DEMONSTRATIO MATHEMATICA
Vol. XLIV No 2 2011

Thomas Ernst

¢-ANALOGUES OF GENERAL REDUCTION FORMULAS
BY BUSCHMAN AND SRIVASTAVA
AND AN IMPORTANT ¢-OPERATOR REMINDING
OF MACROBERT

Abstract. We find four g-analogues of general reduction formulas from Buschman
and Srivastava together with some special cases, e.g. g-analogues of reduction formulas for
Appell- and Kampé de Fériet functions. A proper g-analogue of the notation A(l; \) by
MacRobert, Meijer and Srivastava is given, and the definition of ¢-hypergeometric series
is generalized accordingly.

1. Introduction

The umbral method for g-calculus [2] - [8], consisting of logarithmic g-
shifted factorials, the tilde operator, a comfortable notation for g-powers, the
symbol for real infinity, equivalent to the zero in Gasper-Rahman [10], the
¢-Kampé de Fériet function, compare with [3|, are the main ingredients in
this new method, which will increase our knowledge of g-calculus, advocated
in the beginning of the last century by the late Cambridge student, reverend
F. H. Jackson. All the topics above are not new; they have been presented
in the book [9].

In this article, the important notation A(l; \) of MacRobert [11], Meijer
and Srivastava [15] for a certain array of [ parameters is given its proper
g-analogue with the aid of a generalized tilde operator; in this paper we
only consider the cases [ = 2,3, but a general definition is given. A deep
knowledge of the A(l;\) operator is necessary to grasp the subtleties of
multiple hypergeometric functions. This A-operator has a very long history
in the field of special functions, in particular in India, which we will come
back to in later papers.
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Buschman and Srivastava [1] have proved a great number of double se-
ries identities with general terms. We will find g-analogues of most of these
formulas like in [3]; the method of proof will be similar except that we now
use the g-Dixon- and ¢g-Watson summation formulas. Some of the obtained
formulas are symmetric in two variables, just as in the undeformed case. We
pick out a form of these formulas, which converges nicely for small values
of z. A list of different formulations of the Buschman—Srivastava formu-
las and their g-analogues in various journals and books is given, for better
orientation.

This paper is organized as follows: In this section we give a general in-
troduction. In section 2, four g-analogues of Buschman—Srivastava formulas
are given. In section 3, we apply the Buschman—Srivastava formulas to find
g-analogues of reduction formulas for Appell and Kampé de Fériet functions;
the A operator appears only in the Heine function. In other papers, the A
operator can appear also in the g-Kampé de Fériet function.

DEFINITION 1. The power function is defined by ¢* = e®°9(9) Let § > 0
be an arbitrary small number. We will use the following branch of the
logarithm: —7 + ¢ < Im (logq) < m+d. This defines a simply connected
space in the complex plane.

The variables a,b,c,... € C denote certain parameters. The variables
1,7, k,l,m,n, p,r will denote natural numbers except for certain cases where
it will be clear from the context that ¢ will denote the imaginary unit.

Let the g¢-shifted factorial be defined by

1, n = 0;

1 ; ={Jn!

. GO T =g n=12,
m=0

Since products of g¢-shifted factorials occur so often, to simplify them we
shall frequently use the more compact notation

m

(2) (a1, am; @y = [ [{aji @)n-

j=1
Let the I'j-function be defined in the unit disk 0 < |¢| < 1 by

_ <1; q>00 1-z
The following notation will prove convenient, since many of our formulas
contain exponents with upper and lower indices, which become less legible
in the Gasper—-Rahman notation.

(4) QE(z) = ¢".
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The operator

- C C
==
Z Z
is defined by
i
(5) ar— a-+ logq'

By (5) it follows that

n—1
(6) (aiqyn = [T +q™).
m=0

Assume that (m,l) =1, i.e. m and [ relatively prime. The operator

= C C
L=t =
Z Z
is defined by
2mim
7 .
(7) a—a+ [Togq
We will also need another generalization of the tilde operator.
n—1 k-1 .
(8) raan = [ (Z qz(”m))-
m=0 =0

This leads to the following g-analogue of [12, p.22, (2)].

