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On Bernoulli identities
and applications

Minking Eie and King F. Lai
Part I

Abstract. Bernoulli numbers appear as special values of zeta func-
tions at integers and identities relating the Bernoulli numbers follow as
a consequence of properties of the corresponding zeta functions. The
most famous example is that of the special values of the Riemann zeta
function and the Bernoulli identities due to Euler. In this paper we
introduce a general principle for producing Bernoulli identities and ap-
ply it to zeta functions considered by Shintani, Zagier and Eie. Our
results include some of the classical results of Euler and Ramanujan.
Kummer’s congruences play important roles in the investigation of p-
adic interpolation of the classical Riemann zeta function. It asserts
congruence relations among Bernoulli numbers, i.e.
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second part of this paper, we use a simple Bernoulli identity to prove
that
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We then deduce from this Kummer’s congruence by using von Staudt’s
theorem and Euler’s generalization of Fermat’s theorem

m — N

a™ =a" (mod pNtl),

if a is relative prime to p and m =n (mod (p — 1) pV¥). Our argument
can be applied to derive congruences among Bernoulli polynomials and
in general the special values at negative integers of zeta functions asso-
ciated with rational functions considered by Eie.

1. Introduction.
Let mq, ..., m, be positive integers and P(T') be a polynomial in T

with complex coefficients of degree less than mi+---+m,. For |T| < 1,
we let

P(T >
F(T) = 1 _T'IW;I).(..zl — T :;::a(k)Tk.

Such functions occur as generating functions of partition numbers (cf.
Hardy and Wright [5, Chapter XIX]) and dimensions of spaces of au-
tomorphic forms — e.g. if we let a(k) be the dimension of the space of
Siegel modular forms of genus 2 and weight k, then

ad 14735
kZ_Oa(k) = (1-TH(1-T%(1-T10)(1-112)

(¢f. Igusa [6]). The value of a(k) is determined by F' via the residue
theorem as . F(2)d
z)dz
k)= — | —/—=—
Cl( ) 2mi Je Zk+1 ’
where C is a sufficiently small circle centered at the origin going coun-
terclockwise.
The generating function of the numbers a(k) is the Dirichlet series

Zp(s) = Za(k) k¢

k=1

(¢f. Hardy and Wright [5, Chapter X VII]). This zeta function is related
to F(T) via a Mellin transform

Zr(s)T(s) = /0 T e — F(0)) d
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for Re s sufficiently large. Our underlying principle is to evaluate F(T)
in two ways, yielding a Bernoulli identity, with special values of the zeta
functions of Shintani [8], Zagier [9] and Eie [2], [3] on the one hand, the
special values of classical zeta functions of Riemann and Hurwitz and
sums of residues on the other. One gets easily this way Euler’s identity:
ifn>2,

n—1 (2 n),
- Bsy, Bay, 91, = —(2 LB
(¢f. [1, Part I, p. 122]) and Ramanujan’s identities («, 8 > 0 with
afl = 7T2)7
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(¢f. [1, Part II, Chapter 14]).
In the first part of this paper we present some new Bernoulli iden-
tities. In view of the current motivic interest in special values of zeta
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functions, one cannot help from wondering if there is an abstract frame-
work giving a unified explanation of these identities as in the case of
polylogarithms (cf. Zagier [10]).

In the second part of the paper the Bernoulli identities are used
to give new proofs of classical Kummer congruences. The Bernoulli
numbers B,, (n = 0,1,2,...) and Bernoulli polynomials B, (z) (n =
0,1,2,...) are defined by

o0

t B, t"
et—lzz :L' , |t|<27r,
n=0 '
and -~
t e%?t B (z)t"
A - T
n=0 '

Suppose that m,n are positive even integers, p is an odd prime with
p — 1 not a divisor of m and N is a non-negative integer. Kummer’s
congruences asserted that if

m=n (mod (p—1)p"),

then B B
1— m—1y Zm =(1— n—1y =N d N+1 )
(I=p" ) —= =1 —p" ) —= (mod p™™7)

Kummer’s congruences play important roles in the p-adic interpola-
tion of the classical Riemman zeta function. Indeed if we consider the
function

G(s) =1 —=p%)((s) = Z n=*, Res > 1.
(=1

Then the congruences tell us that ¢,(s) is a continuous function on the
ring of p-adic integers Z,, i.e.,

Cp(1—=m)=((1—n) (mod pNTt),
if m=mn (mod (p—1)p").

