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¢-ANALOGUES OF SOME OPERATIONAL FORMULAS

THOMAS ERNST

Abstract A g-analogue of the Hérmander [35] vector notation for
partial derivatives is invented and the corresponding Ward- and Jack-
son ¢-Taylor formulas are found and extended in a natural way. The
Ward [65] g-addition is extended to g-shifted factorials and the corre-
sponding ¢-Taylor formula is found. The Cigler [13] ¢ operator plays
a crusial role in the process. An attempt to present a g-analogue of
holomorphic functions in n variables is made.

We find g-analogues of some operational representations for polynon-
ials from W.A. Al-Salam [3]. Whenever possible, for every g-analogue
we will make a reference to the corresponding equation there. By coin-
cidence, some of our formulas appeared with different notation in [1],
and we will mention the corresponding equation there too. We will
find multiple g-analogues of many formulas in Carlitz [11] and a few
examples of commutative g-difference operators in the process. Then
we try to generalize further to g-analogues of Manocha and Sharma
[49] formulas for Jacobi polynomial. A field of fractions [29, p. 183] for
Cigler’s [13] multiplication operator is used in the computations.
Keywords: vector notation, Al-Salam operator, Gould—Hopper for-
mula, Ward ¢g-Taylor formula, Jackson g-Taylor formula, Ward—AlSalam
g-addition, Jackson-Hahn g¢-addition, field of fractions, Carlitz Ro-
driguez operator, Manocha and Sharma Jacobi polynomial formula

1. INTRODUCTION AND NOTATION

Definition 1. The power function is defined by ¢* = e®°9(@) . We always
use the principal branch of the logarithm.

The variables a, b, c,aq,as,...,b1,bs,... € C denote parameters in
hypergeometric series or ¢-hypergeometric series. The variables
1,7, k,l,m,n,p,r will denote natural numbers except for certain cases
where it will be clear from the context that ¢ will denote the imaginary
unit. In the whole paper, the symbol = will denote definitions, except
when we work with congruences.
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2 THOMAS ERNST

The g-analogues of a complex number a and of the factorial function
are defined by:

(1) {a}, =

a

—q
T g € C\{1},

n

(2) {n}s!= H{k}tp {0}!=1 ¢q€C,

k=1
The g-shifted factorial (compare [28, p.38]) is defined by

1, n =0;
(3) (a;q)n = ﬁ
(1—-¢"t) n=1,2,...,
m=0

The Watson notation [26] will also be used

1, n =0;
4 X L= n—1
) (a:9) H(l—aqm), n=12...
m=0
If we work with operators, the definition will be changed to
n—1
(5) (a:q)n = [[ (I = ag™),
m=0

where I denotes the identity operator.

Furthermore,
(6) =[](1-ag™), 0< g <1.
m=0
(7) (a;q)agm a%q—m—a’mzo’l’””

(ag™; @)oo’
We will use the following abbreviation
A
(8) ((@):q)n = (a1, ... an;9)n = [ [{ajiq
j=1
The following notation will be convenient.

Definition 2.
(9) QE(x) = ¢".
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Definition 3. In the following, % will denote the space of complex

numbers mod ligiq. This is isomorphic to the cylinder R x €™, § € R.
The operator

. C C
gy S
7 7
is defined by
T
(10) a»—>a+logq.

Furthermore we define

(11) (a; @)n = (a; @)n-
By (10) it follows that

n—1
(12) H 1_|_qa+m
m=0

where this time the tilde denotes an involution which changes a minus
sign to a plus sign in all the n factors of (a;q),.

Furthermore we make the convention that the ™ operator is always
related to the base ¢ as will be important in (32). Since products of
g-shifted factorials occur so often, to simplify them we shall frequently
use the more compact notation

(13) <CL1, ey Qg q = H aja
=1
The g-hypergeometric series was developed by Heine 1846 [34] as a

generalization of the hypergeometric series.

Definition 4. Generalizing Heine’s series, we shall define a ¢g-hypergeometric
series by (compare [26, p.4]):

- IS ~ di,...,d
p¢r(a1>--'>ap;bla"'>br|Q>z) = p¢r|: bA’ ’bAp |q,Z:| =
1yee-,0p

(o)

(14) 3 (@1, pi ) (_an(g)}l“‘p )
— (L,b1,...,br;q)n

where ¢ # 0 when p > r + 1, and

(15) = {ff
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Remark 1. In a few cases the parameter a in (14) will be the real plus
infinity
(0 < |g| < 1). They correspond to multiplication by 1.

Remark 2. The parameters d; and b; to the left of | in (14) are thought

to be exponents, they are periodic mod ligz.

The following simple rules follow from (10). Clearly the first two
equations are applicable to g-exponents. Compare [61, p. 110].

~ —— 271
(16) a+b=axbmod m’
log q
~ 27
(17) atb=a+bmod ,
log q
(18) ¢" = —q",
where the second equation is a consequence of the fact that we work
d 271
loggq®

Definition 5. Further generalizing (14), we shall define a g-hyper-
geometric series by

ot Orarr (A1, ooy dpy by, bRl G, 2] 51,0y Sty e ) =
CLAl,...,CLAp S1y--., Sy
A A~ Z pry

P+p/¢r+r’ |: bl,..-,br |Q> || tla---atr’ :|

(19) _ - (15 Q) - - - {Gp; q)n, iy (2) T+r4r/ —p—p'
;%ﬂ@>@;mnwhmnhl)q} X

P’ !
n . -1
z H Sky 4 H tkaQ)n ;
k=1 k=1

where ¢ # 0 when p+p' >r 41"+ 1.

Remark 3. Equation (19) is used in certain special cases when we need
factors (¢; ¢),, in the g-series. One example is the g-analogue of a bilinear
generating formula for Laguerre polynomials.

Ezample 1. The following equation is a g-analogue of [31, (2), p. 98],
originally due to Gauss.

—_——

(1, 1+ 55 0)n (15 q)n
(2055 @)

1—n 1, 2utn)y

(20) 261(= 3,
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Definition 6. Euler found the following two g-analogues of the expo-
nential function:

(21)
. g ) = A _ 1 ;
eq(2) = 1¢0(00; —|g, )_;u;m GO 1z <1, 0 < |g| < 1.
(22)
6%(2) = o0¢o(— —lg, —2) =

(—219), 0 <|q| <1

If |gf >1,0r 0 < |g| <1and |z| < |1 - | ! the g-exponential function
E,(z) was defined by Jackson [36] 1904, and by Exton [22]

(23) ZOEOM it

By the Euler equation (21), we can replace E,(z) by
1

(2(1 = 9q); 9o

So by meromorphic Continuation the meromorphic function m,

el =gl <1, 0< gl <1

with simple poles at — — k € N, is a good substitute for E,(z) in the
whole complex plane We shall however continue to call this function
E,(z), since it plays an important role in the operator theory.

Definition 7. There is another g-exponential function which is entire
when

0 < |g| < 1 and which converges when |z| < |1 —¢|7'if || > 1. To
obtain it we must invert the base in (23) ie. q¢— %.

2 Bl Z {k:}q

The following equations obtam:

(25) Eq(—z)E%(z) = 1.
(26) Df;Eq(az) = d"E,(a2).
(27) Df;E% (az) =a q( )El (¢"az).

