1 + x), we obtain
c,x?
2
2 ;03X
(1 +x) 4+ (c; +c)x(1 +x) - 3
C4CsX
1+ (¢35 +cy)

T+x (1 +x)2+(c5+c(,)x(1+x)—-~--

This last series is even, if and only if

¢, +cy= -2, c; +c, =0, cs teg=—2,...,

C4n'l+c4n=0’ C4"+1+C4"+2= _2,
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The coefficients ¢, are therefore uniquely determined, and we come to the
following proposition and its corollary, which seem to be new:

PROPOSITION 4. The series x — 1e(2x) admits the continued fraction
representation

x — te(2x) =x —x? — 2x> + 8x* + 40x° — 256x° ---

X
= P’ ,
1+ T
1= 4x
1+ ix
1= Sx
1+ T A
-
where the four successive generic coefficients are

Capn-y = 4n, Cy, = —4n, Cynsr = 4n + 1, Capnsr = —4n — 3.

Following Glaisher’s notations [G1] [G2], denote by p(x) and ¢(x) the
series

p(x)= L (-1)'8,, x> =x —3x> + 57x% — -

n>0

g(x) = Y (-1)"S,,, x¥"* 2 =x2 — 11x* + 361x° — - .

n>0

COROLLARY 3.3. The series p(x) and q(x) have the continued fraction
representations

=x=3x 4+57x>— - =
p(x) =x X X Y

16x2
35x?

64x2
1+

1+

1+
1+
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X

4x° ’
12x?
40x?

56x?
1+

1-x2+

1+

1-x2+

where the two generic successive coefficients are 16n* and (4n + 1X4n + 3)
in the first continued fraction, 4n(4n — 3) and 4n(4n — 1) in the second,

x2

g(x) =x? — 11x* + 361x6 — --- =

12x? ’
20x2

1—x*+

where the two generic successive coefficients are (4n — 1)4n and 4n(4n + 1).

Proof. 1t remains only to prove the second continued fraction for p(x),
which will be useful for Proposition 7. In fact, the two continued fractions
for p(x) are equivalent by Lemma 2, as one can verify the two identities

(4n — 3)(4n — 1) - 16n* = 4n(4n — 3) - 4n(4n — 1),
16n* + (4n + 1)(4n +3) + 1 = 4n(4n — 1) + (4n + 4)(4n + 1).

4. A PAIR OF TRIANGLES OF ARNOLD TYPE FOR
EULER NUMBERS. THE MEDIAN
EULER NUMBERS

We start with a corollary of our last result:

PROPOSITION 5. The ogf e(x) of the Euler numbers admits the continued
fraction representation

e(x) =t(x) —s(x) =x?+x%—2x* — 5x° + 16x° + 61x7 — -



288 DOMINIQUE DUMONT

~

x?

3x? ’
5x?2
14x?

182
1+

1—x+

1+

1 —x+

where the two generic successive coefficients are n(4n — 1) and n(d4n + 1).

Proof. Take the contraction (C,) of the continued fraction of Proposi-
tion 4 and replace x by (x/2).

Now consider the pair of Seidel matrices obtained by taking the same
(signed) sequence of Euler numbers first as initial sequence, then as final
sequence:

0 1 1 -2-516 61 - 0 1 -1 -2 5 16 =61 -
12 -1 -7 11 77 - 1 0 -3 3 21 —45
30 -8 4 88 - 1 -3 0 24 -24
4 -7 -4 92 - -2 -3 24 0
-3 -11 88 - -5 21 24 -
14 77 - 16 45
63 - 61

The egf are respectively:

_ —onthe left, 4 (x) = tanh x + 1 — 1/cosh x = (e* — 1) /cosh x and
A(x) = (e** — e*)/cosh x;

—on the right,_A_2(x) =(e* — 1)/cosh x and A,(x) =1 —
e *)/cosh x, so that A,(x) = —A,(—x).

Denote by (a*) the matrix on the right. We have a = 0 and, for n > 1,
al = (—1)""'a} = E,. The matrix is very similar in form to the Seidel
matrix for Genocchi numbers [Se] [D] [B] [DV], with obliques alternatively
symmetric and antisymmetric; more precisely a* = (—1)"*%* g7 with
zeros on the diagonal, a? = 0. For an easy proof, see [DV],

Now let us look at the matrix on the left, say (b¥). In fact, 4,(x) +
Ay(x) = 2(e* — 1), or equivalently

(0,1,3,4, -3, -14,63,...) + (0,1, =1, —2,5,16, —61,...)
=(0,2,2,2,2,2,2,...).
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A consequence is that b] = E, — E, ., = (—1)"*!b} for n > 1. By induc-
tion this yields a similar general relation: b% = (—1)"**b} for n,k > 1. In
particular b7*' = —p" |, which implies b? = —2b"*! for n > 1. This
last relation will be used in the proof of Proposition 6.

