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Abstract

In [FP] the ECO method and Aigner’s theory of Catalan-like
numbers are compared, showing that it is often possible to trans-
late a combinatorial situation from one theory into the other by
means of a standard change of basis in a suitable vector space. In
the present work we emphasize the soundness of such an approach by
finding some applications suggested by the above mentioned transla-
tion. More precisely, we describe a presumably new bijection between
two classes of lattice paths and we give a combinatorial interpretation
to an integer sequence not appearing in [Sl].

1 Introduction

A common fact in mathematics is that two distinct theories, often
developed using very different tools and on the basis of quite distinguished
needs, are successively shown to be equivalent or, at least, to be comparable
once a common language to describe them has been found. In this work
we focus our investigation on the relationship between two combinatorial
methods whose origins and tools are rather different, namely the ECO
method and Aigner’s theory of Catalan-like numbers. In a previous paper
[FP] it has been shown that these two theories can be compared provided
that they are both expressed in linear algebraic terms, i.e., more precisely,
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using linear operators on polynomials and (infinite) matrices. The main aim
of the present work is to demonstrate how the two theories can fruitfully
interact to produce new results or suggest research ideas. Typically, one
starts from a known fact of one of the theories and “translates” it into
the other, thus (hopefully) finding something new. Therefore our paper is
intended to mainly provide some applications of the techniques developed in
[FP], thus giving evidence to the strength of such a comparative approach.

We start in section 2 by giving the theoretical basis of the successive
applications, that is by recalling the basics of the comparison between ECO
method and Aigner’s theory of Catalan-like numbers as it is exposited in
[FP]. Here we have decided to use matrices rather than linear operators,
even if we will occasionally need operators in some of our proofs. Section 3
essentially contains an explicit bijection between two classes of paths that
has been suggested by two different interpretation of the same sequence in
each of the two theories under consideration. Finally, in section 4, we will
give a combinatorial interpretation to a sequence of Catalan-like numbers
which cannot be suitably dealt with using Aigner’s theory: our technique
consists of translating the problem into the framework of the ECO method,
where we will be able to use its typical tools to obtain the desired interpre-
tation.

2 Preliminaries on Catalan-like numbers and
ECO matrices

We start by recalling the main definitions and results of the two the-
ories we are going to work with, together with a sort of canonical way of
translating each of them into the other. This transformation, called the
fundamental change of basis, constitutes the main theoretical tool which
justifies the results developed in the present work. The main reference for
the material presented in this section is [FP], where the reader can actually
find much more than we are going to recall here. Indeed, we will just pro-
vide the basics needed to suitably describe our applications, in the effort
of making our paper self-contained.

A generalized Aigner matriz is an infinite lower triangular matrix A =
(@nk)n,ken such that agop = 1 and the remaining entries satisfy the following
recursions:

Unk = Tk=10(n—1)(k—-1) T SkA(n—1)k T Lk10(n—1)(k+1)- (1)

Alternatively, in a generalized Aigner matrix every entry can be com-
puted as a suitable linear combination of the three entries of the above



row next to it. Observe that the coefficients of the linear combination in
(1) depend only on the column index. Thus a generalized Aigner matrix is
completely determined by the three sequences p = (n)neN, 0 = (Sn)neN
and 7 = (t,,)nen, and for this reason we will refer to such a matrix as the
generalized Aigner matrix of type (p, o, 7).

Specializing the above definition, when p = 1 we will say that A is
the Aigner matriz of type (0,7), and when also 7 = 1 we will call A the
admissible matriz of type o. A huge amount of interesting results on Aigner
and admissible matrices are reported in Aigner’s papers [Al, A2, A3].

A generalized Aigner matrix A defines a sequence of positive integers
by simply taking the elements appearing in column 0; these numbers are
called the Catalan-like numbers determined by A. In the above cited papers
by Aigner many elegant characterizations and properties of Catalan-like
numbers are given, for example in terms of their Hankel matrices. Here we
wish to recall the fact that a Catalan-like sequence can be determined by at
most one admissible matrix, whereas there can be several different Aigner
matrices associated with the same sequence of Catalan-like numbers.

FEzxample. Consider the three sequences p = (1,0,0,...), o =
(1,1,1,...)and 7 = (2,1, 1,...). It is easy to see that the generalized Aigner
matrix of type (p, o, 7) begins as follows:

_ W =~
= Ot N = O
O OO OO
O OO OO
O OO OO

and has sequence A001333 of [S]] (preceded by a 1) as its Catalan-like
sequence. Analogously, one can immediately find that the Aigner matrix of

type (o,7) is

=g W =~
= o N = O
=W = O O
= -0 O O
o O OO

and its Catalan-like sequence is given by the trinomial coefficients, whereas



the admissible matrix of type o is

10 0 00
11 0 00
22 1 00
4 5 3 10 J
9 12 9 4 1

having the Motzkin numbers as its Catalan-like sequence. The last two
examples are considered in [A3].