Because of the last two equations, the functlon E,(z) is easier to handle
than EF1(z).
q
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Definition 8. The operator

= C C
n .= F— =
Z Z
is defined by
2mim
(28) a—a+ :
nlogq
The following simple rules follow from (28).
T m, 27
(29) na+b="(a=xb) mod 102261’
(30) Y %/i\; :zn:ia mod 2mt
k= k lqu’
k=1 k=1
m 2mim
(31) QE(w?) = QE(a)e™ ",

where the second equation is a consequence of the fact that we work

271
mod o

As before, we make the convention that the
related to the base q.
Furthermore,

m
n

operator is always

Theorem 1.1.

(32) (@ °)n = (Ta,7a; g),.
Definition 9. Let the g-Pochhammer symbol {a}, , be defined by

(33) {atng = 1:[ {a+m},.

An equivalent symbol is defined in [22, p.18] and is used throughout
that book. See also [4, p.138].

It turns out that g-addition is the natural way to work with addition

for the function argument in a ¢-hypergeometric series.
The Ward—-AlSalam g-addition was invented by Ward 1936 [65, p.
256] and Al-Salam 1959 [2, p. 240]

(34) (a @y b)" = Z (Z) a" " F n=0,1,2,....
q

k=0
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The Jackson-Hahn—Cigler (JHC) g-addition, compare [32, p. 362] ,
is given by
(35)

eyl =) (%) (n> &) yrart = a2 g), n=0,1,2,....
k=0 k/q v
Theorem 1.2. The Ward-AlSalam q-addition (34 ) has the following
properties, a,b,c € C:

(a®,b) Bc=ad, (bs,c)

a®,b=0bd,a

a®,0=0dsa=a

cad,ch = c(a @y b).

(36)

Proof. The first property (associativity) is proved as follows: We must
prove that

(37) [(a@qb) Dy " = [a®, (bDy )"

But this is equivalent to

n k
Z (n) Z (k‘) alpp—lean—k —
k=0 k/ 1=0 ¥
n n—k’ _ / o
— Z (Z/) a Z (n p ) b=l
k'=0 q q

I'=0

Now put [ = k" and " = k — [ to conclude the proof.
The proof of the distributive law is obvious. 0

Definition 10. [65] If F'(z) is the power series >~ a,z",

(39) F(z®,y) = ZanZ( )

(40) Flo £y, = i a k; ( )qq@ yrank,

n=

Ezample 2. A g-analogue of Gauss [27, p. 127, (2)], [8, p. 23].

nl—n 1 9 on—1

(41) (Tdga)" +(1eg2)" =2 4d1(—3 5 "5 OO,OO;§|C]2 o).
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2. ¢-TAYLOR EXPANSIONS AND ¢-DERIVATIVES

In this chapter we will study ¢-derivatives in n dimensions and the
corresponding ¢g-Taylor expansions both for functions defined by power
series and by sums of inverse g¢-shifted factorials. Future applications
for g-functions of many variabels [20] are likely. The Hérmander [35]
multindex notation will be used. Because the x [35] notation will be
used in the next chapter we will change it to 2 here. We shall conclude
by presenting a g-Taylor formula with a remainder term expressed as
g-integral [18] which generalizes a result of Jackson from 1909 [40].
In 2002 Rajkovi¢ & Stankovié¢ & Marinkovié [54] generalized this to
a formula with a Lagrange remainder term by using a ¢-form of the
generalized mean value theorem for integrals [54]. We will generalize
this further to n variables.

Definition 11. [14] Let ¢; denote the operator which maps f(z;) to
f(gjz;) . If there is only one variable, we simply write € like in the next
chapter.
The following notation [14] is equivalent to the JHC g-addition.
n—1
(42) P, (x,a) = H(x—aqm) =[rxaly, n=1,2,....

m=0

Definition 12. In 1908 Jackson [39] reintroduced the Euler-Heine-
Jackson g-difference operator

domeen if g e C\{1}, = £0;

(1-q)x
(43) (Dgp) () = { () ifg=1;
2(0) if £ =0

If we want to indicate the variable which the ¢-difference operator is
applied to, we write (D, .¢) (x,y) for the operator.

Remark 4. The definition (43) is more lucid than the one previously
given, which was without the condition for x = 0. It leads to new
so-called g-constants, or solutions to (D,p)(z) = 0.

Definition 13. In 1994 [15] Chung K. S. & Chung W. S. & Nam S. T
& Kang H. J. defined a new g-derivative as follows:

Theorem 2.1. This q-deriwvative Dg, satisfies the following rules:
(45) Dg(z g a)" = {n},(z @, a)n_l-
(46) DgEy(x) = Eqy().
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eq(2)

1—q

Proof. The first equation is proved as follows:
(B, 0 &y a)" — (v B, a)"

(47) Dageq(x) =

lim =
dx—0 or

(48) lim ZZ:O (Z)q Zf:o (I;)q w'ort~la"F — Z:Z’=0 (IZL’)q an _
dx—0 ox -

{n}q(x @, a)n_l-

O
Theorem 2.2.
(49) Dga® = {a}a®,
just as for the q-difference operator.
1

(50) Dyt — 1k

(@ @)a (T @)at
just as for the q-difference operator.
Proof. Use the ¢g-binomial theorem. O

Definition 14. The notation ) . denotes a multiple summation with
the indices my, ..., m, running over all non-negative integer values. In
this connection we put [m| =377, m;.

If 17 and k are two arbitrary vectors with n elements, their ¢-binomial
coefficient is defined as

& (5),=11(2),

Jj=1 j
If {x;}7_, and {y;}7_, are two arbitrary sequences of complex numbers,
then their scalar product is defined by

(52) Y=Y sy
j=1

The partial g-derivative of a function of n variables is defined in the
spirit of Hormander [35, p. 12].

(53) DyF(Z.q) = | [(Df ) F(&. -

j=1

' — a tiN; -
(54) (Dgse) F(#,@) = [ [ (D, 0,67 )" F(Z, ).
j=1
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In the same way we define vector versions of powers, ¢-shifted factorials,
g-Pochhammer symbols and JHC g-additions.

(55) =11,

(61) (—1)F = (-1,

(62) PE@(£> Zj) = Hij#]j (x% yj)'

j=1

Closed and open intervals are defined by

(63) (@b = [ [la.b;)-

(64) (@) = [J(a;.05).

Jackson [37, p. 145], [38], [41, p. 146] has shown certain connections
gzt ®)

between power series in z and series of the form ;7 o

, where
f(k) is an integer-valued function.
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In 1921 Ryde [56] showed that certain linear homogeneous g-difference
equations have series
o)
> G
-1
k=0 (l’, q )k
as solutions.

We need a g-analogue of holomorphic functions, which will be useful
to characterize the functions to the far right in operator expressions.

Definition 15. I:I)q;n denotes functions F'(¥) of n variables which can
be written as an infinite series

oo —
—\ — A= E — > — N
F(:U) = E €T akw, Where O[E, 61‘5, 7,‘5, (5E € Cn
P G ) S

When n = 1, we just write H,.
If the function is defined in an open region O, we write Hz,,(O).

Definition 16. The generalized (noncommutative) Ward—AlSalam ¢-
addition, is the function

(65) <x@q,ty>nzz(“) - (), 01,2,
q

k=0 k
Definition 17. The generalized JHC ¢-addition, is the function

n

(66) [vxyly, = Z (Z) x"‘k(iy)kq(§)+t("'€_(g)), n=20,1,2,....

k=0
Following Hahn [32, p. 362], we will denote the power series F'([x+y],+)
by Flz + ylg.

Ezxample 3.

