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Abstract. It is believed that Dirichlet series with a functional equation and Euler product
of a particular form are associated to holomorphic newforms on a Hecke congruence group.
We explore this conjecture in two ways. First, we perform computer algebra experiments
which find that in certain cases one can associate a kind of “higher order modular form” to
such Dirichlet series. This suggests a possible approach to a proof of the conjecture. Second,
we perform numerical experiments which directly check the conjecture. These experiments
suggest that the conjecture is true.

1. Introduction

We investigate the relationship between L-functions and modular forms. We review some
classical results on modular forms and then describe the conjecture which motivates our
work. A good reference for this material is Iwaniec’s book [9].

Let

Γ0(N) =

{(

a b
c d

)

: a, b, c, d are integers, ad − bc = 1, and c ≡ 0 mod N

}

be the Hecke congruence group of level N , and suppose χ is a character mod N . The group
Γ0(N) acts on functions f : H → C by f → f |γ where

(1.1) f(z)
∣

∣

(

a b
c d

)

= χ(d)−1(cz + d)−kf

(

az + b

cz + d

)

.

Here H = {x + iy ∈ C : y > 0} is the upper half of the complex plane. The vector space
of cusp forms of weight k and character χ for Γ0(N), denoted Sk(Γ0(N), χ), is the set of
holomorphic functions f : H → C which satisfy f |γ = f for all γ ∈ Γ0(N) and which vanish
at all cusps of Γ0(N). Since

(1.2) T :=

(

1 1
0 1

)

∈ Γ0(N)

we have f(z) = f(z + 1), so there is a Fourier expansion of the form

(1.3) f(z) =
∞
∑

n=1

ane
2πinz.

In the case χ is the trivial character χ0, the newforms in Sk(Γ0(N), χ0) have a distinguished
basis of Hecke eigenforms which satisfy

(1.4) f |Hn = ±f
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and

(1.5) f |Tp = apf

for prime p. Here

HN =

(

−1
N

)

is the Fricke involution. If ` is prime,

(1.6) T` = χ(`)

(

`
1

)

+
`−1
∑

a=0

(

1 a
`

)

,

is the Hecke operator. If `|N then χ(`) = 0 and T` is known as the Atkin-Lehner operator U`.
We will now state our motivating conjecture, and then explain its relevance to the theory

of L-functions.

Conjecture 1.1. If f : H → C is analytic, is periodic with period 1 (1.3), and satisfies the
Fricke (1.4) and Hecke (1.5) relations with χ = χ0, then f ∈ Sk(Γ0(N), χ0).

Thus, the invariance property f |γ = f , which leads to the Fricke and Hecke relations,
would actually follow from them.

We will rephrase the conjecture in terms of L-functions. Associated to a cusp form with
Fourier expansion (1.3) is an L-function

(1.7) L(s, f) =
∞
∑

n=1

an

ns
.

Using the Mellin transform and its inverse, it can be shown that the Fricke relation (1.4) is
equivalent to the functional equation

(1.8) ξf (s) :=

(

2π√
N

)−s

Γ (s) Lf (s) = ±(−1)k/2ξf (k − s).

Also, the Hecke relations (1.5) are equivalent to L(s, f) having an Euler product of the form

(1.9) L(s, f) =
∏

p

(

1 − app
−s + χ(p)pk−1−2s

)−1
,

because both statements are equivalent to apnm = apnam for p - m and

(1.10) apn+1 = apapn − χ(p)pk−1apn−1 .

Thus, Conjecture 1.1 is equivalent to

Conjecture 1.2. If a Dirichlet series continues to an entire function of order one which
is bounded in vertical strips and satisfies the functional equation (1.8) and the Euler prod-
uct (1.9) with χ = χ0, then the Dirichlet series equals L(s, f) for some f ∈ Sk(Γ0(N), χ0).

This conjecture should be viewed as part of the Langlands’ program. Note that one does
not require functional equations for twists of the L-function, as in Weil’s converse theorem.
As a special case, the L-function of a rational elliptic curve automatically has an Euler
product of form (1.9) with k = 2 and χ = χ0, so the modularity of a rational elliptic
curve would be reduced to proving analytic continuation and a functional equation for one
L-function.



MODULAR FORMS AND EULER PRODUCTS 3

Progress on the conjecture has been made only for small N , for the trivial character [2],
and (appropriately modified) for almost the same cases for nontrivial character [6]. For
N ≤ 4, Hecke’s original converse theorem establishes the conjecture. This follows from the
fact that the group generated by T and HN contains Γ0(N) exactly when N ≤ 4. Note that
this only uses the functional equation, not the Euler product. For larger N , one must use
the Euler product in a nontrivial way. This possibility was introduced in [2], and examples
were given for certain N ≤ 23.

In this paper we specialize to the case N = 13, for the simple reason that this is the first
case which has not been solved. Our hope is to discover some structure which can be used
to attack the general case. It turns out that the N = 13 case leads to relations reminiscent
of “higher order modular forms,” which are described in the next section. In Section 3 we
describe prior work and then in Section 4 we apply those methods to the case N = 13.
Finally, in Section 5 we do numerical calculations which directly check Conjecture 1.1. The
calculations give evidence that the conjecture is true.

2. Higher order modular forms

Our discussion here is imprecise and will only convey the general flavor of this new subject.
For details see [1, 3].

We first introduce some slightly simpler notation. If f |γ = f then we have

(2.1) γ ≡ 1 mod Ωf

where Ωf is the right ideal in the group ring C[GL(2, R)] which annihilates f , the action
of matrices on f being extended linearly. We will write γ ≡ 1 instead of γ ≡ 1 mod Ωf

throughout this paper. Thus, if f is a cusp form for the group Γ, then the invariance
properties of f can be written as f |(1− γ) = 0 for all γ ∈ Γ, or equivalently, 1− γ ≡ 0. This
notation will make it easier to describe the properties of higher order modular forms.