In the rest of this section we will recall the basic facts concerning
ECO matrices. The main references concerning these topics are [DFR, FP],
whereas for the general notion of succession rule, generating tree and for
the ECO method we refer the reader to [BDLPP, B et al]. Here we will
just illustrate the concepts we need using a concrete example.

Consider the succession rule:

@
Q{ (2) ~ (2)5(4)(6) - - - (2K)(2k +2) (2)

defining the central binomial coefficients (2:) as level sums of the associated
generating tree. One can encode the generating tree of {2 by means of the
infinite matrix F' whose (n, k) entry represents the number of nodes labelled
k at level n. The first lines of F' are therefore the following:

1 0 0 00
1 1 0 00
3 2 1 00

F=106 3 10
35 20 10 4 1

Fis called the ECO matriz associated with §2. Obviously F' contains all
the enumerative information provided by the succession rule €; for instance,
the row sums of F clearly define the sequence determined by 2. We recall
that 2 has been first considered in [BFR], where the authors use it in the
enumeration of directed-convex polyominoes.

In [FP] the authors try to find a relationship between the theory of
(generalized) Aigner matrices (and Catalan-like numbers) and the ECO
method. The main achievement of the above paper is the discovery that



the same combinatorial situation can often be described in the two settings
by two matrices which only differ by a standard change of basis, called the
fundamental change of basis. More precisely, let €2 be a succession rule and
F = (fok)nken its ECO matrix. Consider the matrix A = (an k)nkeNn =
FP, where P = ((Z))n‘keN is the usual Pascal matrix. Then, it is shown
in [FP] that, in a large number of interesting combinatorial situations, A
is in fact a generalized Aigner matrix. Actually, it is immediate to see that
An,0 = Y fnk, S0 that the row sums of F' are mapped into the elements
appearing in the first column of A, i.e. the sequence determined by the
succession rule €2 is transformed into the sequence of Catalan-like numbers
of A: this fact suggest that the proposed change of basis is indeed the best
candidate to establish a bridge between the two theories.

Unfortunately, there are cases in which things do not work so well.
The next two examples shows how this change of basis sometimes fails to
carry out the desired translation.

Example. Let © be the following succession rule:

. (1) k—2 k—3
0 { (g @) ¥

It is well known [BPPR] that the sequence determined by the above
rule is that of Catalan numbers. The associated ECO matrix is:

1 0000
0100 0
10100

F=12 29010
6 4 3 0 1

Multiplying F' on the right by P gives the matrix

1 0 000
1 1 000
2 2 1.0 0

A=15 5 3 1 0
14 14 9 4 1

A is the well-known matrix of ballot numbers, which is easily seen not to
be a generalized Aigner matrix.



Ezxample. Taking o = (1,0,0,0,...), one gets the admissible matrix

S WN ==
=W =

N e =)
— -0 O O
_— o O OO

which defines the Catalan-like sequence of the middle binomial coefficients
(LZ j)' If A is multiplied on the right by the inverse Pascal matrix P~1,
2

then the following matrix is obtained:

1 0 0 00
0 1 0 0 0
2 -1 1 0 0

F=10 4 —2 1 0
6 -5 7 -2 1

It is clear that F' is not an ECO matrix, simply because some of its
entries are negative.

Remark. Concerning the last example, we wish to notice that there
is the possibility of defining succession rules having positive and negative
labels, so that the matrix F' can be formally interpreted as an ECO matrix.
However, the combinatorial meaning of such rules is not clear yet, so we
prefer to avoid this possibility: for us, an ECO matrix is required to have
nonnegative entries.

2.1 A nontrivial example

In spite of the two counterexamples presented above, there are many
interesting cases in which the fundamental change of basis does indeed
work. A good source of quite classical examples can be found in [FP].
Here we would like to stress the soundness of our approach by exhibiting
a nontrivial example in which the two theories interact thus producing a
new result.

Consider the admissible matrix A of type o = (3,3, 3,...), whose first



lines are the following:

1 0 0 0 0
3 1 0 0 0
0 6 1 0 0
A=13 20 9 1 0
137 132 57 12 1

This matrix was first studied in [Al], and defines the Catalan-like
sequence of the so-called restricted hexagonal numbers [HR]. Performing
the fundamental change of basis, i.e. multiplying on the right by P!,
yields the matrix:

1 0 0 00
2 1 0 0 0

5 4 1 0 0
AP'=1 15 14 6 1 0
8 1

51 50 27

From a careful inspection of the first few lines of AP~!, we are led to
claim that AP~ is the ECO matrix associated with the succession rule:

Nt
Q{ (k) ~ (3)(&) - (k — D(k)2(k+1) @

Therefore, thanks to our fundamental change of basis, we have found
a succession rule for the restricted hexagonal numbers. It would be nice to
determine a combinatorial construction for some class of structures counted
by these numbers encoded by such a rule. We remark that the rule Q was
independently guessed also by E. Deutsch [D] in a completely different
manner (i.e. using production matrices [DFR]).

To give a rigorous proof of the above claim, we will settle a more
general theorem; as a corollary, we will then be able to deduce the desired
result. However, before starting, we need to introduce some notations and
known results. For all these facts we refer the reader to [FP].