(67)  (Dgeh)t S~ 2t = i “’f*m‘/”anE (tk:(m +1) +t(§>) .

(68)

2
[1(Dyypci Verda(as by e, g 21, 22) =

j=1
(a,b;q)n{c+ N — ko Q)i (¢ + N — ki3 @)y
(e,c;q)n(1 — )N

{a+ N,b+ N;q)my4ms g A -
E Mt 2QE | tmk +t tk
<1>C+ kl;Q>m1<1>C/+ k2;Q>m2 e Q - 2 - ’

m1,m2=0
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where N = ky + ks, tmk = tymyk, + tomakso, and (compare [20])
(69)

Dy(a;b;c,c|q; w1, ) = Z (a,c‘?mﬁm( @)y +ms xtan.

(1 @ (15 @) (65 @) (5 @y

Definition 18. The following notation for power series

()
. —
2 T

m1,m2=0

k=0
will also be useful.
(70) F(I®7y) = F(r1 Og Y1, - -5 Tn D, Yn),
(71) FIZ+ g = Fle1 +yilgs - [2n + Ynlan),
(72) FlZ+ §lg = F(lor + yilarss - [on 4 Ynlgnn)

There are at least three g-analogues of the Taylor formula known
from the literature. We list them here and give a few others, which are
generalizations to n variables.

Theorem 2.3. The Ward g-Taylor formula for formal power series.
(65, p. 259].

(73) Flz ©4y) = Z{}‘

The first Jackson q-Taylor formula [40, p. 63]

(74) Z {n} ‘qD”F y).

The second Jackson q-Taylor formula [42, (51, p.77)]

(75) Flz+yl, = Z

Theorem 2.4. The Ward g-Taylor formula for functions of n vari-
ables. Let F(Z) be a q-Kampé de Fem'et function [20], or more gen-
erally, a formal power series Y . dzZ™. Then (compare [35, 1.1.7° p
13))

(76) FEog) =Y 2
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Theorem 2.5. With the same prerequisits as above,

= kg (3)

{k}

We will use a kind of umbral calculus.

(77) FlZ+yly=

D(MF(f).

Definition 19. The two g-additions for ¢-shifted factorials are defined

in the following way. If F'(x) is of the form F(z) = >, T then
78) Flrd,y) = G, (> ,n=0,1,2,....
(78) Fle &) ot ; k) o (@5 @ k—n(y; @)=k

(79)

Flessul = Z% " ;(i)k(z)qq(g) (@; q)k—i(y; D b2

The following two notations for g-shifted factorials will be used.

(80) F(f@igj) EF(xl @lh ylw-'?xn @Qn yn)>

(81) F[f+ﬂ5£F([xl+y1]q1>"'>[xn+yn]qn)>

Theorem 2.6. The Ward q-addition (78) for q-shifted factorials is
associative and commutative.

Proof. Same as for power series. 0

Theorem 2.7. The Ward q-Taylor formula for q-shifted factorials. Let
Fy.(x) be of the form

(52) Rr)= Y i
Then
(83) Folryy) =3 T2 py
0 (T Wy y) = Z {k‘}q!(y; q)_quFk(x)
Proof.
> " /m 1

e = n;am,; (k‘)q N
i N O A T

2%( k{k}q'z @ em
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Theorem 2.8. Two q-Taylor formulas for functions in q-shifted fac-
torials of n variables. Let Fy(Z) be of the form

(85) Fe(#) = and k(f—
Then

(86) Fy(Feg)) =) ~————

& ) Ly 1 _
LHS = Z mz (;Z)@(f;cj)k:m(ﬁ;@_z

—’}k > km

— D) Ry T

(88)
= RHS.

l
M
;

O

Theorem 2.9. The extended Ward q-Taylor formula for formal power
series, where (39,) and (40 ) have been extended in a natural way.

(89) Jf @qt y

0

o (F)" n n
(90) Flot e = 30 i (Do) Fe)g).
n=0
Theorem 2.10. The extended Ward q-Taylor formula for functions of

n variables. Let F(T) be a g-Kampé de Fem'et function [20], or more
generally, a formal power series ) - Gzx™. Then (compare [35, 1.1.7°

p. 13])
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Theorem 2.11. With the same prerequisits as above,

S o) Ro(h)
(92) Fl#+ 74 = Z %

In the rest of this Chapter we assume that the function f(¢,q) and
its vector version f ( q) satisfy certain restriction of growth given in
Walliser [63] and [64], who improved a result of Gelfond from 1933.

Theorem 2.12. [18] Let 0 < ¢ < 1 and let f(t,q) be n times q-
differentiable in the open interval [a,z] x (0,1). Then the following

generalization of Jackson’s formula holds form =1,2,...:
(93)

E —
(Dq‘,f =) F(Z).

Pk{zj ,a fof)(a,q)Jr/t: }?;;q—%?(Dgf)(t,q) dy(t).

Proof. Use g-integration by parts. 0

Rajkovi¢ & Stankovi¢ & Marinkovi¢ generalized this to the Lagrange
form

Theorem 2.13. [54, p. 176]. There is a unique ¢’ € (0,1), such that
for the function f(x,q) defined on [b,c] x (¢',1) , and z,a € (b, c),
&€ (b,c) can be found between x and a which satisfies

(1) Z Pk{;f Dol 0) iy a0, g) + %ﬁﬁ)wwg, )

This can be generahzed to

—,

Theorem 2.14. There is a unique cf € (6 1
f(#,q) defined on [b,dx (¢, 1), and ¥, € (b,
between T and d which salisfies

, such that for the function
d), € € (b, @) can be found

@l\_/

lp(Fd) T S
@) -3 R ohag + B
F=0 7 -

Remark 5. For practical purposes it suffices to study functions in I:I)q:n,
which can easily be ¢- differentiated.

3. ¢-LAGUERRE POLYNOMIALS AND AL—SALAM OPERATOR
EXPRESSIONS

Operational formulas were often used with big success in the theory
of classical orthogonal polynomials and Bessel functions [30]. The re-
sults herewith obtained are both theoretically of a certain interest, and
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also give important other formulas. The present paper is the first one
in a series which tries to shed more light on the mysteries of so-called
g-analogues of operational formulas. As Fujiwara [25] showed, the most
important property of the Jacobi, Laguerre and Hermite polynomials
(JLH) is the generalized Rodriguez formula. There are basically three
different kinds of methods to treat orthogonality.

(1) Three term recurrence theory (Favard theorem)

(2) Rodriguez formula and integration by parts [21].

(3) Self-adjoint differential equations with boundary conditions (A.

Krall and P. Lesky).

The classical JLH have many things in common as was beautifully
explained by Feldheim [24]. If we have an equation for the Jacobi poly-
nomials, we automatically get a corresponding formula for Laguerre
and Hermite.

In this paper we will be working with two different g-Laguerre poly-
nomials. The polynomial L%Ofg,c(x) was used by Cigler [13].

Definition 20.

= +a\ {n},! ;2
L@ EE: n Aq Kok q )k k
n,q,c(x) e (TL - k)q{k}q'q ( ) T

. . K2k 4kt ok ko ke
1+aaQ>n<_n7Q>kq 2 (1_Q) x

&
09 =2 Trarg o T=qr
_I_

The Al-Salam ¢-Laguerre polynomial [1, p. 4] L%Ofg (x) is defined as

follows. Except for the notation, this definition is equivalent to [50],
[26] and [60].