If f is a second order cusp form for the group Γ, then f satisfies the relation

(2.2) (1 − γ1)(1 − γ2) ≡ 0

for all γ1, γ2 ∈ Γ. Similarly, third order modular forms satisfy

(2.3) (1 − γ1)(1 − γ2)(1 − γ3) ≡ 0,

and so on. Roughly speaking, if f is an nth order modular form then f |(1−γ) is an (n−1)st
order modular form. There are additional conditions involving the cusps and the parabolic
elements of Γ, but our goal here is just to introduce the general idea. Indeed, it is nontrivial
to determine the proper technical conditions, see [1, 3].

In connection with our exploration of Conjecture 1.1, a condition of form (2.2) will arise
where γ1 and γ2 come from different groups. This first appeared in the original work of
Weil on the converse theorem involving functional equations for twists. Specifically, the
relation (2.2) arose where γ2 was elliptic of infinite order. The following lemma applies:

Lemma 2.1. Suppose f is holomorphic in H and ε ∈ GL2(R)+ is elliptic. If f |kε = f , then
either ε has finite order, or f is constant.

This is Proposition 3 from [10]. See also the discussion in Section 7.4 of Iwaniec’s book [9].
By the lemma, if γ2 is elliptic of infinite order then (2.2) implies that actually 1 − γ1 ≡ 0,
which is the conclusion Weil sought.
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Denote by Sk(Γ1, Γ2) the set of analytic functions (with appropriate technical conditions)
satisfying (2.2) for all γ1 ∈ Γ1 and γ2 ∈ Γ2. The above lemma says that if Γ2 contains an
elliptic element of infinite order then Sk(Γ1, Γ2) = Sk(Γ1). Note that the analyticity of f is
necessary, and an analogue of Weil’s converse theorem for Maass form L-functions has not
been proven in classical language.

In Section 4 we will see that our assumptions on the Fricke involution and the Hecke
operators lead to condition (2.2) with γ1 ∈ Γ0(13) and γ2 in some other discrete group. We
also obtain higher order conditions (2.3) where each γj comes from a different group. This
suggests the following question:

Question 2.2. What conditions on Γ1 and Γ2 ensure that Sk(Γ1, Γ2) is finite dimensional?
What conditions imply that Sk(Γ1, Γ2) = Sk(Γ1)?

Part of the problem is determining the appropriate technical conditions to incorporate
into the definition of Sk(Γ1, Γ2). Even when Γ1 = Γ2 this is nontrivial. See [1, 3].

3. Manipulating the Hecke Operators

In [2] results were obtained for various N up to N = 23. The idea is to manipulate the
relations T ≡ 1, HN ≡ ±1 and Tn ≡ an to obtain γ ≡ 1 for all γ in a generating set
for Γ0(N). We will describe the cases of N = 5, 7, 9, 11 from [2], and then the remainder
of the paper will concern the interesting relationships that arose in our exploration of the
case N = 13.

We have the following generating sets:

Γ0(N) =

〈

T, WN ,

(

2 −1
−N N+1

2

)〉

, N = 5, 7, 9,

Γ0(11) =

〈

T, W11,

(

2 −1
−11 6

)

,

(

3 −1
−11 4

)〉

,

Γ0(13) =

〈

T, W13,

(

2 −1
−13 7

)

,

(

−3 −1
13 4

)

,

(

3 −1
13 −4

)〉

,(3.1)

where

(3.2) T =

(

1 1
1

)

and WN =

(

1
N 1

)

.

The generator T is for free because we have assumed a Fourier expansion. The generator
WN now follows from the Fricke relation, because WN = HNTHN . So for these groups we
have two of the generators. Note that this uses the functional equation, but not the Euler
product.

In the next section we repeat the calculations from [2] in the cases N = 5, 7, 9, 11, and in
the following sections we treat the case N = 13.

3.1. Levels 5, 7, 9, and 11. For every N we obtain a new generator from T2. This will
resolve the cases N = 5, 7, and 9.

Lemma 3.1 (Lemma 2 of [2]). If HN ≡ ±1 and T2 ≡ a2 then
(

2 −1
−N N+1

2

)

≡ 1.
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Proof. Note that

H−1

N T2HN =

(

1
2

)

+

(

2
1

)

+

(

2
−N 1

)

.

Since H−1

N T2HN ≡ a2H
−1

N HN ≡ a2 ≡ T2, we have:
(

1
2

)

+

(

2
1

)

+

(

2
−N 1

)

≡
(

2
1

)

+

(

1
2

)

+

(

1 1
2

)

.

Canceling common terms from both sides we are left with
(

2
−N 1

)

≡
(

1 1
2

)

.

Right multiplying by

(

1 1
2

)−1

we have

M2 :=

(

2 −1
−N N+1

2

)

≡ 1.

¤

The lemma provides the final generator for Γ0(5), Γ0(7), and Γ0(9).
To obtain the final generator for Γ0(11) we will combine the Hecke operators T3 and T4

For T3 we have

0 ≡ HN(T3 − a3)HN − (T3 − a3)

=

(

1 1
3

)

+

(

1 2
3

)

+

(

3
−N 1

)

+

(

3
−2N 1

)

≡ −
(

1 1
3

)

−
(

1 −1
3

)

+

(

3
−N 1

)

+

(

3
N 1

)

,(3.3)

where the second step used

(3.4)

(

1 −1
1

)

≡ 1 and

(

1
N 1

)

≡ 1.

