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1. INTRODUCTION

The purpose of this paper is to continue the study of ¢-special func-
tions by the method outlined in [14], [15] and [16].

We will use the generating function technique by Rainville [26] to
prove recurrences for g-Laguerre polynomials, which are g-analogues of
results in [26]. Some of these recurrences were stated already by Moak
[24].

We will also find ¢g-analogues of Carlitz’ [7] operator expression for
Laguerre polynomials. The notation for Cigler’s [13]| operational calcu-
lus will be used when needed. As an application, g-analogues of bilinear
generating formulas for Laguerre polynomials of Chatterjea [12, p.57],
[11, p.88] will be found.

We begin with a few definitions.

Definition 1. The power function is defined by ¢ = e*°9(9) We always
use the principal branch of the logarithm.

The g-analogues of a complex number a and of the factorial function
are defined by:

{(a)e = T2 g C\), (1)

{n}! =] [{k}e {0} 1=1.geC, 2)

k=1
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Definition 2. The g¢-hypergeometric series was developed by Heine
1846 as a generalization of the hypergeometric series:

[o )

(a; @)nlb; Q>nzn’ 3)

201(a,b; clg, 2) = — (1;q)n{c; @n

n

with the notation for the ¢-shifted factorial (compare |21, p.38|)

1, n=20;
n—1
g, = 4
{azq) H(l—q“*m) n=12,..., (4)
m=0

which is introduced in this paper.

Remark 1. The relation to Watson’s notation, which is also included
in the method, is

(@ @)n = (¢ D> (5)