THEOREM 1.1 ([6]).

k—1 —
a+m a+m
(9) (@5 @) = {0 qhn p (S50 )
k k

m=0 n
DEFINITION 2. A g-analogue of a notation due to Thomas MacRobert
(1884-1962) [11, p. 135| and Srivastava [15]. This notation was also often
used for the Meijer G-function and the Fox H-function (¢ = 1).

-1 -
A4+m A+m
(10) (Mg LN o= [[(——3a) xi(——q) -
l l
m=0 n n
When A is a vector, we mean the corresponding product of vector elements.
When A is replaced by a sequence of numbers separated by commas, we
mean the corresponding product as in the case of g-shifted factorials. The
last factor in (10) corresponds to ™.
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1.1. Definition of the ¢-Kampé de Fériet function We will give a
definition reminding of [10]|, which allows easy confluence to diminish the
dimension in (12), and has the advantage of beeing symmertic in the vari-
ables. Furthermore, ¢ is allowed to be a vector and the full machinery of
tilde operators and g-additions will be used.
In the following two definitions we put
(11) a=avaVvraViaVvAlglN).
The following definition is a g-analogue of [16, (24), p. 38|, in the spirit of
Srivastava.
DEFINITION 3. Let
((I), (b)7 (gl)y (hz)7 ((I/)7 (b/)7 (gé)v (h;)
have dimensions
Aa 37 Gia Hia Al? Bla G{m Hz,

Let

1+B+B +H,+H —A-A -G -G,>0,i=1,...,n
Then the generalized ¢-Kampé de Fériet function is defined by

N ,

(b h1 ,(hn) ( ) (h ) '(hn)
_ Z ((@); g0)m(a’) (@0, m) TT)—1 ({(95); 43)m, (9 (g5, m)x]™)

((0); > ( )0, m) TT5—1 (((h)s @5)m; (R) (@55 1m25) (L5 @)y )

y (_1)ZJ:1 m;(1+H;+H,~G;~G'+B+B'~A-A')

xQE((BJrB’—A—A/) @) : q0> I1 QE<(1+HJ~+H]’-—GJ~—G;-) <”;J> , qj).
j=1

We assume that no factors in the denominator are zero. We assume that
(a')(g0, m), (97) (g5, m;), (b')(q0, m), (1) (g;,m;) contain factors of the form

(a(k); a)r, (530)k, (s(k); @) or QE(f(111)).

DEFINITION 4. Generalizing Heine’s series we shall define a ¢ hypergeo-

metric series by

‘Afl""’?p|q;z\|nff?(’“)]

bi,...,by [1;9;(k)
(@ Aaps @ [y ()] I fuk)
kz_: b1, ...<I;T;q>k [( U } H g5 (k)

A+A"G1+GY;.. .G +G,
B+B':H\+H};..;H,+H,

(13> p+p’ ¢r+r’
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We assume that the f;(k) and g;(k) contain p’ and 7’ factors of the form
<c@; q)r or (s(k); @)k respectively. In case of A(g;l; \), the index is adapted
accordingly. When we have a sequence of elements a;, we can denote them
by (A).

1.2. Two lemmata In the following three proofs we will use the finite
g-Dixon theorem.

THEOREM 1.2. [3, p. 210 (39)]

) ——
—2k,b,c,1 —k
4(253 N |q; qlfkfbfc
1—2k—b,1—2k—c,—k
(14) — 4g=0\j/, (1—2k—b,1—2k—c,—k;q) ;
_ _(1=2k—b—cTkbiq) (L)
(1—2h—clhbbihkigy (27 1 7k
—k,bye, 1 — %
4¢3 e 2'}@&“%** =0,k odd.

1—k—b1—k—c—k

\

In another proof we will use a g-analogue of the Watson formula [1].

THEOREM 1.3. [6, p. 170 (43)]

<l ltc—a, o N
c 20 2 .
15 %7 %7(17 -N . _ = W’ ’LfN even,
(15) 4¢3 “N+lta —N+lta la5q| = (5% 75% >%
c ‘
22 0, if N odd.