We can combine the terms in pairs using
(

1 a
p

)

−
(

p
Nb 1

)

=

(

1 −
(

p −a
Nb −Nab+1

p

))(

1 a
p

)

to get

(3.5)

(

1 −
(

3 −1
−11 4

))

β(1/3) +

(

1 −
(

3 1
11 4

))

β(−1/3) ≡ 0,

where β(x) =

(

1 x
1

)

. We will combine this with a relation obtained from T4

Since T4 and T2 are not independent, there is more than one way to proceed. The calcu-
lation which seems most natural to us begins with

0 ≡ HN(T4 − a4)HN − (T4 − a4)

− [HN(T2 − a2)HN − (T2 − a2)]

(

2
1

)

− [HN(T2 − a2)HN − (T2 − a2)]

(

1
2

)
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= −
(

1 1
4

)

+

(

4
−3N 1

)

−
(

1 3
4

)

+

(

4
−N 1

)

.(3.6)

Combining terms as in the T3 case gives

(3.7)

(

1 −
(

4 −1
−11 3

))

β(1/4) +

(

1 −
(

4 1
11 3

))

β(−1/4) ≡ 0.

Combining (3.5) and (3.7) we obtain

1 −
(

3 −1
−11 4

)

≡ −
(

1 −
(

3 1
11 4

))

β

(

−2

3

)

=

(

1 −
(

4 −1
−11 3

))(

3 1
11 4

)

β

(

−2

3

)

≡ −
(

1 −
(

4 1
11 3

))

β

(

−2

4

)(

3 1
11 4

)

β

(

−2

3

)

=

(

1 −
(

3 −1
−11 4

))(

4 1
11 3

)

β

(

−2

4

)(

3 1
11 4

)

β

(

−2

3

)

.(3.8)

However,
(

4 1
11 3

)

β

(

−2

4

)(

3 1
11 4

)

β

(

−2

3

)

=

(

1 −2/3
11/2 −8/3

)

is elliptic but not of finite order. So by Lemma 2.1,
(

3 −1
−11 4

)

≡ 1.

This is the final generator for Γ0(11).

4. Level 13, mimic previous methods

We will mimic the method used for Γ0(11) for Γ0(13), but things will not work out as
nicely. What will arise is an expression of the form (2.2) that appears in the definition of
second order modular form.

4.1. The case of T3. From T3 we obtain the following expression, which is analogous to (3.5),

(4.1)

(

1 −
(

3 1
−13 −4

))

β(1/3) +

(

1 −
(

3 −1
13 −4

))

β(−1/3) ≡ 0.

We manipulate this similarly to the example for Γ0(11):

1 −
(

3 1
−13 −4

)

≡ −
(

1 −
(

3 −1
13 −4

))

β

(

−2

3

)

=

(

1 −
(

−4 1
−13 3

))(

3 −1
13 −4

)

β

(

−2

3

)

≡
(

1 − H13

(

−4 1
−13 3

)

H13

)

H13

(

3 −1
13 −4

)

β

(

−2

3

)

=

(

1 −
(

3 1
−13 −4

))

H13

(

3 −1
13 −4

)

β

(

−2

3

)

.(4.2)
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So,

(4.3)

(

1 −
(

3 1
−13 −4

))

(1 − ε1) ≡ 0

where

(4.4) ε1 = H13

(

3 −1
13 −4

)

β

(

−2

3

)

=

( √
13 14

3
√

13

−3
√

13 −
√

13

)

.

Since ε1 is elliptic of order 2 we cannot obtain anything from Lemma 2.1. However, we do
have an expression of the form (2.2) which looks like the definition of a second order modular
form.

4.2. The case of T4. From T4, again proceeding as in the Γ0(11) example, we first have

(4.5)

(

1 −
(

4 −1
13 −3

))

β(1/4) +

(

1 −
(

4 1
−13 −3

))

β(−1/4) ≡ 0.

Continuing exactly as above, this leads to

(4.6)

(

1 −
(

3 1
−13 −4

))

(1 − ε2) ≡ 0

where

(4.7) ε2 =

(

−
√

13 −4√
13

7
√

13

2

√
13

)

.

Again ε2 is elliptic of order 2.

4.3. Combining T3 and T4. We can combine the two relationships to obtain

(4.8) 0 ≡
[

1 −
(

3 1
−13 −4

)]

(1 − ε)

for any ε in the group generated by ε1 and ε2, and perhaps one of those elements will be
elliptic of infinite order? Unfortunately, this is not the case. Note that

ε1ε2 =

(

10

3

2

3

−13

2
−1

)

,

which is parabolic. Since ε1 and ε2 have order 2, the group they generate contains only the
elements (ε1ε2)

n and ε2(ε1ε2)
n, so that group is discrete.

Although T3 and T4 were not sufficient to obtain the missing generator, there are an infinite
number of other Hecke operators to try.

4.4. The case of T6. We now proceed with similar calculations with T6. We have

0 ≡ H13(T6 − a6)H13 − (T6 − a6)

− [H13(T2 − a2)H13 − (T2 − a2)]

(

3
1

)

− [H13(T2 − a2)H13 − (T2 − a2)]

(

1
3

)

− [H13(T3 − a3)H13 − (T3 − a3)]

(

2
1

)

− [H13(T3 − a3)H13 − (T3 − a3)]

(

1
2

)

≡ −
(

1 1
6

)

+

(

6
−65 1

)

−
(

1 5
6

)

+

(

6
−13 1

)

.(4.9)
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Using manipulations similar to those above gives

0 ≡
[

−1 +

(

6 −1
65 11

)](

1 1
6

)

+

[

−1 +

(

6 −5
−13 11

)](

1 5
6

)

≡
[

−1 +

(

6 −1
65 11

)](

1 1
6

)

,

(4.10)

because

(

6 −5
−13 11

)

= M−1

2 H13T
−1H13T

−1 so the second term on the first line is ≡ 0. So

we have
(

1 1
6

)

+

(

6
−65 1

)

≡ 0,

so
(

6 −1
−65 11

)

≡ 1

This is not a new matrix because

(

6 −1
−65 11

)

= H13TH13TH13M2H13. That is, the above

manipulations with T6 produce results that can be obtained from T2.