where

3 \‘?—‘
3

Il
=

|

—
~~~
(=)
~—

(a;q)n =

3
1L

Definition 3. Furthermore,

(@:q) = [J(1 —ag™), 0< g <1. (7)
m=0
(a3 @)oo e
@ Q)= ————,a£qg " m=01,.... 8
(9 (ag®; @)oo ®)
Definition 4. In the following, % will denote the space of complex
numbers modligq. This is isomorphic to the cylinder R x e, § € R.
The operator
. C C
e
Z 7
is defined by
e
— 9
ara+ bz g (9)

Furthermore we define

(a; q)n = (@ @) (10)
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By (9) it follows that

o= L0+ ™), (1)

where this time the tilde denotes an involution which changes a minus
sign to a plus sign in all the n factors of {(a; ¢)y.
The following simple rules follow from (9).

Gtb=axb, (12)

G+tb—a+b, (13)

q*=—q" (14)

where the second equation is a consequence of the fact that we work
HlOd 271
logq”

Definition 5. Generalizing Heine’s series, we shall define a g-hypergeometric
series by (compare |20, p.4]):

~ ~ 17 2 CLA1 CLA
p(br(ala--'7ap;b17"'7b7“|q"z) = p(br |: ~ P |q,Z:| =
bi,....b

Q= {f (16)

We will skip the a for the rest of the paper.

Definition 6. The following generalization of (15) will sometimes be

used:
P+p/¢r+r/(a1a...,ap;b1a...,br|QaZ||31,---,Sp/;tl,...’tr/) =
A1y ...y S81y...,8
php Py { bl,- p | || o } _
[e’e} Clh <ap7q>n |: n (n) 14747 —p—p’ (17)
el )
z:: bh > <bhq>n ( )

Z”H (skiq H e @)
k= k=1

Whereq¢0vvhenp+p’>r+r’+1.
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Remark 2. Equation (17) is used in certain special cases when we need
factors (t;¢q), in the g-series.

Definition 7. Let the g-Pochhammer symbol {a},, , be defined by

n—1
{a}ng = [JHa +m}. (18)
m=0
An equivalent symbol is defined in [17, p.18| and is used throughout
that book. See also |2, p.13§].

This quantity can be very useful in some cases where we are looking
for g-analogues and it is included in the new notation.

Definition 8. With the help of the g-gamma function

o) = (i

we can define the two Jackson ¢-Bessel functions

i) = (5 (sesa il =S )L (0

(1—g)'™ 0<g<1, (19)

(Lg)oe  \2 4
. 2 a+1
Oy ) = OE LD (2N (2 21
‘]a (Z7 Q) <1;q>oo (2) 0(251 7Oé+ |Qa 4 . ( )
Definition 9. The Euler-Jackson ¢-difference operator is given by
p(x) —p(gz)
D x)=—7—""">, ¢ C\{l}. 22
(Dyp) (2) T {1} (22)
The limit as ¢ approaches 1 is the derivative
: d
lim (D,p) (x) = - (23)

g—1 dx’
if ¢ is differentiable at x.
If we want to indicate the variable which the g-difference operator is
applied to, we denote the operator (D, ) (x,y).
We will use a notation introduced by Burchnall and Chaundy.

h =xDyy, O =yDy,. (24)
Definition 10. If |¢| > 1, or

0 <|g| < 1and |z| < |1 —q|™", the g-exponential function F,(z) was
defined by Jackson 1904.

B (z) = kz; {kl}q!z’f. (25)
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For 0 < |g| < 1 we can define £,(z) for all other values of z by analytic
continauation.
The g-difference equation for £ (2) is
DyEy(az) = aFy(az). (26)

Two g-analogues of the trigonometric functions are defined by

. 1 . .
Stng(x) = o (By(ix) — By(—iz)), (27)
and )
Cosy(z) = §(Eq(w§) + B, (—iz)). (28)
2. GENERATING FUNCTIONS AND RECURRENCES FOR ¢-LAGUERRE
POLYNOMIALS

In this paper we will be working with two different ¢-Laguerre poly-