2. g-analogues of Buschman—Srivastava double sums

The Buschman—Srivastava paper [1| was a landmark for the studies of
multiple g-hypergeometric series. Some of these formulas had previously
been published in other form by Shanker and Saran [13|. Srivastava and
Jain [17] have found g-analogues of some of these formulas, some of which
are included in the book [9]. The following table summarizes the connection
between the various formulas and the methods of proof; the four references
are in chronological order.

[13] [14] | [1] [18] | Proof Equation no.
- (4) | 3.2 33 | g¢-Vandermonde [3](62), (66)
- (5) | 3.7 49 | finite Bailey-Daum | [3](68)

- (17) | 3.3 44 | finite Bailey-Daum | [3](81)

bp. 10 | - 2.7,34 | 46 | finite ¢-Dixon (16)




290 T. Ernst

[13] [14] | 1] [18] | Proof Equation no.
cp.10 | - 2.8,3.6 | 48 | finite ¢-Dixon | (18)
- - 2.9,3.8 | 50 | finite ¢-Dixon | (20)
ap.10 | - 3.10, 3.5 | 47 | g-Watson (23)

We are now going to find a number of general double sums. Since the
convergence problem is rather delicate, we try to choose the most proper
form with respect to an arbitrary g-power. Sometimes we add this g-power
afterwards, to save space in the proof. In the following, a statement like
a # k will mean a # k,k € N. Everywhere the symbol {C,}°°, denotes
a bounded sequence of complex numbers. It is assumed that both sides
converge. Note that the formulas (18), (20) and (23) are symmetric in two
variables.

THEOREM 2.1. A g-analogue of Buschman, Srivastava [1, p. 437 (2.7)].

(16) ™" (1) (g q>m<g7 1 — ™3 g),QE (—3 — )

m,n (1, h'Q>m< m-l—n’ On
Cona*N g,lZ g,l—N,q>Nq(g)+Ng’ hh
N=0 1717h7 2 27ﬂ7 h+1 >N
Proof.
C N_ln. . 1_ﬂ; nE ny _ nN
an  Ls- Y (=1)"(g59)n-nl9:1 ~ 539)nQE ((5) — *7')
N,n <1 h Q>N n<1 h 2 ,Q>

OnaNgNO=M(—g+1— N;q)n
(1,=h+1—N;q)n

N=0
3 (=1)"(3) {g: =h+1- N, 1= X )QE ((2) +n(h— g — X))
n <h7_g+1_N7_/\§;Q>n

by (14) Cona?Ng?N=h) (_g41-2N; q>2NF 1-2N—g,h,1—N, h—g+N
(1, =h+1-2N;q)an 1-2N,h—g,1—-N—g, h+N

N=0
Cona?M(h=g,1=N, g; q)n (~g+1-2N; q)an (3: ¢*) NQE ((2§)+2N9)
N=0 <h7g7ga%7%7N+g7l_N_g Q> <1 Q>
Nig b g TN
_ Cona”"{g.h—g,1-N,gig)n RES. =
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THEOREM 2.2. A g-analogue of |1, p. 438 (2.8)].

m4n/_1\n . _ m+4n. _
(18) ZCm—i-nw +( 1) <g7haQ>m<gah71 D) aQ>nQE< n+mn>

m,n (L q)m (1, =22 q)n 2
oo ( h, 1—N g+h g+h+1 g+h g+h+1 (N)
—ZCQN{E , —h—g#k.
N=0 <1717g+h7 Q>N

Proof. We prove an equivalent formula.

m+n(__1\n . _m4n. _
(19) ZCm+n:c (=1)™(g, h; @) m (g, h, 1-"3 ,Q>nQE<(n ?;mn)+m)
mon (1; q)m (1, =24 q)n

xQE (—m2—n2—(m+n)(g—|—h))
—ZCNZ‘ g,h q>N n<gyh 1- QaQ>

QE ((‘"Q‘QﬂJrN—N?—N(gM))
X —

<1; Q>N—n<17 _%; q>n

= g CyaN
N,n

(]X)q(—g%-l—N,—h—i—l—N; q)n{g,h,1— 2,q>nQE(() n(l—h—g—%))