4.5. Computer manipulation of Hecke operators. The explicit manipulation of Hecke
operators described in this paper are quite tedious to do by hand, so we decided to make use
of a computer. We modified Mathematica to do calculations in the group ring C[SL(2, R)],
made functions for the Hecke operators, automated manipulations that occur repeatedly
(such as the first step in every example in the previous section of this paper), and imple-
mented some crude simplifications procedures.

For the simplification procedures, we sought to automate the discovery, for example, that
if T ≡ 1, H13 ≡ ±1, and M2 ≡ 1, then

(4.11) −1 +

(

6 −1
65 11

)

≡ 0,

as we saw at the end of the previous section. Our approach was to put all of the matrices in
each expression in “simplest form” by considering all products (on the left) with, for example,
fewer than 6 matrices where are known to be ≡ 1, and then keeping the representative which
has the smallest entries. This idea worked surprisingly well.

We also implemented a “factorization” function which would do the (trivial) calculation to
check such things as whether 1−γ1−γ2+γ3 was of the form (1−γ1)(1−γ2) or (1−γ2)(1−γ1).

4.6. The case of T7. Calculations with T7 yield interesting results. We have

0 ≡ H13(T7 − a7)H13 − (T7 − a7)

≡ −
(

1 2
7

)

+

(

7
−52 1

)

−
(

1 3
7

)

+

(

7
−65 1

)

−
(

1 4
7

)

+

(

7
−26 1

)

−
(

1 5
7

)

+

(

7
−39 1

)

.

(4.12)

Note that the expression on the right consists of 4 pair of matrices, as opposed to the
6 pair that one would expect to obtain from T7. This is because two pair canceled during
simplification.
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It turns out that the right side of the above expression factors as
[

−1 +

(

−3 1
−13 4

)](

1 2
7

)

+

[

−1 +

(

7 4
−65 −37

)](

1 −4
7

)

+

[

−1 +

(

7 −4
−26 15

)](

1 4
7

)

+

[

−1 +

(

3 1
−13 −4

)](

1 −2
7

)

=

[

−
(

3 1
−13 −4

)

+ 1

](

3 1
−13 −4

)−1

H13

(

1 2
7

)

+

[

−
(

3 1
−13 −4

)

+ 1

](

3 1
−13 −4

)−1

H13

(

7 −1
−13 2

)−1(

1 −4
7

)

+

[

−1 +

(

3 1
−13 −4

)](

7 1
13 2

)−1(

1 4
7

)

+

[

−1 +

(

3 1
−13 −4

)](

1 −2
7

)

=

[

−1 +

(

3 1
−13 −4

)]

(

−
(

−
√

13 2√
13

3
√

13 −
√

13

)

−
(

2
√

13 1√
13

−7
√

13

)

+

(

2 1
−13 −3

)

+

(

1 −2
7

)

)

.

(4.13)

We can right multiply by the inverse of any of the four matrices in the second factor to
rewrite this in the form (1−γ)(1+A−B−C). For no good reason we choose the first term,
giving

0 ≡
[

1 −
(

3 1
−13 −4

)]

×
(

1 +

(

29

7

5

7

−13 −2

)

−
(

5
√

13

7

17

7
√

13

−22
√

13

7

−5
√

13

7

)

−
(

5
√

13

7

24

7
√

13

−3
√

13 −
√

13

))

=

[

1 −
(

3 1
−13 −4

)]

(1 + A − B − C) ,(4.14)

say. This expression factors further. Specifically, one can check that A = CB, so we have

(4.15) 0 ≡
[

1 −
(

3 1
−13 −4

)]

(1 − C)(1 − B)

Unfortunately, B2 = 1, so we cannot immediately cancel the final factor to reduce to a
second-order type expression. It would be good if that happened, because we would have
another matrix to combine with the ε1 and ε2 from Sections 4.1 and 4.2.

However, there is a curious benefit to having B2 = 1, for we also have AB = C, so

(4.16) 0 ≡
[

1 −
(

3 1
−13 −4

)]

(1 − A)(1 − B).

Note that if B2 = 1, independent of any conditions on A and C, then (1+A−B−C)(1+
B) = (1 − CA−1)(1 + ABA−1)A, so

(4.17) 0 ≡
[

1 −
(

3 1
−13 −4

)]

(1 − CA−1)(1 + ABA−1),

which is almost a third-order condition. Such expressions arise whenever we have an order-2
matrix, so some types of factorization are not a surprise. In the particular case at hand,



10 DAVID W. FARMER, SALLY KOUTSOLIOTAS, STEFAN LEMURELL, AND SARAH ZUBAIRY

CA−1 = ABA−1, which has order 2, so (1 − CA−1)(1 + ABA−1) = 0 and (4.17) contains
absolutely no information. Perhaps one should think that if B2 = 1 then there always is
some factorization, for either (4.17) is nontrivial, or the expression factors nontrivially in
another way.