One can construct a p-adic measure p on Z,, and express (,(1 —m)
as a constant multiple of the p-adic integration

[amtanto).
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where the integration is over Zj (see for example Koblitz [9]). Note
that for x € (Z/pV+1Z)*, the set of invertible elements of the quotent
ring Z/pN*1Z, one has

m—1 — _n—1

x = (mod p™*1),

if
m=mn (mod (p—1)p").
So that Kummer’s congruences follow as easy consequences by a simple
argument (cf. [6]).
Here we shall develop another elementary proof of Kummer’s con-
gruences by a simple identity among Riemann zeta function and Hur-
witz zeta functions,

—% — 3 ]
(1) N O D D T R
(4,p)=1
1<j<pN Tt
where the Hurwitz zeta function is defined as

C(s;&):Z(n+5)_3, Res>1, 6d>0.

n=0

Such an identity follows easily from the consideration of zeta functions
associated with rational functions of the form

P(T)
(1 _Tml)...(l — Tmr‘)

F(T) =

(see Part I).

Note that both the Riemann zeta function ((s) and Hurwitz zeta
function ((s; ) have analytic continuations in the whole complex plane.
Moreover, their special values at non-positive integers are given by
Bernoulli numbers and Bernoulli polynomials, respectively. Specifically,
one has

CL—m)= (="

Bon and  ((1—m;d) = _Bml) :
m m

Set s = 1 — m in the identity (I), we get
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(I (Q-pmhH==== 3 Z(Z)Bu LpVADI=D)

™m ™m P
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my m!
1) U'(m—1)

is the binomial coefficient.
On the other hand, von Staudt’s theorem ([2, Chapter 5, Theo-
rem 4]) implies that pB; is alway p-integral, i.e. it contains no divisor

Here

of p in the denominator of pB;. So after modulo pV+1, we get
B 1
1_pm—1y2m — 2 m  —(N+1)
(I=p"H—2=— > i"p
(J»p)_]‘ 1
1<j<
(I11) 1—’ :
S5 Y e g
1<j<pN Tt

Next we evaluate the sum

(4,p)=1
1<j<pN Tt

in the multiplicative group (Z/p™ 1! Z)* by decomposing it into a direct
product of finite cyclic groups and we obtain Kummer’s congruences by
assuming von Staudt’s Theorem; finally we give a proof of von Staudt’s
theorem by using the Bernoulli identity (IT) with N = 0.

At the end of the paper we extend Kummer’s congruences on
Bernoulli numbers to congruences on Bernoulli polynomials.

2. Special values of zeta functions.
2.1. Bernoulli numbers and Bernoulli polynomials.

We recall some results on special values of zeta functions.
For the Riemann zeta function

C(s):Zn_S, Res > 1
n=1



ON BERNOULLI IDENTITIES AND APPLICATIONS

and the Hurwitz zeta function

C(s;&):Z(n+5)_3, §>0, Res>1,

n=0

it is well known that for an integer m > 0 ,

Cem) = ()P 2 and ((emid) = -

m+ 1 m+1

2.2. Zeta functions associated with linear forms.

Bm+1 (5) )

173

Let 8 = (f1,...,0:) be an r-tuple of nonnegative integers and

L(z)=ay21+ -+ a, z, + 6 be a linear form with
Rea; >0 and Re (5+Zaj) >0.
j=1

For Re s > r + ||, define the zeta function associated with L as

Z(L,j3,8) = Z nPL(n)~*

neNr

o0 o0
- Z Z nll"'nfr(a1n1+"'+a7‘n7‘+5)_8

ni=1 Nnp=1

where we use the notation nf = nf’l oenfr,

These zeta functions were first considered in more general context
by Eie in [2]. In particular, they have meromorphic continuations in
the whole complex s-plane. Furthermore, their special values at non-
positive integers are given explicitly there. Here we summarize the

results we need from [3].
For any polynomial f(x) of p variables and degree k

k
f([L') e Z aax(lxl ...xgp s
|ce|=0
we let
k k

TP(f@) =Y aal(—ar)--C(—ap) = ¥ aa ][]

] a; +1
|| =0 lal=0  j=1 J

(_1)aj B(Xj"i"l
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where a = (o, ..., ap) ranges over all p-tuples of non-negative integers
and |a| = ay + - + ayp.
Also for any nonempty subset S of the index set I = {1,2,...,7},

we let
Lg(z) = Z a;xi +90 = L(x) — Zajxj
i€l-S jes

and |S| be the cardinal number of S.
The following proposition is an immediate consequence of the main
theorem in [3].