nomials. The polynomial Lﬁﬁgc(x) was used by Cigler [13].

(@) o (nta) {n}d eim kA
Ln,q,c(x) - Z <TL . k’) — ( 1) X

k=0 {k}q!
_ - <1 + q —-_n: q>k q++kn+ak(1 Q)kl‘k
- kz; (I + g <17 Ak (1—q) (29)
= <0(41+ )> 191 ( n;a+ 1lg, —x(1 — q)q”+a+1) .

The most common g-Laguerre polynomial L%aq)(x) is defined as follows.
Except for the notation, this definition is equivalent to [24], [20] and
[28].

) (z)
L)y — Zmbel/) 30
) = S (30)
In [22] the g-Laguerre polynomial is defined as
a+1 o
Mlqﬁl (—nya+ 1|, —2g" ) . (31)
(L q)n
Consider sets o,(x) defined by
= o)t (32)
n=0

Let
F=E,(t)¥(xt). (33)
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Then
Dy ' = tE(t) DV, (34)
Dy F = E OV + 2(1 — (1 = q)t) 5, (1) Dy V. (35)
An elimination of ¥ and D,¥ from the above equations gives
(1= (1 =)t)Dy I —tD  F = —tF, (36)

and

Zxann Zx 1 —q)Dyop_1(x)t" — Z{n}qan(x)t" =
n=0 n=1

- — Z Jn,l(x)t

By equating the coefficients of " we obtain the following recurrence:
Dyog(z) = 0. (37)

xDyo,(x) —2(1 —q)Dyoy—1(z) —{n},on(x) = —0y_1(x), n > 1. (38)

In particular, by (53) we obtain the following recurrence for the ¢-
Laguerre polynomials, which is a g-analogue of [26, p.134]:

eD L) (@) — (1 — ){a + n}, DL () —

() (39)
{n} Loy (x) = {a+ n} Ly ().
Now let’s assume that W has the formal power series expansion
V(u) = Z Yl (40)
n=0
Then
> oo -3 L (ay
o ()" = —
n=0 n=0 k=0 {n — k!
so that
n k
o) = T2 (42)
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Now by the ¢g-binomial theorem

[o )

Cin g VRT kgn
it - DS
e {C}n+k7q’7kxktn+k _ {et klgt" {C}/aq%(m)k _
;,; {n},! B ;;; {n},! 1 - (43)

i{c}kﬂk(“)km = i M

GDe = (B Qe

As a special case we get the following generating function which is a
g-analogue of [18, p.43, (73)], [26, p.135, (13)].

i{c}wﬂ”)( D O {hug ¢ (—at)”
n=0 {L+ajng 0 {1+ adn gt Qe (44)

102 1+ alg; —xtg (1 = @)||—; tq°).

Consider the important case ¢ =1+ « in (44). This is equivalent to
24, p.29 4.17], [1, p.132 4.2, [19, p.120 11']. Call the RHS F(z,t,q, ).
By computing the g-difference of F(x,t,q, a) with respect to x we ob-
tain

DyouF = —1q" " F(qu,t,q, 00 + 1). (45)

Equating coefficients of t*, we obtain the following recurrence relation
which is a g-analogue of [26, p.203]. Also compare with [22, p.109,
3.21.8] and [23, p.79].

D L)(x) = —¢ L) (xg). (46)

n—1,q

By computing the g¢-difference of F(z,t,q,«) with respect to ¢ and
equating coefficients of t"*, we obtain

(a+1)(m) o L(a+1) ({L')

n+l,q\y n+1,q
l—gq

{0+ 1}, () = {a + 1}, LoD (@) + . (47)
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D F = i qn2+na(_x)n((t; q)o‘+1+”{n}‘1tni1 — tan(t§ Q)a+1+n)
& (t; Dot 140t Darieninty!
B i ¢ (=) (5 Qarrn{ntgt ™ + {1+ n}o(lg; @)arn)
(tq; Q)a+1+n(t§ Q)a+1+n{n}q!
B S C ek (R RN
(L @ ararninty!
B i qn2+na+n{a + 1}q(—$t)n N f: qn2+na{n}q(_x)ntn71

(t§Q)a+2+n{n}q! (t§Q)a+2+n{n}q!

n=0 n=0
[oe] o0 n2 na-—n "
B q”2+”a+”{a + 1} (—xt)™ 1 Z gt (—at) (qin —1)
~ (L Qar2in{n}y! =) = (Edararn{nt,!
= a1} L0 (@) + :] Zt 1@51,;1)(5) — L2 (@)
n=0 n=0
n o a+1 a+1
= Zt {a+1}, L< H) L£z++12 ngjl q)( )
n=0
(48)
Equating coefficients of t* we are done. 0

The last equation can be expressed as
{n 4 1oLy g(@) = {o + L V(@) — o L (). (49)