4.7. A few other cases. From T10 we get

0 ≡
[

1 −
(

3 1
−13 −4

)]

×
(

1 +

(

21

5

2

5

−13 −1

)

−
(

2
√

13

5

7

5
√

13

−11
√

13

5

−2
√

13

5

)

−
(

4
√

13

5

19

5
√

13

−3
√

13 −
√

13

))

=

[

1 −
(

3 1
−13 −4

)]

(1 + A − B − C),(4.18)

say. Again A = CB and B2 = 1, so we obtain two factorizations.
From T15 we get

0 ≡
[

1 −
(

3 1
−13 −4

)]

×
(

1 +

(

16

5
1

−117

5
−7

)

−
(

4
√

13 15√
13

−209
√

13

15
−4

√
13

)

−
(

17
√

13

15

4√
13

−59
√

13

15
−
√

13

))

,

(4.19)

which again factors in the same two ways.
From T9 we get

0 ≡
[

1 −
(

3 1
−13 −4

)]

×
(

1 +

(

10

3
1

−13

3
−1

)

−
(

2
√

13 9√
13

−53
√

13

9
−2

√
13

)

−
(

7
√

13

9

4√
13

−25
√

13

9
−
√

13

))

.

(4.20)

which again factors in the same two ways.
It would be helpful to understand the underlying reason why these expressions factor.
More time on the computer should produce more relations, but it is not clear how they

will combine to produce the desired result. It would be interesting if the relations could
build to the point where one could reduce higher order relations to lower order ones, which
could then combine with previously found relations to cause additional cancellation, and so
on, reducing down to the one missing generator for Γ0(13). It would be more satisfying if
one could find manipulations which produce any specific matrix, as one does in the proof of
Weil’s converse theorem.

Our approach here is to look for factorizations (1 − γ)(1 − δ)(1 − ε) ≡ 0 in the hopes
of eliminating the last factor, perhaps because ε is elliptic of infinite order. In the case of
expressions that do not factor, it would be interesting to know if there are cancellation laws
beyond those implied by Weil’s lemma. That is, are there conditions on A, B, C such that
f |(1 + A−B −C) = 0 implies some apparently stronger condition on f , beyond those cases
where 1 + A − B − C factors and Weil’s lemma applies?
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4.8. A curiosity. All the manipulations in this paper involve “pairing up” the terms in a
linear combination of matrices. Usually there is a natural way to do this, for one is hoping
to produce matrices in Γ0(N). However, it is possible to pair the matrices in different ways,
and one would like some justification for the choices and to know the consequences of making
the right (or wrong) choices. This is discussed extensively in [5].

We now give an example by repeating the analysis of Section 3 making the wrong choices.
From (3.3) with N = 11 we have

(4.21)

(

1 −
(

3 −1
11 −10

3

))

β(1/3) +

(

1 −
(

3 1
−11 −10

3

))

β(−1/3) ≡ 0,

where β(x) =

(

1 x
1

)

. Now doing manipulations exactly as in Section 4.1 we obtain

(4.22) 0 ≡
(

1 −
(

3 −1
11 −10

3

))

(1 − ε),

where

(4.23) ε = H11

(

3 1
−11 −10/3

)

β(−2/3) =

(√
11 − 4√

11

3
√

11 −
√

11

)

,

which has order 2.

Note that the above manipulations cannot lead to

(

3 −1
11 −10

3

)

≡ 1. Indeed, if p is prime,

the group generated by Γ0(p) and Hp is a maximal discrete subgroup of SL(2, R). So
no manipulation can lead to a new matrix which is ≡ 1. Yet, we do obtain additional
second order modular form type properties for newforms in Sk(Γ0(11)). It is not clear what
mechanism will lead to the production of new matrices for N = 13, yet not produce a
contradiction when N = 11.

5. Direct tests of the conjecture

In the previous section we used computer algebra experiments to search for a proof of
Conjecture 1.1 in the case N = 13. In this section we describe numerical experiments which
directly test the conjecture. We rephrase the conjecture as a question that can be explored
with a computer program.

Question 5.1. Suppose N is prime, k is a positive even integer, and P = {p1, . . . , pm} is
a set of primes. Are there only finitely many m-tuples of real numbers (ap1 , . . . , apm

), with

|apj
| ≤ 2p

k−1
2 , such that there exists a function

(5.1) f(z) =
∞
∑

n=1

ane
2πinz

that satisfies

(5.2) f |kHN = εf

with ε = ±1, and

(5.3) f |kTpj
= apj

f,

for all pj ∈ P?
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Question 5.2. If the answer to Question 5.1 is ‘yes’, are all such f in Sk(Γ0(N))?

Note that we assumed N is prime because the assumptions in Question 5.1 can force f to
vanish only at the cusps 0 and ∞ of Γ0(N). So, for non-prime N it may be that the answer
to Question 5.2 generally is ‘no’. However, there is a straightforward extension to the case
of square-free level using the Atkin-Lehner operators Uq for q|N . Alternatively, one can put
an assumption on the growth of the coefficients an.

A more subtle situation in which the answer to Question 5.2 is ‘no’ concerns arithmetic
properties of pj mod N . An example will illustrate the difficulty. Consider the case N = 17
with P = {2}. If χ17 is the primitive quadratic character modulo 17, then χ17(2) = 1.
Thus, the Hecke operator T2 for Sk(Γ0(17), χ), given in (1.6) is identical in form to the
Hecke operator T2 for Sk(Γ0(17)). Thus, such an assumption cannot lead to a ‘yes’ answer
to Question 5.2, and the best one can hope for is f ∈ Sk(Γ) where Γ1(17) ≤ Γ < Γ0(17).
This shortcoming is discussed in [5].