(a)
Oé) ) = anqvc(x)
(97) L) = Zp

n7q
Remark 6. In Koekoek & Swarttouw [47] the ¢-Laguerre polynomial is
defined as

(a+1q)n
— 1
(Lg)n
In the literature there are many definitions of ¢-Laguerre polynomials,

but most of them are related to each other by some transformation.

(98)

o1 (—n; o+ g, —zg" ot

The following formulas are useful.
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Theorem 3.1.
1
(99) D! _ taby
(T:¢0)a  (#5q)an
r1(a r oart (Tt r a+r r
(100) DrL) (z) = (~1)y7g* (2 G LA (2gr),

(101) (Dye )L () = (~1)"LLFY (2)QE ((Z) + na) .

(1+e)(k=1) [ L\ |

(102) ph—— -1 __ (£},
L—zgi+e (g% @)

Definition 21. Multiplication with x will be denoted by x. Multipli-

cation with 1 + 27 in numerator or denominator will be denoted by
1+ x.

, k>0.

Remark 7. This is an extension of Cigler’s [14, p. 24| definition for
multiplication by powers of z, which can be transformed to the original
definition by the g-binomial theorem.

We will use the following two operators operating on H, as a basis
for our calculations; the special case & = 0, ¢ = 1 was treated in [3,
1.1]. A related operator was used in [1, p. 4 (2.1)].

(103) Opo = 2({1+ a}, I + ¢ T xD, ).
(104) Pyo =y({1 +atel + q1+aqu,y)-
From this we obtain [3, 1.2], [1, p. 4 (2.2)]
(105) 0 (27) = 27T {1+ a+ Bl
We obtain by induction [3, 2.1], [1, p. 4 (2.5)]
- - i+ l.n @

O o =" | [{d + Yol + ¢ TaD,) = (1—q) (€1¢' "5 q)n =

(106) =
z" n Btk(1+) k
=20 ()) alo

(1—a)" = k/q

Theorem 3.2.

n 1 _ z" - k(T (5)+k(+e)
(S P e e P D ( )qq

Xk:(—l)l(IDQ oL n_k(—l)m(”q;k‘)q g(3)+mk+8) pm

=0

(107)

—
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Proof.
(108)
" - n k 1
LHS — (_1)k( ) q(2)+k(1+a)— _
1—q) & k), (2q%;q)s
TN n) (ke @O Dk
1—q)" & kJ, (@ @) pn
O]
The following special case applies.
Theorem 3.3.
1 n

(109) o - _F(2)

N25Q)a (%5Q)aqtn

where F,(x) is a polynomial Y ,_, ay ,a* with
(110)

aom = {140} ngs a1n = =4 ({240 ngs ann = (=1)"g1 " !
Proof. Assume that the theorem is true for n — 1. Then
(111)

1
QZQ =
(75 q)a
n n—1 n oat+n n—1
T k rq kE k
Agn—1T — Ak n-1T ¢ .
(1 - Q) (l’, Q)a+n—1 =0 (1 - Q) (l’q, Q)a+n—1 =0
We obtain
(112)
a+n—1 @ n—1
q q“(1—q"")
A1y = — {I+atp1y——F—{2+atio,t
1—q T (1—9g)? !
a+n 204+n+1 n—1
q q (1—q"")
I+« n—l,‘l’ 24+« n—2,g —
1 — q{ } q (1 - q)2 { } q
2 —I—OZ n—2, qa a+n n a+2n fe
A ! (1= "™ = "+ ™) = = {n} {2 + g
(1-1q)
The formulas for ag, and a,, are proved in a similar way. UJ

If F(x) and f(z) are formal power series we obtain the following rule
3, 2.2][1, p. 4 (2.6)].

(113) F(040)2° f(x) = 2°F(0g.0) f (2).
The Leibniz rule is [3, 2.4, [1, p. 4 (2.3)]
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Theorem 3.4.

(114)

n o o . n a)(n—7j ] n—7j n—7j

o (2 f(2)g(x)) = Z(j) Q)= (g3 =3 () (6= f (1)),
=0 q

Proof. Put f(z) = x7""172¢ g(x) = 2""**. Then we must prove that

(115)

amt? ;(—Uk (Z) (—n = a;q)nr(—=F — 200 = n — k; q)xx

q

QE((S) +(1+a)(n—k:)+(n—k)(n+ﬁ+a)+k(1+n+5+2a) _

"B+ B4 a; @) g™ I,

However, this follows from a simple change of varibles in the following
result of Carlitz 1948 [10, p. 988], [18] :

Z(—D"(ZZ) ¢ @+ 1)l — G+ 1= 0+ mi ) =

n=0 q

(G—m+1;q) g™ =™ 2 €C, j<m.

(116)

O

Remark 8. Equation (116) can be extended to arbitrary j € C [51, p.
110].

The previous theorem implies the g-analogue of the corrected version
of [3, 2.5]

(117)
Ey(t0g,0) (' f(2)g()) = '

T e o) Tyt (1)

= 2B (g 0g0.0¢1)9(2) Eq(tq" " Og0,p) f ().
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Proof.
(118)

LHS = E,(10,,)("* f(z Z {k}q, O o(x' 7 f(2)g(2))

- MZ {j}j{’f" y}q,q“*“)(%}a 9(0) (05’ ()

tjqj(1+a

”MZ G et 2

J=0

0l . f(x) = RHS

Z}'
O

Definition 22. Compare [46, p. 87]. If v(z) is the power series } 7 a;a’,
we define

(119) Vg ([1%]) - : (jjgg

J

We obtain

Lemma 3.5.

020)  E(,0)(000) = o ()

(tw;q trqot]

Proof.

pxe w14 a4+ 1
LHS = Z{k}l qazalx - Zt Z 190 e

(1 l
S a3 2 A+o+bgr
= 1 1 = 1
Z az! = ar!———— = RHS
T (15 Qe (125010 & (896Q)14a

We obtain a g-analogue of the corrected version of[3, 2.6].

I5)
X
121 B (0, )1 = — =
(121) o(tb.0) (t2; 4) 1140
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Proof.
LHS = E,(t0,0)x 1o
(122) . R0 ]
=3 AL q>k=—x — RHS
— (1 {tz; ¢) 4110
0
By the lemma we get
Theorem 3.6. A g-analogue of [3, 2.7]
e x
123 E,(t0,4)7"v(z) = :
(123) oy )"v(z) (0 Q)prars ([1—3%615*“*1])
Proof.
LHS = E (t9qa)xﬁv(x)
1+a
_ 4o Z Z l ji(B—a-1), B—a—1
x q x
K
2T : o
o () o
= Z {} |9¢J1a( v) q(wq,a)xﬁ !
(124) =0 WJid
= 2B, (tq 0, 0)vE, (t0,4)2° 7!
_l.l—&-a 1 v o lﬂ ol
T (g e T\ [~ teg®re1] ) (tr; )
2 x
(2 Q) prars ( [1- twqﬁ*““])
0
Theorem 3.7. A g-analogue of [3, 2.8]
(125)
tr
pr((@); (0)]q; t0g,0)x” = 27 p 11011 ((a), v + a+ 1; (b), 00|g, qu)’
Proof.
(126)
r—p L4+ a+7 )k
LHS = (1+7” p)(—1)'F 1 k(14r— p)tk ’y+k< )
Z =1) (1-q)"*

O
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Corollary 3.8. [3, 2.9]
p0r((); (0)]q; 10q.0)2" Ey(—2) =

(127) l»“/z%p+1¢r+1((a),7—l—a+l+l; (b),OO|C], th)

Proof.