Furthermore, the relation (1 —¢)F(x,t,q,a + 1) = F(x,1q, g, ) yields
the following mixed recurrence relation, which was already stated in
24, p.29 4.12]:
LoD () — L0 (@) = " L) (), (50)

n—1,q

By the ¢-binomial theorem we obtain the following equation, which
is a generalization of |24, p.29 4.10] and which is a g-analogue of |26,
p.209], [1, p.131 3.16], [19, p.130 38].

Lgﬁg(x) :Z< < ﬁ Q> L(ﬁ)

(a—B)(n—k)
. q , a, peC. 51
— 17 q>k k q( ) ( )

n +om ) 1 0 qn2+ﬁn(_xt)nq(afﬁ)n

L(a)
Z Z {n}q t q 1+a+tn (t;Q)afﬁ =0 {n}q!(tqaiﬁ; Q)1+ﬁ+n
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[o )

<Oé B 67 Q>k - a—
-3
4k —0

k=0

Equating coefficients of t* we are done. 0

By (50) and (46) the following important recurrence obtains:
Dy( L) = Ly @) = =" Ly (). (52)

The following generating function can also be found in [22, p. 109,
3.21.13|. It is a g-analogue of [18, p.43, (73”)], [26, p.130], [19, p.121
127.

i () VAL
S Lnal g Ben(—i1 1 alg, (1 — @) (—at)) =

F;(l +a)at) FE(0)JP(2(1 - q)Vat; q). o

Proof. Let ¢ — oo in (44). U

Remark 3. Another similar generating function is obtained by letting
t — tq ¢ ¢ — —oo in (44). These limits are g-analogues of an idea
used by Feldheim [18, p.43], which is not mentioned by Rainville.

Making use of the decomposition of a series into even and odd parts
from [27, p.200,208], we can rewrite (53) in the form

> L@ > N L] VA
T+ g {1+a}q 2+ate, LT 2
¥ 240 2+a 11~ (1 —q)at
__1 +2a1_ 42t2
T Ty g g Hed T (L= @)t = T ge
24+a 2ta 3+a 3+a 3 3~ s
. 22 +2001 _ )22
O(ZS?( b 9 3 9 3 9 3 9 72727 |Q7q ( Q)IE )

(54)
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and replacing ¢ in (54) by it, we obtain

i Limy(@) (8" it i Loy (@) (1)

{14—a}%1q {14*a} {2**a}wm

1+« 1+a 24+« 2+ 171~

= (C t 1SN, (t —; —, =
( 08(1( )+Z an( ))0(257( 2 ) 9 3 2 y 2 2 2
)) %

1+a
g A—qgat .. .
- q1+a) (Sing(t) —iCos,(t

A
|q’ _q4+2a(1 _ q)4x2t2) +

2+« 2Ta 34+« BTa3§
2 7 2 7 2 7 2 279

007 (— Tlg, =2 (1 — ¢)*a*t?).

(55)

Next equate real and imaginary parts from both sides to arrive at the
generating functions

L () (=) l+a l+a 2+a 2+a 11~
> ety ~ OO — 5 = g 5
{1+a}2nq 2 2 2 2 2°2
14+«
o ¢ (1 —q)at
19, =" (1 = @"a*t) 4+ T Sing(1)
2ta 2ta 3ta3ta 33~ N
. 227 +2001 _ )22
O(b?( ) 2 ) 9 ) 9 ) 9 72727 |Q7 q ( Q)IE )
(56)
and
ZLQ;';LM( D) {Lta}Singt) ,  1ta 1 Fa 2+a
n=0 {2+O‘}2n,q t 2 727 27
2+a 11~ N N
) Syt e 1|Q7 _q4+2 (1 - Q)4x2t2) _"'r‘)ql+ COS(I(t)x
2 722
2ta 2ta 3ta 3ta 33~ N
2 2 Tla =291 — o) 22
O(ZS?( 9 3 9 3 2 3 2 72727 |Q7 q ( Q) [L’t)
(57)
The following generating function is a g-analogue of [18, p.43, (747)],
8, p.399], [19, p.120 117].
o0 N E;(—xt)
DL @eg ) = e i <L el <L (58)

n—>0 ' (_t7 Q)fa
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k
2

(1 4+ a—n;q)n(—n;q)k q*( )+k2+ka(1 — )k
; — (I+a—nqu{l;g (1)

Il
(]
o~
3
[
~~
w3
~—
|
3
Q
(]

2 2
n 4 2nktkhk—n—k
E E tn+kq 5 (n+k)a %

(Lt a—n—kiqha{—n— kg g B R —ghat
(I+a—n—kai(l;q (1 @)nrn
N v pieklenck o (L@ —1q), k k, k
nz%;;tn v <<1+;Q>k<1;q;12 (L —are” =
_ o ol gha = Nk ktkq(l;) B Eé(_xt)
;t( g (Lig)n ,;(1 9w (1) Lok (—t¢)-a
(59)
]

3. PRODUCT EXPANSIONS

The theory of commutative ordinary differential operators was first