5.1. Tests of Question 5.1. For N = 13 and various cases of k and P , we performed nu-
merical calculations which suggest answers to Question 5.1. The idea behind the calculation
is that the Fricke relation (5.2) can be modeled by forcing

(5.4) f(zj) = N−k/2z−k
j f

( −1

Nzj

)

for a sufficiently large number of zj. One can view (5.4) as an equation in the coefficients an.
More specifically, given numerical values for (ap1 , . . . , apm

) and using the Hecke relations (5.3),
the only unknown coefficients in the expansion of f are an where (n, p1 · · · pm) = 1. Then
(5.4) is a linear equation in those unknown coefficients. We truncate the Fourier expansion,
and choose enough points zj in order to have an overdetermined system. That system should
be far from consistent unless there is an actual function f(z) which is an eigenfunction of
the Fricke involution and the Hecke operators. Thus, we test various m-tuples (ap1 , . . . , apm

),
searching for those which lead to a consistent overdetermined linear system.

In order to truncate the Fourier series, we must first choose a PRECISION to which we
will work, and a lower bound YMIN such that =(zj) ≥ YMIN for all j. That is,

(5.5) f(z) =
NTERMS
∑

n=1

ane
2πinz + err,

where |err| < 10−PRECISION whenever =(z) ≥ YMIN . We express the overdetermined system
in matrix form Mx = b, and find the least squares solution x̄. Let F = ‖Mx̄ − b‖∞ and
set E = F × 10−PRECISION . We refer to E as the (scaled) consistency measure of the
overdetermined system. Note that E < 1 if the overdetermined system is consistent to our
chosen precision.

In the remainder of this section we give some example results. Details of our calculations
can be found in Section 6.

5.2. Sample results. Figure 5.1 shows E vs. a(2) = a22
−5/2 for (N, k, ε,P) = (13, 6,−1, 2).

We have (PRECISION, YMIN) = (75, 0.45/
√

13). The calculation was done with 250 digits
of extra precision. The vertical scale of 1063 suggests that there are at most 4 values of a(2)
which lead to a consistent overdetermined system. Thus, the answer to Question 5.1 appears
to be ‘yes’ in the case (N, k, ε,P) = (13, 6,−1, {2}). Also see Table 5.3.
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-2 -1 1 2

10^63

Figure 5.1. E vs. a(2) for (N, k, ε,P) = (13, 6,−1, {2}).

Figure 5.2 shows E vs. a(3) = a33
−5/2 for P = {3}, with the other parameters the same

as in Figure 5.1. The vertical scale of 10−16 suggests that, to PRECISION = 75, all values
of a(3) which lead to a consistent overdetermined system. Thus, the answer to Question 5.1
may be ‘no’ in the case (N, k, ε,P) = (13, 6,−1, {3}). Also see Table 5.3.

-2 -1 1 2

10^-16

Figure 5.2. E vs. a(3) for (N, k, ε,P) = (13, 6,−1, {3}).

Figure 5.3 shows E vs. a(3) = a33
−5/2 for P = {3, 5, 7}, with the other parameters the

same as in Figures 5.1 and 5.2. We set a(5) ≈ −0.17733 and a(7) ≈ 0.94038. The vertical
scale of 1075 suggests that there are no values of a(3), given our choices of a(5) and a(7),
which lead to a consistent overdetermined system. This is what one would expect if there
were only finitely many triples (a3, a5, a7) which led to a consistent system, so the answer to
Question 5.1 appears to be ‘yes’ in the case (N, k, ε,P) = (13, 6,−1, {3, 5, 7}).

5.3. Summary of results. In Table 5.3 we give some representative results of our cal-
culations. Let EPRECISION = log10(E), where E is the consistency measure described in
Section 5.1. Thus, EPRECISION < 0 corresponds to a consistent system. In Table 5.3 we
report the value of EPRECISION for a single run of our Mathematica code.
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-2 -1 1 2

10^75

Figure 5.3. E vs. a(3) for (N, k, ε,P) = (13, 6,−1, {3, 5, 7}). We set a5 ≈
−0.17733 and a7 ≈ 0.94038.

Some trends in the table are expected, such as the increase of E with decreasing YMIN .
When EPRECISION is positive, it is not surprising that increasing PRECISION makes
EPRECISION even larger.

One puzzling feature is that in some cases, such as P = {3}, we have E significantly
smaller than 1. Also surprising is the fact that in this case the error becomes smaller with
increasing precision.

Another interesting feature is that the sign of ε(−1)k/2, which is the sign of the functional
equation of the associated L-function, has a noticeable effect on the consistency of the system.
In particular, the error seems to be larger for systems corresponding to L-functions with an
odd functional equation.

Our algorithm makes random choices to the zj, and to create the data in the table we also
must make a choice of ap for p ∈ P . Our experiments with various random choices showed
a range of 6 in EPRECISION due to the randomness. To minimize the effect of these choices,
we make the same choice for each example P . Additionally, the same choice of points zj

were used for each instance of (PRECISION, YMIN).

5.4. Another curiosity. Immediately following Question 5.2 we described some scenarios
in which the answer to Question 5.2 can be ‘no’. That discussion describes all situations in
which we have observed that the answer to Question 5.2 is ‘no’, however, there have been
some surprisingly close calls.

For example, the values of a(2) = a22
−5/2 in the −1 space of S6(Γ0(13)) are

(5.6) a(2) ∈ {−1.52887, 0.827455, 1.93885}.
However, in Plot 5.1 there also appears to be a value of a(2) near 0.062 which leads to a
consistent overdetermined system. Could it be that there is a “fake” L-function having a
functional equation and an Euler factor at p = 2, but which does not arise from a modular
form? Figure 5.4 suggests that there does not exist such a solution with a(2) ≈ 0.062. Note
that if one could only work to, say, 8 decimal places, it would be quite difficult to determine
if there was a solution with a(2) ≈ 0.062.