Considering now the upper half of the left matrix, and the lower half of
the right matrix, we are led to a new pair of triangles of Arnold type:

1 i 1
2 1 — 1
2:2 = 1 2 - 2 3
8 7 5 - 5 3
8:2 = 4 11 16 i 16 21 24
92 8 77 6l L 61 45 24
92:2 = 46 134 211 272 - 272 333 378 402
2048 2002 1868 1657 1385 < 1385 1113 780 402

2048:2 1024 3026 4894 6551 7936 - 7936 9321 10434 11214 11616

il

Our pair of Arnold type for Euler numbers

The latter triangles are similar to the Seidel triangle of Genocchi
numbers (see below, and {Se} [D] [B] [DV] [DR] [DZ] for details). Call
median Euler numbers the numbers L, and R, that appear respectively on
the extreme left column (L, =1, L, =1, L, =4, L, =46,...) and on
the extreme right column (R, = 1, R, = 3, R, = 24, R, = 402,...). Some
of their properties are now presented, similar to those of the median
Genocchi numbers.

We need a preliminary general result on Seidel matrices.

PROPOSITION 6. Given a Seidel matrix (a*), then the ogf’s of its initial
sequence, of its main diagonal, and of its upper diagonal, respectively denoted
by

a(x) = Y apx"',  dy(x) = Y ax",  di(x)= Yap x",

n=0 n>0 n=0

satisfy the identity

’ x? J x?
= + :
a(x) = xdg 1+x N1 +x
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Proof. Let y =x2/(1 + x), and express the powers of x by replacing
x? by its value xy + y at each step of the algorithm

x=x(1) + 0

x*=x(y) +y

x> =x(y+y?)+y?
xt=x(2y?+y?) + (2 +y?)

xn+1 =‘X'Frx(y) +yanl(y)’

where the F,(y) are the Fibonacci polynomials defined by

Fi(y) =0, Fo(y) =1, Fi(y) =y,...,
F(y) =y(F,_:(y) + F,_5(¥)),

whose explicit formula is readily found by induction on 7 to be

n

k )
F(y) = Z( - k)y‘~
k
Then we have

a(x) = Y. apx"' =x Y ayF(y) +y Y. apF, ((y).

n=0 n>0 nz=0

Seeking the coefficient of y* in the first term of this expansion, we take all
the F,(y) that contribute to y*, corresponding to those n such as k < n <
2k, and we find that this coefficient is

n=2k i=k
k 0 _ ko _ &
,,Z::k (n_k)an ’_‘:Z.O(i)akﬂ a.

Similarly, the coefficient of y**! in the second term is obtained by taking

all the F,_ (y) that contribute to y*, and we find

n=2k+1 k i=k k
Z (n_l_k)agz Z( )a2+]+i=a:+]'
i=0

n=k+1 t

Then a(x) = xd(y) + d(y).
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PROPOSITION 7. The ogf’s of the median Euler numbers satisfy the
continued fraction representations

r(x) =Y (-1)"R,x"*' =x — 3x% + 24x> — 402x* + 11616x° — ---
X
- 3x
1+ =
L+ 2 7%
I+ 2.9x
1+ 310x
I+ =313y
1+

(x) =X (—1D"L,x""" =x — x? + 4x3 — 46x* + 1024x° — ---

X

x
3x
2.5x
2.7x
3.9x

3.11x
1+

1+

Proof. When applying the last proposition to the matrix on the right,
we find dy(x) = 0 and d,(x) = r(x); then

i )=e(—x) or r( * )=e(x).

1+x 1 —x

According to Proposition S, this proves the continued fraction expansion
for r(x).

Now take the matrix on the left. There we have a(x) = e(x) and
d(x) = I(x). On the other hand, we proved that b) = 0 and b} = —2b},
for n = 1. Then

2
do(x) =2x — 8x? +92x* — -+ = ;(x - I(x))
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and Proposition 6 yields

X 1 +x

e(x) = 2x — (1 + E)1( i

Now we turn back to the second continued fraction for p(x) given in
Proposition 4, and replace x by (x/1 + x). This yields another continued
fraction for the numbers 2" 'E,, precisely

x — te(2x) =x —x? — 2x7 + 8x + 40x5 — -

_ x(1 +x)
, 4x*
(1 +x)" —x°+ a2

1+ 205

2 o] 'x
(IT+x)y —x"+ ——F—
56x°

1+

Changing 2x into x we obtain the formula

2x +x?
e(x) =2x - 5
2
1 +x + =
3x°
1+ _
10x-
l+x+ ————
14x?
1+
If we define f(x) as the continued fraction
x
) = - i
+ 3x
L+ 35x
T =57