(1;q)n (—h+1=N, —g+1-N, - X: g),,

. 1
by (14) Conz®™(1-N,§,1-2N—g—hiq) N (1-2N—g,1-2N ~h;q)an (5:4°) N
Neo (9+N,1-N—g,1-2N—h;q) n(L;q)2n

2, Cona® (1=N §,g+h+N:q) v {g,hi0) oy QB( —AN?+2N— N (3g+2h))
<N+h,1fﬁig,g+N,1,T;q>N

=2
Il
=)

. Cona®N (g, h1-N A(g:2:9+h):0) vQE( () ~AN?+2N - N (29+2h))
(L1Lg+hig)n '

2
o

Finally, multiply C,, by QE (2(3)+n(g+h)). =



292 T. Ernst

THEOREM 2.3. A g-analogue of |1, p. 438 (2.9)].

2 2 + 4

Crnn @™ (=1)"(1 — 22 g, n  3mn  (m+n)?
(20) : QE (-5
;ﬂya—m;" Onl{l,v,0;,¢)m ( >

C ~1 1-N; ny
—Z on 2N +v+0;¢)3n( ;q)n(=1) ,vov+o—1+#—k.
<1,1,1/Jq> (v,o0,—1+v+0;q)2Nn

Proof.

(21) LHS
co N TN

= Z CNxN(;l)an(l — &g QE <3<n> _ 3nN N2>

+n+
— (v, 09)N-n 2 2 4

N N —

2

n=0 <17V707_%;q>n

I LN 2N v 2N vt o~ Loy
<1VUQ>2N(UV+N1—V—Nq> ’

where we have used (14) for the ¢-Dixon theorem. =

Before we prove the next formula, we remind the reader that the following
g-analogue of |1, p. 440 (3.10)| has been found by Srivastava and Jain [17
p.217, 2.2|:

(e 9]

(220 Y Crgnz™ M (-1)"(a,a >m< b q)n

ot (1,2a; )i (1, 2b; q)n

Z Conaz*N{a + b, a+b q)oN
(La+3,b+3,a+b;¢*)n
THEOREM 2.4. Another q-analogue of [1, p. 440 (3.10)].

. Conn™ T (=1)"QE () — ng) (g; @)m(h, h; )
23 —_ —
%) m,zn;o (1,29; @)m(1,2h,—m — g+ 1 —n;q)n

h gth h+1 h+1
OOCQNJE <h_|_g_|_Ng+’g+ g++ g++

_ 2 SN QE<(2§)>

NZo o (g hGg+ i gt a4l gt N A+ LT LgN
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Proof. We prove the equivalent formula

i Cm—l—nmern(_l)nQE (_(g) —mn + mg) <g; q>m<ha }VL; Q>n

mon=0 (1,29; @)m(1,2h, —m — g+ 1 —n;q)n
— i CQN$ h+g+N g+h7%7g+g+179+g+1aQ>Nq29N
N=0 (g+hG g+t g+t n+l g+ N h+i T 19N
(25) LHS

CN {9 @) N—nlh, h; @)™ (=1)"QE (= (2)—(N—=n)n+(N—n)g)
0 (1,29; @) N—n(L,2h, —g+1-N;q)n
Cn{(—g+1=Nig) n (h,h,—2g+1—N3g)na™ (-1)"QE((3)+n(1-N))

(Lig) N—n(—29+1-N;g) N (—g+1—N,1,2h,—g+1-N;iq)»
(—g+1-N;q)na?
1, —Qg—i-l—N; AN

—2g+1-N;q)n(—1)"QE ((5)+n(1—N))