It would be interesting to determine the underlying cause for this phenomenon. One is
reminded of Hejhal’s explanation [8] for the surprising (and incorrect) appearance of zeros
of the Riemann ζ-function on an early table of eigenvalues of Maass forms for SL(2, Z).
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P k ε
√

13 YMIN E25 E50 E75 E100

2 4 1 0.85 -0.6 -0.4 6.0 10.2
0.55 11.5 29.8 47.3 64.3
0.45 17.5 41.5 65.8 86.5
0.35 23.3 48.1 72.0 97.3

−1 0.85 6.0 7.2 14.1 18.8
0.55 18.7 38.0 55.9 73.5
0.45 24.4 49.9 73.4 96.6
0.35 24.3 49.7 73.8 99.3

10 1 0.85 -6.0 -5.5 -4.6 0.4
0.55 8.0 24.8 40.0 58.0
0.45 14.8 37.3 60.9 79.6

-1 0.55 4.5 20.3 36.0 52.6
0.45 10.9 32.4 55.2 73.8

16 1 0.55 -0.3 12.8 28.0 43.0
0.45 5.5 24.9 47.8 67.0

2, 3 16 1 0.55 29.2 53.9 79.0 104.3
0.45 30.1 54.8 79.5 104.8

3 10 1 0.55 -10.8 -15.5 -23.0 -27.8
0.45 -8.5 -14.4 -17.7 -24.4
0.35 -7.9 -10.8 -15.1 -19.1

3, 5 10 1 0.55 -1.9 3.0 9.4 16.5
0.45 0.1 9.1 20.8 30.2
0.35 6.5 20.4 36.8 52.8

−1 0.55 -2.6 -1.2 3.9 10.3
0.45 -1.6 4.1 14.6 23.5
0.35 2.6 14.4 30.0 44.9

12 1 0.55 -2.0 -3.7 -0.9 5.0
0.45 -2.1 -0.1 10.2 18.3
0.35 0.0 10.2 25.5 39.5

−1 0.55 -1.9 -1.1 4.0 10.8
0.45 -2.3 4.4 15.8 24.7
0.35 3.2 15.7 32.0 46.9

3, 7 10 1 0.55 -3.6 -6.7 -8.2 -11.3
0.35 -2.9 -3.6 -3.9 -6.4

3, 7, 11 8 1 0.55 2.4 11.4 21.9 34.8
0.35 14.2 35.5 59.0 80.8

−1 0.55 7.4 18.9 30.1 43.3
0.35 19.8 43.5 67.3 91.8

16 1 0.55 -3.6 0.1 6.7 18.8
0.35 5.4 19.7 44.2 63.8

5, 7, 11, 17, 19 8 −1 0.55 4.2 8.3 8.2 5.8
0.35 12.2 15.1 15.3 14.2

Table 5.1. EPRECISION = log10(E) for various cases of (P , k, ε) and YMIN .

For each P the same random choice was made for each p ∈ P . And for each

choice of YMIN the same random choice was made for the zj.
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10^30 10^30

Figure 5.4. Close-ups of the minima near 0.062 and 0.827 in Plot 5.1 showing

that there is not a “fake” L-function with a2 ≈ 0.062. In both plots the hori-

zontal scale has width 1

2
× 10−9 and the vertical scale is of size 1030. We have

(PRECISION, YMIN ) = (50, 0.45/
√

13), which is slightly less PRECISION
than in Plot 5.1.

5.5. Other groups and further work. A separate paper containing more detailed calcu-
lations for other groups is in preparation. For example, those calculations suggest that for
P = {2} the answer to Question 5.1 is ‘yes’ for odd N ≤ 15, and for P = {2, 3} the answer
is ‘yes’ for N ≤ 31 with (N, 6) = 1. Also, there are good prospects for answering similar
questions for higher rank L-functions.

6. The Algorithm

In this section we describe some additional ideas behind our method and then give a com-
plete description of our algorithm. The algorithm is quite similar to early methods of locating
Maass waveforms [7], and it is closely based on the method of Farmer and Lemurell [4] for
studying Maass forms.

6.1. Parameters in the algorithm. The Fourier expansion (5.1) must be truncated in
order to deal with it computationally. We will be choosing pairs of points (zj, HNzj) in the

upper half-plane H. Since HN switches the interior and exterior of the circle |z| = 1/
√

N ,

we may assume |zj| < 1/
√

N . Note that this implies =(HNzj) > =(zj). If we fix YMIN > 0
and always choose =(zj) ≥ YMIN , then it is possible to precisely determine the error caused
by truncating the Fourier series (5.1). Note that this requires a bound on the coefficients an.
See Table 6.1 for some representative cases, of the number of terms, NTERMS, in the
truncated Fourier expansion.

25 50 75 100
0.85 52 92 132 172
0.55 82 145 206 268
0.45 101 178 253 328
0.35 132 231 327 424

Table 6.1. The number of terms in our truncated Fourier expansion, NTERMS,

for PRECISION ∈ {25, 50, 75, 100} and various YMIN , for N = 13 and k = 10.
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Thus, the input to our algorithm is the data from Question 5.1, along with YMIN (typically

around 1/2
√

N) and the desired precision (typically 50 or 100 digits).

6.2. The algorithm. Given (N, ε, k,P), we use the following algorithm to suggest an an-
swer to Question 5.1. First we choose a desired PRECISION and a height YMIN for
the imaginary part of zj. Since we will be producing an overdetermined linear system, we
must choose the factor by which the system is overdetermined. Generally, we use 30% more
equations than unknowns.

Step 1. Choose test values for ap1 ,. . . ,apm
.