(128)
LHS = ¢, > %

n

(- tx
—Z ) bra((@).7 0+ 35 (6). ool —,) = RHS

{n} !
O
There is an inverse operator [3, 2.11]
—1)" n(ﬁ—a)+(’5)
(129) Qq—z(x—ﬁ) — l.—ﬁ—n( ) q
7 {—a+ B}ng
Proof.
1 —03,q)_n
LHS = 9;2(1‘_ﬁ) = :U_ﬁ_”< +a ﬁiq>
(130) ’ (I—g)™
5—n(1 n (_l)nqn(ﬁ—a)—&-(g) RHS
=z = :
(8 —a;q)n
O

Theorem 3.9. A g-analogue of the corrected version of [3, 2.12]
(7) ()
8+1
(131) \laa/ A2

Y (A ta+aign n
o xﬁ—&-k—&-l ’ <1 ‘|‘ﬁ - Oé;q>k(_1)kQE (k(l +6 - Oé) + (2)) ;

where 3 —a #0,—1,—2....

Corollary 3.10. A g-analogue of the corrected version of [3, 2.13]
(132)
Dy Yy’
P¢T(( ) ( )|CI> q ) 5+1

)
Y ly —a
= —gratrn((@),a + 9+ 1;(0), —a + 3+ 1,00lg, —¢"77%).
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Proof.
5
Opa’ \ 2BH1

a)7q>k k y5 1—r—p (®)(1+r—p) Y K
t (1) ) (2

p®r((a); (b)]g,

o)

(]

(I+a+0qk, (kf)
-1)*QEk(1+ 0 —a)+
T QB+ A —a) ¢ (,))
y5 ty 1+8—a
= —grerdra2((a),a + 0+ 1 (b), —a + F +1,00lg, —q )
O
Theorem 3.11. A g-analogue of the corrected version of [3, 2.14]
(134)
Py Y Yy’ B 1ipa
160(¢; |q,tez ) =571 = Tarede(c,ato+l; —at P+l 00l —g 7).

Theorem 3.12. A g-analogue of the corrected version of [3, 2.16]

bgar [V y 1
(135) 2¢0(00,1 — o+ flg, t=2=) ARSI B

eq,a ( q1+ﬁ a q>1+a+5
By (135) we obtain

Corollary 3.13. a g-analogue of [3, 2.17]. If F(x) € H

qr
(136)
¢qa 81 27 y
1— Fly) = F
2¢0(00, a+ flq,t 9qa) (v) (t?yquﬁ—a)pra ! 11— C]2+ﬁ]

Theorem 3.14. Compare [3, 2.18]

(137)
¢ —(1—q)t
Ey (—9—) ™ =27 (00 —a + B+ g, —( a) ¢ ).
q,x T
Proof.
n - n(_1\n n(ﬁ—&-l—a)—&-(g)

{n}q (B—a+1iq)n
0
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The ¢-Gould-Hopper [45, p. 77, 2.4], [3, 3.4] formula looks as follows:

n

1
— 5o = [[@" %D, +{a + k1) =
(139) . k=t L)
n -+ o 3 q)n o n
Z( ) .CJ qk(k+ )ZUkDf;(l _q)k .
k=0 /n'_k‘ q<17Q>k

As was pointed out in [1, p. 4], the operator 6, is particularly useful
in dealing with ¢-Laguerre polynomials.

Theorem 3.15. The following equation is a q-analogue of the corr.
version of [3, 3.9, 3.12, 3.13].

(140) 0y o Eqg(—2) = " E,(—x) L) ().

n7q7c

Definition 23. The Rodriguez operator for g-Laguerre polynomials

n7q

(141) Q0 f(x) = 2 By (@)D} (e By(~x) f(2)), f(z) € H,.

We will now give a g-analogue of Carlitz [11, p. 219] operator expres-
sion for Laguerre polynomials and an extension of Khan’s g-analogue
of this paper [45, p. 79]. It turns out that we obtain an equivalence
class of six objects for each element in Carlitz’ paper. In the proof the
product begins with £ = n and ends with £ = 1. Let’s pick out one
of the six finite ¢-products in fog Then a calculations shows that the
linear g-products commute, compare [11, p. 219].
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Theorem 3.16.
(142)

Qe =

n7q

(@1 + (1 — @)x)xDy + {a + k}, I — ¢""x)

—=

e
Il
—

(qk+axDq + {OZ + k}ql . qk+o<X€)

—=

e
Il
—

(xD, + {a + k} e — ¢"xe)

I
—=

e
Il
—

(¢ (1 + (1 = @)x)xDy + {a + k}(1 + (1 — q)x) —x)

I
—=

e
Il
—

I
—=

(T + (1 = a)x)xDy +{a+k}(1+ (1 - q)x) —x)

e
Il
—

—=

(xD, +{a+k},(1+ (1 — q)x) — xe).

e
Il
—

Proof. We only prove the first identity. The five others are proved in
a similar way by permutation of the three functions involved in the
g-differentiation. We will use [12, (13), p. 91] in the computations.

(143)
L o f (@) = e Bs(@) Dy [(1+ (1 = q)o)g" By (~a)a" Dyt
+Ha+n+1}a"E, (— ) — (2q)" O E,(~2)] f(2)

= Q) {a+n—+1}, — g™+ (14 (1 — q)z)g" ' aD,] f(z).
O
Remark 9. This was the first occasion where multiple g-analogues oc-
curred because of the ¢-Leibniz theorem. We had three functions and

got ( ) g-analogues.

Theorem 3.17. A first g-analogue of [11, (4), p. 219].

(144)  Ql)f —{n}qz{k}, LY (2)en = D f(x).
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Proof.

(145)

)1 (0) = Byle) 3 (k:) Dy @ Ey ()" DL () =
k=0 q

“ (n o o
JJ_QE%(I)Z(/’{:) 2 B (~2) L) (2)e Dl f(x) = RHS.
k=0 q

O

The following special case of (144) is a g-analogue of [11, (6) p. 220],
see also [45, p. 79].

(146) L® (z) =Q

)
n7q

1.

The following formula is the first g-analogue of [11, (7), p. 221], the
proof is the same.

(147)
m4n o min(m,n) (_x)k (atnth) ak+(k+1)+( ) (atk)
m Lm+nq( ): Z {k‘} !Lm—k,q (l’)q 2 Ln kq(xq )
q k=0 a
Theorem 3.18. A second g-analogue of [11, (4), p. 219].
(148)

—{n}qZ {k},q’f(“*’fpkq(l —(1 = q)z) L (vg") DE £ ().

Proof. We will use [12, (13), p. 91] in the computations.

(149)
O f(2) =27 Es (a:) (Z) ek DIk (204 B (—)) DE f(x) =

By () [ By (~a) L5 ()] Dl p(e) =
) o

_aE1 (
=0

Byt B (—ag®) L) (2q")DE f(x) = RHS.

n—k,q,c
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The following formula is the second g-analogue of [11, (7), p. 221].

min(m,n)
m+n> (@) (—x)*
L9 @= 3 S p (11 g
m—+n | »q
(150) ( m /, =R
a+n a+n k+1 a
LEHR (qgh)gh ottt ()4 Q) LIAm (k).

An interesting consequence of (147 ) is the following g-analogue of [11
(10), p. 222].
Theorem 3.19.

(151)
m+n (a—n) n (”) —nao (e) -« 5
L thg\2 =L 1 at _
;( m )q im0 mal® Sq1 #407) (=t ¢)-a

Proof.