explored in depth by Burchnall and Chaundy [3], [4], [5]. This tech-
nique was then used to find differential equations for hypergeometric
functions in many papers, e.g. [6]. Unfortunately, it is very difficult to
find g-analogues of these results. We will however prove four ¢-products
expansions. We begin with a g-analogue of Carlitz’ result |7, p. 220].

Theorem 3.1. Let ¢ denote the operator which maps f(x) to f(qx).
Then

n

L) (2) = H(q’que*1 —x? e  {a k)

gji 1+a (60)
(qxDy — xq +{a +2})(xDy — xq +{a +1})1,

where the number of factors to the right is n.

Proof. The theorem is true for n = 0. Also we find that it’s true for
n = 1,2. Assume that it is true for n — 1, n > 3. Then we must prove
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that

n — k N+
(L+ 0 q)n (—ns gy g G)FFrbneky — gyt
— (1 + ;90 (L) (1—gr
q xqu’ —xgrtet 4 {a+n},) (61)
2
<1+a®n1ﬂ—nwﬂq%iM”“ﬂ—ﬂVﬁ
—~ (+oge  (Lak (1—gm!

k‘
H,—\D

3

A calculation shows that RHS=

1+a;q> <1_n q>kq R +kn+ak(1 q)kxk
T+ oq)e (L) (I—qm

e |

B i: <1 + q>n71 <1 —n; q>k q ; +kn+akq2n+a 1(1 _ q)kxk+1

—~ (I+aq (g (1—gm!
n—1

2k
I+a;qyna (L=n;q)eg = ok k(1 — g)ka®
—~ (1t+toqe (Lgr (I—q)

Finally, we must prove that

1— qn+a 1— qfn B qfk(l _ qn+o¢) 1— qkfn n Zk(l _ q )

_ —2k+n

1_qk+a 1_qk 1_qa+k 1_qk 1_qa+k q ’
(63)

which is easily checked. 0

The following theorem, which is a g-analogue of [25, p.374 (2)] is
proved in a similar way.

Theorem 3.2.

L(a)

n,q,C

H ¢ 0w Dy + {a + k}g) By(—). (64)

k=1

»QIH
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Proof. The theorem is true for n = 0. Assume that it is true for n — 1.
Then we must prove that

(14 s q) (—nyq)p g G)HETRmrelk (g _ gyhgh _
(I+a;q)e (Lig (I—qr
= Ex(2)(q" Dy + {a+ nky)

Bl
I 3
(=

n—1

Z (14 05 )ns (= + L q)y g (IR FR=DRak () yhgh
< (Ltagh  (Lagh (1—gm!

A calculation shows that RHS=F1(x) X

A (L gl (—nt 1 g g YRR Dek g ykgh

{a +n}qz

—~ (Itaqgr  (Lagk (1—gt
+qn+ax
nzl (I+aqna (=n+1qx qf(g)%?*k(”’l)*ak(l — k(1 = ¢F)at !
P 1+ a;q)k (1;q) (I —g)
(L s (ot Lgeg TRk gyhat B (—a)
—~ (Itaqgr (g (I—g) ! !
(66)
We must prove that
1— qn+a < n; q>k q 2 + +kn+ak(1 q)k B
(I+aq)e (L) (1 —q)r
2
1— qn+a <1 —n; q>k q%fgﬁ»knﬁ»ak(l _ q)k+
(I+aiqye (Lghw (1—g"
2
qn+a <1 —n; q>k q%fgﬁ»knﬁ»ak(l _ qk)(l _ q)k (67)
I+aqr (L (1—g"

B qn+a <1 —n: q>k 1q 2 2+kn n4ok— a(l _ q)k
I+agra (Lgra (I—qm ’
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which implies that

1— qn+a 1— qfn B qfk(l _ qn+o¢) 1— qkfn qn+a7k(1 _ qkfn)
I—gra 1—gbF  1—gth  1—g 1— goth 7

which is easily checked. 0

The following theorem is a g-analogue of Chak [9], see also Chatterjea
[12].

Theorem 3.3.
L (x) = 272" LB (2)(2® D) a L By (—x). (69)

n,q,c 7
Proof. The theorem is true for n = 0. Assume that it is true for n — 1.
Then we must prove that

k

k4 kn+tak 1— k
( Q) T _ xfafnflEl(x)xZX

" (1t o) (—m g g7
;;ﬂ+aw><L® (I—gn

D Z 1+a qn 1< —n+1; q>k qJQ‘—M(n 1)+ak(1_q)k kto+tn

X
(It (g (I —g)t
X Eq(_ )
(70)
A calculation shows that RHS=
Sf<1+mq%]<—n+1wﬂx
— (L+ogh  (Ligh
q%‘—’wk(nq)wk(l — g)kak
X =gt {k+a+n},(1+ (1 —qgx)—x)
<1 + q>n <_n + 17 q>n71 7-°2—77-°+n?+om n
= - q ? z 71
n—1
1+Oé e n+1 3 +kn k+akxk .
+Z q) 1< q>kq - (1—qk++)—
(It (g ﬂ—@
+kn+ak k