Step 2. Use YMIN , PRECISION , and the assumed bound an ≤ d(n)n
k−1
2 , to determine

NTERMS such that

(6.1) f̃(z) =
NTERMS
∑

n=1

ane
2πinz

satisfies

(6.2) |f̃(z) − f(z)| < 10−PRECISION

for =z > YMIN .
Step 3. Use the Hecke relations (5.3) and the values of ap1 ,. . . ,apm

to rewrite f̃ as

(6.3) f̃(z) =
NTERMS
∑

n=1
(n,p1···pm)=1

bnane
2πinz,

where the bn are specific numerical values.
The an in (6.3) with n > 1 are the unknowns in the linear system we will produce.

Let NUNK denote the number of unknowns.
Step 4. Randomly choose approximately NEQNS ≈ 1.3 NUNK points zj = xj + iyj ∈ H with

yj = YMIN and |zj| < 1/
√

N . Let z∗
j = HNzj. Form the system of equations

(6.4)
{

f̃(zj) = N−k/2z−k
j f̃(z∗

j )
}NEQNS

j=1

.

Step 5. Expressing (6.4) in matrix form Mx = b, find the least squares solution x̄. Let
F = ‖Mx̄ − b‖∞ and set E = F × 10−PRECISION . We refer to E as the (scaled)
consistency measure of the overdetermined system.

Since E < 1 means that the overdetermined system is consistent to within the error from
truncating the Fourier series, we interpret the output of the procedure as follows:

• If E < 1, it is possible that (ap1 ,. . . ,apm
) corresponds to a function satisfying (5.2)

and (5.3). If E is much larger than 1, then (ap1 ,. . . ,apm
) probably does not correspond

to such a function.
• If E is much smaller than 1, say by a factor of more than 10000, the calculation sug-

gests that to within our PRECISION , almost all m-tuples (ap1 ,. . . ,apm
) correspond

to such a function. Indeed, if there was only a finite number of such functions, and
(ap1 ,. . . ,apm

) corresponded to one of them, then the consistency measure E should be
about the same size as the error due to truncating the Fourier series. That is, E ≈ 1.
It would be unusual if a large number of Fourier coefficients immediately following
aNTERMS all happened to very small compared to their expected size.
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• If (ap1 ,. . . ,apm
) was chosen randomly, then if E is much larger than 1 the calculation

suggests that only finitely many m-tuples (ap1 ,. . . ,apm
) correspond to a function f

satisfying (5.2) and (5.3). Indeed, based on the example of Hecke’s original converse
theorem, we expect that if the answer to Question 5.1 is ‘no’, then every choice of
(ap1 ,. . . ,apm

) should lead to a consistent system.

The above points are illustrated by the plots in Section 5.2.

6.3. Implementation issues. Several issues must be addressed before the algorithm can
be implemented.

An unavoidable difficulty is that the system of linear equations (6.4) is horribly ill-
conditioned. This is due to the rapid decay of e−2πny as n grows. However, choosing all
points zj = xj + iyj with yj = YMIN results in all elements in any given column of M being
of the same magnitude. One will then get a well-conditioned equivalent system by normal-
izing each column of M to have say maximal absolute value equal to 1. Hence this is not as
serious an issue as one might suspect. However, one should bear in mind that the precision
of the computed Fourier coefficients will decrease as n gets larger.

The coefficients of the Fourier expansion grows like n
k−1
2 . If the size of the coefficient

at the point of truncation is roughly 10c, then the smallest values in the matrix M will
be of size 10−PRECISION−c. Hence you need at least PRECISION + c digits of precision
in the computation for the last coefficients to be taken into account. In order to avoid
computational errors you will need even more digits of precision. For the calculations we
present here, with a precision of 50 we typically work with at least 100 extra digits in the
calculations, and with a precision of 100 we typically make use of at least 250 extra digits.

The choice of YMIN strongly affects the number of terms required in the Fourier expansion,
so there may seem to be some benefit in choosing YMIN as large as possible to get a short
Fourier expansion. However, if YMIN is chosen too large, then the points zj and z∗

j are
all located in a small region of the upper half-plane. Examining the function f in only a
small region will require calculations to extremely high precision in order to reveal the global
behavior. Thus, one cannot avoid using a fairly large number of Fourier coefficients, and
if YMIN is chosen too large it can misleadingly give a system that is consistent to within
the chosen precision. For example, choosing YMIN = 0.85/

√
N does not appear to give

satisfactory results, as shown in Table 5.3.

6.4. Implementation in Mathematica. We implemented the algorithm in Mathematica.

In Step 1 the test values api
were chosen as exact numbers satisfying | api

|≤ 2p
k−1
2

i . For Step
2, YMIN was also chosen as an exact (rational) number. The truncation error was approxi-
mated by the maximal absolute value of the first excluded term and we used the approximate

bound | an |≤ 2n
k−1
2 . (This is true for n prime and not too far off for non-primes.) In Step

4, the points zj (z∗
j ) were chosen (computed) with exact rational coordinates and then set to

the desired precision. Then Mathematica will use the necessary precision when computing
the exponential function etc when forming the system (6.4). So in Step 5, the matrix M
has the desired precision and when finding the least squares solution Mathematica will use
the necessary precision. We use the QR-factorization in order to compute the least squares
solution. If you don’t use enough precision, sometimes the residual Mx̄ − b will be so small
that Mathematica regard it as zero. One way to detect that the precision is not large enough
is that the last coefficients of the least squares solution x̄ will be zero. Once precision is large
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enough so that all coefficients of x̄ are different from zero, raising the precision doesn’t seem
to affect the solution significantly.

We tried the program on known modular forms with precision up to 200 digits and it gave
the correct Fourier coefficients to the desired precision.
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