7 (—x)k (a+k)
LHS = Z Z {k}q' Lm—k,q(x)
(152) QE ((a )k 4 (k ! 1) N (’;‘)) L) (ggmypng(5) e
2.2 ({k:} L (@00 T L g G e = RES,
=0 q

where we have used [19, 5.29 p. 28], (91) and (101) in the last step. O

4. q-JACOBI POLYNOMIALS

We now come to the definition of ¢g-Jacobi polynomials. In the lit-
erature there is a very similar so-called little g-Jacobi polynomial [5].
We will however use the original definition, because it leads to a nice
Rodriguez formula with corresponding orthogonality. For the orthogo-
nality, see [21] and Hahn [33].

Remark 10. The reason Jacobi’s original notation for Jacobi polyno-
mials was changed was to separate the parameters so that the weight
function has two functions one of which depends on one of parameters
and the other on the second parameter.

In the limit ¢ — 1 we get the original Jacobi polynomials [43, p.
192], [7], [6, p. 162],[44, p. 467], [23, p. 242 (1)].
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Definition 24.

@) () = LT G Da . atl-fy —
Pn,q (l’) - <1;q>n QSI( n>ﬁ+na1+a|Q>J;q )—
153 n
(153) (1+ a;q)n Z (TL> (B+n;q)k (_x)kq(g)+(a+1_ﬁ_n)k‘
(L = \k) (1+a;q)
k=0 q
Theorem 4.1.
(154) Jim P (—a(1 - q)) = L) (@)

Remark 11. The following special case applies:
- 1+ a;q)n
155 Pletten) () — q+agn Q).
(155) e ) = g
The following formula is a g-analogue of [43, p. 192 (7)], [23, p.242].

Theorem 4.2. Let x € (0, |¢°~27Y|). Then
N xr—e . l.oa—&-n
(156)  P%7(x) D! ( ( ) .

- {n}q!(ajqa-‘rl—ﬁ; Q)ﬁ—a—l x; Q)Oé—‘rl—ﬁ—n
Proof. The ¢-Leibniz formula gives

l»_oé
RHS = y
{n}o!(xq=Pt @) poan
(L a)ul1+ 0 8~ b1+ 04 Kuoggathg o

prd (L r(L; @n—r (25 0)—prathtion B

n

3 (14 o — B —n; (1l + a; g)ng™ ™

= (1 + o )r(rq 7 @ ron (L il @k
(1= B —n, = qell + a5 )ag ™GB (1

= (1,14 o3 r(zq= 7 q)en(1; @)n
(1+a;9)n
(L; @)n(zg=Protq) -y
22 (—n,—n— B+ a+ Lo+ g, zg" | = zg7" M) = LHS.

The interval for x is chosen to make certain infinite products converge,

compare [55, p. 300]. O

Corollary 4.3.
(157)

P(a 5)( "/) X Dn ( l»Oé—&-n >
e (xq’) = — .
o {n}l(xqo 718 q)p_acr T \ (2075 Qat1-5-n

n

—Q
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Proof. Same as above. 0

has n:th q-difference given by

e Br—n
(158) D;LF(ZL‘) = Z akpégk—n,ﬁk+1—2n—% ( ){n}q X

(JJ Q)"/k-‘rn ’

z € (0,|g7"™|), Vk
Definition 25. The Rodriguez operator for ¢g-Jacobi polynomials

—

T ot
— An} (g5 Q)ﬁ—a—lDZ ((ZU; Q)a+1—ﬁ—nf(x))’
f(x) € Hy, € (0,]¢°7%71)).
(160) QP =1.

Theorem 4.5.
(161)

(ayB=n+1) Hn 1—2¢* "'\ s Hn ()
Qn,é f(l’) = {k‘} Ql,q @k,q f(l’), n Z 17
k=2 q k=2

where @(O"ﬁ 1s given by one of the following six equivalent expressions.

@( > is a bilinear function of D, and ¢ with coefficients in the field of
fmctzons of C[x].

(162)

(159) Q7 f(x) =

k4o
@8 _ ¢ (1 -x)
Ote = 1 —xq2 ko> xDy + {a + kI +

qk+a{2 k+a— ﬁ}q
1— qu k+a—0

qk+a{2 —k+a-(},
1— XqZ—k+a—,C'}

"2 —kt+a—p5Y,
1— Xq2 k+a—03

={a+k}, + xe + ¢**xD,

=xD, +{a+k},e+

_ {2—k+a—ﬁ}qx+ (1 —x) XDq_I_{oz—l—k:}q(l—X)
1— Xq2—k+a—ﬁ 1— qu—k+a—ﬁ 1— Xq2—k+a—ﬁ-}

:{2_1{7“'04_5}11 i (1—x) XDq+{a+k}q(1_X)6
1— Xq2—k+a—ﬁ 1— qu—k+a—ﬁ 1— qu_k+a_ﬁ

{a+k},(1—x) _l_{l—l—oz—ﬁ}q

=xDy + 1 xq2 ko> 1 xqlte—>p
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Proof. We only prove the first identity for @(O‘ﬁ The five others are
proved in a similar way by permutation of the three functions involved
in the g-differentiation.

(163)

Q(Oéﬁ 1 — Dn
v () {n+ 1} (@q 25 q)g_a—2 !

H{a +n+ 1},2%™" N (zq)*T"*' D, n (zq)*" Ha+1-p— n}q} f(x)}
(23 9)1+a—p—n (2¢; Q) 1+0—5-n (23 @) 2+a—p—n
a+1—
e MY
{n + 1}q

(1 _ l.)qn+1+o¢ l.qn+1+o<{1 +a—03— TL}
Hl_qum_ﬁ_na:Dq%—{a%—n%—1}q+ T qumﬁn f(z)|.

The assertion now follows by induction. 0

The following generalization of (144) is a first g-analogue of [57, 2.3
p. 239], with the difference that in the present paper Jacobi’s original
polynomial definition is used.

Theorem 4.6.
(164)

« x a+1—k— [e n—
Qe f () = (g™ BT (o) R DY (),

n—=k,q

Proof.

—Q

X
{n} (g% q)g—an

a+n

n n .
Dn—k |: :| €n_kaf ) =
(165) kz:; (k)q 7 (l’, Q)—ﬁ+oc+1—n 1 ( )
1 — (n k p(atk,B+2k)
P x
T o () A

{n— kY (2q* "5 @) poanr € FDE f(2) = RHS.

O
Lemma 4.7.
(@) r _ plad) () — T
Qn7q 1 — xq1+a_ﬁ_n - Pn7q (x) 1 _ l»ql“rOé—ﬁ _I—
166 atl—Bn)(k—
( ) Zxkp(oﬁ-k ,B+2k) (a:) CI( H=B-n)(k-1)
n—k,q 1 — qu—&-a—ﬁ :
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Proof. Use (164) and (102). O
Theorem 4.8.
(167)
O N e o
Py (@) = W{aJrnJrl}qP( ) (2)+
a+n-+1 O[-I—l— _,’,L o L B (e
+ q {{n+ 1} }q Z kP7(L zlzﬁwk )q( +1—6—n)(k 1)_|_
q

—I—Pffj]’ﬁ) (:U):Uq”] )
Proof. Apply (163) to 1 and use (166). O
Corollary 4.9.
(168)
L(Oé) _

n+1l,q =
- (a _ ety (a+1) n.7(a)
Proof.
(169)

1 1 — a+1-3

LHS = lim H21 =) [{a +n+ 1}, P9 (—z(1 — )+

B——00 {n + 1}q

n

g o+ 1= § —nd, | (—a(l - @) P (—a(1 — g))
k=1

+ P (—a(1 - g))5 +;f1(1__q;1;?;_ BH — RHS.

q(a+1—ﬁ—n)(k— 1)

1+2(1—q)gtter

O

The following generalization of (148) is the second g-analogue of [57,
2.3 p. 239).