Proposition 1. For any integer m > 0, the special value at s = —m
of Z(L, B;s) is given by

Z(L, B;—m) = J" (2P L™(z))
DAt 1
+Z(H ( iml )a(S)! .
S JjES J

(I 259 @),

ig¢S

where S ranges over all non-empty subset of I = {1,2,...,r} in the
summation and
alS)=m+|S|+> 6.

JjeSs

Here we describe the analytic continuation of Z(L, 3; s). For Re s >
r+ |8, we have

Z(L, B; s) I'(s)

o0 o0 o0
e E N E nll P n?" / t's_l e_(a1n1+“‘+arnr+5)t dt
ni=1 n,.=1 0

oo r ')
= / et H (Z nPi e_“-i"t) dt .
0 j=1 n=1

Set

F;(t) = Z nPi e—aimt and F(t)=e % H F;(t).
n=1
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A term by term differentiation of the identity

ad 1

—a;nt __
Ze I = a1 t>0,
n=1

we get .
Fi(t) = (—az) ™" (%)& (eaﬁ%) '

Thus around ¢ = 0, F}(t) has the asymptotic expansion

! By (a;t)nFi-1
.tﬂj?ﬁj"‘i"]_ + (_l)ﬁj Z n(aj ) n

(a; ny SBot1 n(n — g; — 1)!

It follows that at ¢ = 0, F'(t) has an asymptotic expansion of the form

> Gt

n>—(|B|+r)

Consequently, the analytic continuation of Z(L,3;s) and its special
values at negative integers follow from Lemma 7 in Section 4.
When g = 0, we have the following

Corollary. For any integer m > r, one has

Z(L,0;r —m)
—1)ymr %1 (i — )]
- Z ( ) | ! ( ! ) Bal"'Bara(lxl_l"'agr_l5ar+l'
T agl - apl o !

2.3. Shintani zeta functions.

Next we consider another kind of zeta function which were inves-
tigated first by Shintani in [8] and then Eie in [3]. Here we reformulate
the main result in [3].

Let A = (a1,...,a,) and v = (uy,...,u,) be r-tuples of complex
numbers such that Re a; > 0 and u; > 0. Define the zeta function

o0 o0

Z(A u;8) = Z Z (a1(ny+u1) + -+ ap(ny +up)) "7,

n=0 N, =0
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where Res > r.

Proposition 2. For any integer m > r, one has
Z(A,u;r —m)

. (m —r)! 1 _
= (17 D0 T B () By () ot el

lp|=m
Here the summation is over all p-tuples of non-negative integers
such that and |p| = py + -+ p, = m.
3. Euler’s Identity.

If we start from the fraction

we obtain the identity
Cs=1+¢(s) = Y Y (na+mna)~* +2((s),
ni=1lns=1

from the Dirichlet series Zg(s). Setting s = 2 — 2n, we get Euler’s
identity

n—1
(2n)!
Bag Ban_o = —(21 + 1) By, , > 9.
’;(219)!(271—219)! 2 Bonai = (20 +1) By "

In this section we shall establish a new identity analogous to that of
Euler and then as an illustration of our method we give an extension
of the Euler identity to Bernoulli polynomials. We state a lemma.

Lemma 3. Given -
P(T)=> b; T
j=0

and
P(T)

(1_Tm1)...(1_Tmr)

F(T) =
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Note that k is relative prime to p, so the mapping x — k2 + « is an
one to one mapping from Z/pNJrl Z into Z/pNJrl Z. Thus we have

Z J"= Z §™ (mod pMNt1y.

j=a (mod k) 1<j<pNtt
(Jp)=1

Hence our congruences follow by the same argument as in Proposition
13.

REMARK. It is possible to construct another p-adic measure on the
space Zj so that the integration of the monomial 2™~ over Z,, yields a
sum of Bernoulli polynomials. Hence, we have the p-adic interpolation
of Kummer’s congruences on Bernoulli polynomials. We’ll discuss this
in another paper.
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