Zl+04q < n+1Q>k 1q2 kx — LHS.
—~(Itoge1 (Lorr  (1—g"
O

The following theorem is a g-analogue of Chatterjea [10] and a gen-
eralization of (69).
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Theorem 3.4.
ngag c( ) _ $7a7n7kE%($)({1 o ]{Z}qLE + ql k 2D )n a+kE ( ) (72)

With the help of (69) we can prove a g-analogue of a bilinear gener-
ating formula for Laguerre polynomials of Chatterjea [12, p.57|.

Theorem 3.5.

D AL @) LY () =

n=>0

[e'e] (_1)r+sxrys . tqr+a+s+ﬁ

Eé (Z’)Eé (y) T;) {T}q!{s}q! SQSO(OO? r a, —S§ 67 |Q7 1 — q )
(73)

Proof

©  —a—1
LHS =S"2

[o ) [o )

n ( 1)T a+r7n+1
"(y0s)
: z; i

( 7041751

= —1 s—n —a—1, —8—

> ({S}), y e = B (a )E%](y)x ly o

s=0 q

AR Y Ok |
{r+a—n+1}, 27"

2 T 2 q

o0 1)s et (_1)r+sxr S
S et o s = e DB 3

= (=r—a,—s = 3;q)n =2(5)+n(atr+B+s)
E 2 t" = RHS.
Laad—gr !

(74)
0

By the same method, we can find a g-analogue of a bilinear generat-
ing formula for Laguerre polynomials of Chatterjea [11, p.88].
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Theorem 3.6.

io: <<17 v Q>n($yt)n L(a)(x)L(ﬁ)(y)

“{a+ 1,0+ Lig, ™7™

Il
&=
Q=
—~
&
e
&=
Q=
)
<
e
X

0 -1 H»sx s
Z()—y Ga(v, o+ r+ 1,8+ s+ La+ 1,8+ g, xyt).

2

(75)

Proof.
(1,7;q xot ) I

LHS — Z a+1 ﬁ+1 PRCETHIE B (@)(2” D) s Ey(—2) X
y’ﬁ’lEg( )(y Dyy)"y"  E(—y)t" = Eg(x)Eg(y)x’“’ly’ﬁ’lx
- (1,7 q)nt" . a+r+1 n . =0
nz a+1, 6+1 @)n({n}q!)? — {r}! (v62) ;{s}q!x
P = B () Y iR q>” y U

st LA+ Laa({n})? = {rids)d!

n—

(DT
{r+a+1tnds+8+1t,=Ei(z)EL(y)
! T Z:O I shd
- 1 1;
Z (vvatr+L,B+s+ g " (oyl)" — RHS.
= (La+ 1,8+ 1)
(76)
O
Put v =+ 1 in (75) to obtain
Theorem 3.7.
o LDt @)
A L) ()L Ex(
nz% (a+Lghn na(?)ln(W) = B1(0) (t@)p41 4 Z RGITH! tq[’“

X 1¢2(ﬁ + S + 1704 + 1|q’ —xt(l o Q)q1+a||—7 qﬁ+s+1).
(77)

X
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Proof.

> N o0 1)r+spr
> fa s Tog, B0 = BB ) 3 T

[o )

api(a b+ 154 s+ Lt g t) = Eu()E(y) >

r.s=0

( 1)r+sxry

st
2b2(B+ s+ 1, —ria+ g, tg® ™ | =t ) =
—y)° o ()"
X
Z « {s}4!( tqﬁ“ Qs z; {r}!
202(B+s+1,—ria+ 1|q, tqa*’”“ll—; tg®tt Yy = Bi(x)Ea(y)
q q

1 ¢ N (=) = (B s+ L -1
Z{8} tqﬁ+1 Z{}'Z (La+1;q)

1
(t; @) prst1

»QIH

tQﬁ+1

t7 Q)5+1
y (—1)kq (5)+hlatr+1) _ B Z —y)*
(tg?t=T1 ) 5 tqw {5} tqﬁ“ Q)s
1 1 k k 1 — k k2 +ka

o e e

—~  (La+1iqu (tg* =1 q)x
(78)

O

Put = a and v =« + 1 in (75) to obtain the following g-analogue
of the Hardy-Hille formula

Theorem 3.8.

> Ei(x)E1(y)
o g O =
0 —) (—=2)" 1— katk ak+k2
3 (=) ( ) (=) (zyt)q

{s}! {r}g! (La+ ;@) u(ta® Y @) ronrs

T

s,7,k=0
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Proof.

L@ (VL) () —
Z Oé+1 q nq( ) n,q(y)

n—

-1 7+s
Ei(z)EL(y) Z (),—“{2@(@ +r+lat+s+liatl|gt)=
HBW 2 T T

_1 r+sxr s
Eé(x)Eé(y) Z ({r})q!{s}qg{ (tQQ)a+r+s+1 8
(@) B (y) & (—z)"

X
t Dot = Akt q),

r,s=0

2¢1(_T7 —S5 + 17 |Q7 tqa+r+s+1) —

2¢1(_T7 —S5 + 17 |q’tqa+r+s+1) —

Z {S} tqa+1+r )

El( ) (y) &
(t; Q)a+1 Z < {r}q!( tqa+1 Z {S+k} L 7 Qherr |

)s+k

<_S —k,—r; q>ktkq(a+r+s+1)k+k2 _ Eé (LE)E& (y) - (_x)r «
(Lot Ligh Qa1 =}t q),
L (=) (yt) (1 — q)s+k<_T;q>kq(a+r)k+§+§ B Eé (x)Eé(y)

S Las(Lat La(tg™ 75 ) (t: @at

X (—y) (=) (1= @) (ayt) gt
s,nzk:o {sta! {r}e! (La+ L @n(te™ ™ q)rianss
(80)

O
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