Theorem 4.10.

X a a
(170) Q@ f(z) = "0 (25 ) PO (26 DE £ ().
k=0 {k}q'
Proof.
Q(a,ﬁ) e
nr ) = {n}l(zg* =7 q)p—a1
(171) n

> (4) [ [ ] vt - s

—B+a+l-—n
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O
Lemma 4.11.
(c,8) v _ psd v
Qn,q 1 — l.ql—&—oa—ﬁ—n - qu (l’) 1 — l.ql—&—oa—ﬁ—n_l—
172 at1—B—n)(k=1) (..
( ) Zxk k(a+k) P(a+kﬁ+2k)(qu)q( H=p-n)(k 1)(5’% Q)k.
nha (g T1=P="); @)y
Proof. Use (170) and (102). O
Theorem 4.12.
1 — l.qu-l—ﬁ
P (@) = ————— ({a+n + 13,257 @)+
+la {n+1}, ( 7
atn+1 (a 3) o
1-43—
(173) +q ot " ( na ()T g
(a+1—-B—n)(k-1)
a q
+ l’k k(a+k Py(L +k,B+2k) T k y
Z DBy g (zq )(xqaﬂ = et
Proof. Apply (163) to 1 and use (172). O
Theorem 4.13.
—a—n—1 a+1
174) Pld) z 22D,)" (:::_) .
U B = e a2\ e
Proof. This follows from a g-analogue of [62, p. 220]. O]

The limit to ¢-Laguerre polynomials for the above equation leads to
19, 6.11 p. 31].

The second of the following equations shows that the operator D e~*
keeps the same function argument, while D, doesn’t. This will be
important in future applications.

(175)
DI PR (1) =
(atmgtm) oy (=)™ (B + 0 @)m m Y
P (zq™) T QE((2)-+m@%+l %] )).
(176)

(Dye " P () = plectmssm (g CV B o gy,

n—m,q
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By the Ward g-Taylor formula (73), the first Jackson ¢-Taylor formula
(74), and by (91) we obtain the following three g-analogues of [49, (8),
p. 460].

Theorem 4.14.

PO (z @, y) = Z k:} (a+kﬁ+k)(qu)( )" (B + 15 @)
k=

b (1-q)F
(177) .
QE((2) —I—k‘(oz—l—l—ﬁ—n)).
P Z {k:}q éal'zﬁ+k)(qu) (—U(ﬁ:)z; Ok,
(178) L
QE((2) —I—k‘(oz—l—l—ﬁ—n)).
(@B) (o - (—y)k (a+k,B+k) (B + 1)k
rgy O 2 ke Ty
gHe—B=m).

The following two formulas are g-analogues of [49, (6), p. 459]

Theorem 4.15.

(180)
min(m,n) (a+k,B+2k—n) k
(m + 7’1,) (xqa+1+n—ﬁ; Q)ﬁ—n—a—lp(a+ﬁ Z Pn k,q (x)$ o
m /g X {k}! (@5 @atitn—p-k

Pr(noa—&-kn;-k ﬁ—&-n—&-k)(an)(_l)k <6 _Izln__l';;: Q>k QE ((];7) + ]{7(0[ L1 6 B m) ‘
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Proof.
(181)

-« a+m-+n
e ()
+n,q ( ) {m+n} (l‘qu_l B+n. Q)ﬁ o 1en q (l’, Q)a+1—ﬁ—m
_a m n aTn QTN n @

et DR [ P ) (5717, )]

{m +n} (g1 =Pt q)s_a1-n

T {m}q " (n v
{m +n} N (2qoH =5+ q)s_am1-n prs k ‘

a+k,B+2k—n a
O

k}q n kaPéLoc—&-nﬁJ,-n)( )by(é75)
(73 @) ag1-B—k+n 4

min(m,n a+k 2k—n o
= {m},!{n},! L P ()t

X
{m_l_n} (xqa—H B, Q)ﬁ a=l-n 74 {k‘}q(l', Q)a+1—ﬁ—k+n

Pf(na—&-kn;-k ﬁ—&-n—&-k)(an)(_l)k <6 _Izln__l'q?;: Q>k QE ((g) + k‘(OZ +1-—- ﬁ — m)) .

O

Theorem 4.16.

m+n @ n— «a
( ) (24" 4) s onar Prring (@) =
q

m
min(m,n) P(a+k ,3+2k— n)(l' k\..k
n— q ) a+n+k,3+n+k)
(182) kg PLATRTER) (k) (—1)F x
Z {k}o! (20" Qasron—gr "1
(6 +n+m @k

1= gF QE(()+k(a+1—ﬁ—m)+k+a).

In the limit we obtain the following two additional g-analogues of
11, (7), p. 221].

(183)
("5 o) =

min(m,n)

> L e QB+ + 1)+ 2 @ )

k=0
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(184)

min(m,n)
m mAn,g\) T (ke U mha q
q k=0 q-*

&AL—Q—@@QE(Mﬂ+a+D+2GD+k+a)fﬁﬂ@q)

The following two formulas are g-analogues of [49, (9), p. 460].

Theorem 4.17.

(185) e
a —k 46— bl
PO @B ),
Proof.
(186)
a’;_a_"/ l.Oé—‘r’y—‘rn )
LHS = D" ( _
{n} (g0 ) sy ay1 4\ (T Qatyr1-5-5-n

e n n l.oa—&—n
Dn—k ( ) «
{n}to!(xq* =072 @) grsa—q1 ; (k)q ! (T3 Qat1-p-n+k

ek D z’ by(157) r 7 "
(:UqO‘H B—n+k. C])a/ Sk (l‘qa+1+ﬂ/_ﬁ_5;Q)ﬁ+5—a—y—1
n
> a2 ) g0 PO (2) ¢
k=0

Gn—k[l,ﬂ/—k(l,qﬂ/—&-a—ﬁ—(S—&-l—n—&-k; q)(;_VP,ﬁ”"“’M"” (l,qoa—&-l—ﬁ—n—&-k) — RHS.

O

Theorem 4.18.

P(?H-“/ ﬁ+5 Z qk(a+k
(187) Pﬁzzﬁ%)(xq )Pig,ﬂ:; ke 1+6— k)(a:qo‘ﬂ_ﬁ_”*k)x
(73 O

(wqot1=B+7=0: q) g (wqo =81tk q),,
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Proof. A slight modification of the previous proof.
(188)

e n n l.oa—&—n
LHS = ( ) Gan_k (
{n}!(zq 7702 q) 515 ay1 kz; kJ, 1 (T3 @)at1-p—n+k

DE ( x7 ) by(157) T y
I\ (zqott=B=mtk q) s, (2qot1+77P=0 @) gas_a—y1
Q@ @ a+k k
Zek[x +k(l’q +1-3. Q)ﬁ o 1P( +qﬁ+ )(l')]x
k=0

vy+a—B—6+1-n+k.

:U“’_k(xq ’q)5_’YPI§;/]—k,1+5—k) (l,qoa—&-l—ﬁ—n—&-k) — RHS.