<—g+1—N 2h, —g+1—N; ghn

Con{(—g+1-2N; q)onz*N (3, h+9+N; ¢*) §

NZ (1, =2g+1-2N; q)an (5+h, g+ N; ¢*) N

Con(g; )ana*N (3, htg+N; ¢*) ng*N
(1,29; Q)an(3+h, g+N;¢*) N

M 1M

NE

[
WE

=
I
o

n

C

z&

o
—~

=

XZ

32

h—l—g—l—N g+h, g+h g+h+1 g+h+1 2gN

S q)NG

2N$
N=0 (g+h,g, g+2,g+2,h+2, N, h+2, LN

N=0
Finally, multiply C,, by QE ((5) — ng). =

3. Reduction formulas

We now specialize the very general formulas to reduction formulas for
Appell- and Kampé de Fériet functions. We will need the A notation, since
otherwise there will not be enough space to write out the formulas.

THEOREM 3.1. A g-analogue of a reduction formula for the second Appell
function.
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(26) i X Qmn™ T (=1)"(g; Q)m (g, 1 — 5 ) QE (Z15=2)
" (1, h; @y (L, b, =3 g
A(g;2;0),9.h—g T
=197 ( ) lg: _xzng< )

A(Q727h)7hvi/700 -
Proof. Put Cx = (X\;q) in (16). =

REMARK 1. The righthand sides of formulas (26) and (28) converge quicker
than the LHS because of the g-power with negative exponent, the double
sum and the minus sign on the left. The other formulas in this section have
similar properties.

THEOREM 3.2. A g-analogue of a reduction formula for the third Ap-

pell function. By using vectors, this formula can easily be extended to a
q-analogue of [16, p. 31 (48)].

00 mtn(_1\n h: m ’h71_m+”; n _
3 ™ (=1)"(g, h; @) m (g 55 4) QE( n+mn>

m+n.

mn=0 (15 Qmtn (L @m(l, =755 @)n

g,h, AN(q; 2,9+ h)

=17¢ ~ —
"1 A2 ), 9+ 1T, 00 -

Proof. Put Cj, = m in (18). m

COROLLARY 3.3. A g-analogue of |1, p. 439 (3.4)| and [16, p. 31 (46)]

—

23 | A1 g,005g,00 11— mEng) gt
O RtV J e W
SRR (=55 @)n
Ag;2;X),9,h — g,300 (1 —k;q)

\g; —2%¢Y||

= 6+4pP6-+4p A2 k). b T B

Proof. Put C,, = g‘f% in (16). m
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COROLLARY 3.4. A g-analogue of |1, p. 439 (3.5)]

do |l X:ig:h b mn
:1;2 g;n, q
(29) q’g;m " ¢ —x, 2| ——

il : 2g;2h (m+g;q)n

5 [ Ag;2; X, g+ h)
= 5+4pP8+4p B T T T v~
A2 00),9+hg+35.h+5.9+35,h+3,1,9

;2%

<h+g+k;Q>k]
(k+g:0)k

Proof. Put C,, = Kan 5, (23). =

(i5q)n
THEOREM 3.5. A g-analogue of [1, p. 439 (3.8)] and |16, p. 32 (50)]
(30)
> (X @)mana™ (=)™ (1 — T8 ), Qe(-"_ 3mn (m +n)?
m+n 2 2 4

mon ([l Q) min (L, v, 0, =57 ) (L, v, 0, @)m
5 A2 0), Ag 3iv + 0 — 1),9oo| 2 (1= k; q)n
= ~ g —= :
16+4pP15+4p Mg 2 v, 000 +0 —1),,0,1 q B

-

Proof. Put C,, = % in (20). The A(g;3;v + o — 1) corresponds to six

g-shifted factorials, this explains the 9c0. =

This last formula is the crown of our efforts in this section, and beautifully
unites the notation used so far. The formula [16, p. 32 (50)]| is also the last
one in the corresponding chapter. We will come back to more g-analogues
from [16] in later papers.

4. Discussion

We would like to remind that the umbral notation is equivalent to Gasper
and Rahman [10]; however, the A(g;l; ) operator cannot be readily ex-
pressed in their notation. The same goes for the factor (1/://-6;q>k, which

elucidates the integration property in g-calculus. There are more comments
at the end of the article [3].
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