1+f—
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2
1+x)

This identity is a characterization of {(x), so we have f(x) = I(x), which
completes the proof.

we find that

e(x) =2x — (1 +%)f

PROPOSITION 8. When the initial sequence of a Seidel matrix is the
sequence of Springer numbers (resp. S,,, or S,,, .. ), then the final sequence is
the sequence 2°"L or 2*"R,,, as shown in the tables

201 = 1 3 57 2763 21 = 1 11 361 24611
221 = 4 60 2820 223 = 12 372 24972

2.4 = 64 2880 24.24 = 384 25344

20.46 = 2944 20-402 = 25728

Proof. Llet us rewrite slightly differently the continued fractions of
Propositions 4 and 7:

x+3x7+ 57 + e = 7} ,
X
1 +x - 5x
1= 40x
1+x 56x
x+ 11x? + 361x° + -+ = a 7 ,
1+x— 0%
1= 56x
1+x— 3%
x+xt+4x +46x* + -0 = xx ,
L= 3x
1= 10x
1
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x+3x%+24x7 + - =

3x
5x
14x
T 18x
1

1 —
1 -

When replacing x by (x/1 — x) in the first two, and x by 4x in the last
two, we obtain the same continued fractions.

5. ANALOGIES WITH GENOCCHI NUMBERS

The Genocchi numbers are defined by

x2 x4 xl‘) 8 xl()

2x b'e
G(X)=el+1=x—“2“!“+~ﬂ—3'6-!+17"8“i-—155—1—6?+"‘.

The relation e*G(x) = 2x — G(x), combined with the parity of G(x) — x,
gives rise to the following Seidel matrix, and to the corresponding Seidel
triangle [Se] [DV]:

0 1 -1 0 1 0 -3 0 17 0 —155
1 0 -1 1 1 -3 -3 17 17 —155

1 -1 0 2 -2 -6 14 34 -138 1

¢ -1 2 0 -8 8 48 -104 i

-1 1 2 -8 0 56 —-56 1 1

0 3 -6 -8 5 0 2 1

3 -3 —-14 48 56 2 3 3

0 —-17 34 104 8§ 6 3
-17 17 138 8 14 17 17

0 155 56 48 34 17
155 56 104 138 155 155

Seidel matrix and Seidel triangle for the Genocchi numbers

Note the similarity of the above matrix with the right matrix of our pair
for the Euler numbers given in the preceding section. In particular, if we
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call g(x) and h(x) the ogf of the Genocchi numbers and the ogf of the
median Genocchi numbers,

g(x)x? —x* +x% — 3x7 + 17x° — 155x"° + -

h(x) =x —x?+2x> - 8x* +56x° — - = Y (—=1)"H,,, x"*!,

nz0

we still have A(x?/(1 + x)) = g(x). We can prove the identities (see [DZ])

x? x?
h h =2x?
1 +x 1 —x
x
h(x) = -
1+
1+ x
. 2%x
+
| 22y
+
32x
1+ 3
3°x

1+ —=

and prove also [DZ] that if the initial sequence of a Seidel matrix is
(2n + 1)E,,, then its final sequence is 2?"H,, , |:

E, = 1 1 5 61 1385
01 03 05 07 09
291 = 1 3 25 427 12465
221 = 4 28 452 12892
24.2 = 32 480 13344
2.8 = 512 13824
2856 = 14336

6. COMBINATORIAL AND ARITHMETICAL ASPECTS.
OPEN PROBLEMS

The combinatorial interpretation of the Seidel triangle for the Euler
numbers in terms of alternating permutations (essentially due to En-
tringer) is very classical. Similar interpretations for both Arnold’s pairs
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(and many further combinatorial results) will be found in [A3]. Two
different combinatorial interpretations of the Seidel triangle for the
Genocchi numbers are given in [DR], [DV]. The combinatorial interpreta-
tion of the median Genocchi numbers can be found in [DR], where it was
proved that the number H,,, | is equal to the number of permutations o of
{1,2,3,...,2n) such that, forall i, o(2i — 1) > 2i — 1, and o Q2i) < 2i.

Combinatorial interpretations for the remaining Seidel matrices intro-
duced in the present paper have not yet been found.

Concerning the congruence properties of the numbers introduced in this
article, we mention two related works: Barsky’s paper [B], on the divisibil-
ity of the median Genocchi numbers by powers of 2, and Flajolet’s paper
[F2], which relates the properties for certain classical sequences of integers
of being periodic modulo given integers, to the existence of continued
fractions representing their ogf’s.
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