5. GENERATING FUNCTIONS

The connection between generating functions and recurrences is well-
known. We will give an example of how the operator technique in chap-
ter 3 can be used to obtain a new generating function for the ¢-Laguerre
polynomials, compare [3, p. 132].

Theorem 5.1.
N (@) (g —x)(xt)" = L 7
(189) 2 Big(a) B =o)(at) e (=)

Proof. Operate with E,(t0,..) on E,(—2) in two different ways and use
(123) and (140). O

A wellknown generating function for g-Laguerre polynomials is given
by the following g-analogue of [24, p. 120 11']; [3, p. 132 4.2]. Compare
Moak [50, p. 29 4.17], [19, p.511-512].

Theorem 5.2.
(190) iﬂ“ Z gt (at)” F(x,t,q,a)
= x? ?q7a N
s {n}q (t; @) 1+a4n

Theorem 5.3. Three q-analogues of Lebedev [48, p. 78, 4.18.1], which
are all different from [50, p. 26 3.2]

(191)

{n+ 13, Li), o (2) + 2¢ L) () — {n},(1+ g) L) ()

—{a+ 1}y "L (@) + {a+ 1}, "L (@) + {n — 1}, aL{, ,(2)—
_ an+a+1(1 - q"*o‘)Lif‘)l q( :c) 0.

)~
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(192)
{0+ 1}, L), (@) + 2" L (g2) — {n} (1 + )LL) ()
—{o+ 1}, "L (qz) + {a + 1}, "L, (qz) + {n — 1}, qL, ,(2)-
— g (1= g LY, (gx) = 0.

(193)

{0+ 1L (0) + 2 L) (@) — {1 + L))

—{a+1}, "L (g7 2) + {a+ 1}, "L (g7 %) + {n — 1}, qLL, (x)-
_ xqa+2n—1(1 . o<+1)L£L )1q( ) 0.

Proof. Compute the g-difference of F'(z,t,q,a) with respect to ¢ in 2
different ways. We start with (191).

(194)
= qn2+na(—£€)(—$t)n_1{n}q S qn2+n(a+1)(_5ﬂt>n{a +1+4n}q

DyF =Y 5y .

0 (t; Qar14n{nty! "0 (t; @)ar2+n{nty!
0o q(n+1)2+(n+1)o¢( l.)( xt)n o] qn2+n(a+1) (_l.t)n{a + 1}(]
= (t¢; @) at1+a(1 — t){n},! =0 (tq; @at1+a(l — t){n},!
° q(n+1) +(n+2)(a+1) ( xt)( )
0 (tq Q)a+1+n(1 t)( _tQ){n}q
Then
04) n a+1 (@)
—xLng(qr)(tg)"q {14+ a}yLng(@)(tg)"
Z T Z T

(195) B

> —x 202 x)(tg®)" > o
Z tLnq(q )ftqi ;] = Z{l ‘|‘n}qL£L+1 L)t"

Multiply with (1 —¢)(1 — tq) and equate the coefficients of ¢".
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The proof of (193) goes as follows.

(196)
0 n2+na n . n— n .
Dy F = Z ¢t (—55) ((ta Q)a+1+n{n}qt 't D'q(ta C])a+1+n) _
(tq; @) at14n(t; Q)a+1+n{n}q-
- qn2+na(_x)ntn((t§ Q)a+1+n{n}qt_1 + {a +1+ n}q(tcﬁ Q) atn) _
(tq; Q)at14n(t; @)atr4n{n}q!

g () ()t e (—at) M+ 1,

(t4* Qar1ta(l = tg){n}y! = (tq; Qaria(l — ){n}!
=0 n=0
S q(n+1 +(n+1)a( :Ut)(—xt)"qo‘ﬂ

Z (tq% Qa1+ (1 — 1) (1 = tg){n}y!

1M+ 10

n=0
Then
3 —eLig(2)(tg*)"¢* " PR o}y Liig(a~™'2)(t0)" |
n=0 1= tq n=0 L=t
(197) 0_0 ()( )( 2) 2042 o0
—at L (x)(tg?)"g* (a)
: 1 L t".
S e g = L+ L)

Now multiply with (1 —%)(1 —tq) and equate the coefficients of ¢". [J

Remark 12. This proof is an example of a general method in g-calculus
to obtain multiple g-analogues. In our case, {1 + o + n}, can be ex-
pressed as {1 + a}, + ¢'7™*{n}, or {1 + a},q" + {n},. Compare the
similar reasoning using the ¢-Leibniz theorem.

Remark 13. The three formulas in Theorem 5.3. have the polynomials
with both z and gz or % as variables. These are analogues of different
results for Laguerre polynomials, formulas which involve both Laguerre
polynomials and their derivatives. These formulas for Laguerre polyno-
mials have some uses but are of secondary importance while the three
term recurrence relation is of primary importance.

Theorem 5.4. Yet another generating function for the q-Laguerre
polynomials.

(198)

- ) xqg~ " )t" (2)
; Ln?{(l :]- oz)}tnj %( Jo2(—; 1+ a, 00lg, ¢ (1 — q)*(at)).
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LE@a™) 0 ) _ = B (1= " () B
th l2) = k;@ Ttaar (e (L

n +2nk+k —n—k
ntk sttt (1 )2k+n

L1+ o5 @)l @)tk

(

0BV (1 = g) o (= 1)g(B) R0k (1 _ g2k
T .

(~;

2
(—n — kyquq = Tkt

S Q)n - (L1+osq)
= E1(t)odz(—; 1 + a, 00lg, atg (1 — ¢)*)

n

O

The generating functions for the g-Laguerre polynomials are special
cases of

Theorem 5.5.

. <01L D pi10p(—n, (A); (O)|q, 7) =
(200) = (Lg)n

o peatal(4).0.00 (Ol ol )
Proof.

. L (C): @)m —~ (L
(201) - N
3 (—2t)™q(2) 7™ ((A), a; @)um
m=0 <1> (O)a Q>m(tq ) Q)a+m
= a(A), @,
2 T g EanEa, S

O

Remark 14. This is a g-analogue of [58, 1.2, p. 328] and [9, (25), p.
947].
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Corollary 5.6. A confluent form.
[e.e] tn
> oyt prdn(m (A (O)lg @) =
(202) n—o VY&

Ey(t) peatpra((4), 00,003 (Ol 2ll = g )

Proof. Let a — oo in (200) O

Remark 15. This is a g-analogue of [58, 1.7, p. 329] and [9, (27), p
947].

Theorem 5.7. Two g-extensions of [19, 5.15, 5.29].

(203)
= (&) o
Y it ) =
n=0 ’
- da n,n —PTa
Z élZ; 13 2@51(—71,5—{—71;0[—{— 1|Q>J;q ot +1) =
n=0 ’ n
i (—atg ) mg(D =5 4 m, d; g i (d+m, 0 +2m0) 0y
o (L,1+ a;q)m o (1,8 +m;q)n
(204)

tnpéo;—n,ﬁ) (x)q(g) —na

(I+a—n;9),
(1;q)n
(—a;q)n
(1;q)n

(—atq =)™ + m; q)m i —a, f+2m;q),
(L q)m = (1, 8+m;q)

M 20

t"q(3) " 41 (—n, B+ ny o+ 1 — nlq, 2g P =

3
Il
=)

NE

(_t)” 2¢1(—7’L, 6 +n; o+ 1— n|q’ xq—ﬁ—&-o&—&-l—n) _

3
Il
=)

NE

= (—t)"q~™".

3
i
=)
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