First of all, in the proof of the next theorem we adopt the following
convention: the lines of our matrices will be indexed using positive integers
(whereas, in the rest of the paper, we use nonnegative integers). It will be
very useful for us to use linear operators and polynomials in our proof.
Thus, if A = (apk)ni and F = AP™Y = (fur)nk, then we set 3,(z) =
Sioq fak®® =345 ankpr (), where p, (z) = z(z —1)" 1. We will denote



by T the linear operator on polynomials defined by T'(z") = 1 + = + 2% +
-+ 4 2"~ 1. The following technical results can be found in [FP], and will
be extensively used in the sequel.

Proposition 2.1 1. [T*(2")],—0 = (}7})-
2. ank = [Tk(ﬂn(x))] 2=0"

Finally, we wish to remark that all these conventions, notations and
results will be used also in the proof of proposition 4.1.
Now we are ready to state and prove our result.

Theorem 2.1 Let A be the admissible matriz of type 0 = s. Then F =
AP~ 4s the ECO matriz determined by the succession rule

0.1 ©
1 (R~ (s)(s+1)(s+2) - (k—=1)(k)SHk+1)

Proof. We will prove, equivalently, that, if F' = (fnk)nk is the ECO
matrix associated with , then A = F'P is the admissible matrix of type
o =s. 50, if A= (ank)nk, then our thesis is that

Q(n+1)k = An(k—1) T SAnk + Qn(k+1)-
Equivalently, we wish to show that

[T* (Bnt1 (@) om0 = [(TF7F + 8T* + T4 (B4 ()] a=0-
Applying the above proposition, we then get:

§§<21>ﬂwuw/§;<<25>+s<zi)r(hk1>>ﬁm,(@

Now recall that our hypothesis is that the following recursion holds:

fote = fn(k y+ (=D fur + fogerr) -+ fan

= Z fnl fnk

1=k—1

Plugging the above formula into the Lh.s. of (5) we obtain:
"R i1 h—1
LS G0) ool
- h—1 h—1 h—1
= 2 G2) G () e (zy) )



Using well-known properties of binomial coefficients, it is not difficult

to show that
h+l .
i—1 h—1 h—1 h—1
= 2 6
o) (o)) () o

and so the theorem is proved. W

As it is shown in [A1], the generating function fs(z) of the Catalan-like

numbers 7(15) associated with A = A®) is

1 —sz— /1 —2sx+ (s — 4)a?
N 22 '

fs(x)

Moreover, (Cffﬂ))n is linked to (C,(f))n by the following recursion:

cE =3 (Z) .

k=0
ie. (Cffﬂ))n is the binomial transform of (07(15))”

Tt is clear that, for s = 3, we get precisely the admissible matrix of the
beginning of this section.

In the spirit of the last theorem, we can prove one more general re-
sult concerning the fundamental change of basis. Since the proof follows
basically the same lines as those of theorem 2.1, we omit it.

Theorem 2.2 [If A, is the generalized Aigner matriz of type (o, p,T), with
p=s=1Tand o =2s, then F, = A,P™! is the ECO matriz associated
with the succession rule

[ (@25)
@ { (ks) ~ (25)°(38)° - (ks)*(( + 1)s)"

As a consequence, we find that the Catalan-like numbers (C,(f))n de-
fined by A, (or, which is the same, the sequence determined by ) are

strictly linked to the Catalan numbers. Indeed, if f(z) = >, Cnha™ is the
generating function of Catalan numbers, we obtain:

fs(x) = ZCS):U" = Zs"Cnx" = f(sx).

This result agrees with proposition 3.2 of [DFR).



3 A bijection

Our first application concerns a very classical integer sequence, i.e.
the central binomial coefficients (2";1). It is easy to see that they are
indeed a sequence of Catalan-like numbers: they are in fact defined by the
admissible matrix A of type o = (3,2,2,2...) (see [Al]). Now consider the
matrix F' = AP~!': the following proposition can be proved following the

argument of theorem 2.1, so it is left to the reader.

Proposition 3.1 F is the ECO matriz determined by the succession rule

BRG)
@ { (k) ~ (3)2(4)(5) - (B)(k + 1)

Therefore we have a nice description of the central binomial coefficients
both in the theory of Catalan-like numbers and in the framework of the
ECO method. But what about the combinatorial interpretations connected
with such descriptions?

As far as Aigner’s theory is concerned, a general way of giving a combi-
natorial meaning to each entry of an admissible matrix is exposited in [A1].
More precisely, for an admissible matrix A = (ani)nk Of type o = (Sg)k,
ank is the number of lattice paths from (0,0) to (n, k) never crossing the
z-axis and using up (i.e. (1,1)) steps, down ((1, —1)) steps and s, different
types of horizontal ((1,0)) steps at height k. In particular, the associated
Catalan-like numbers count paths ending on the z-axis. Thus, for example,
Dyck paths and Motzkin paths come from the admissible matrices of types
o = 1 and o = 0, respectively. According to this general setting we have
therefore the following combinatorial interpretation for the central bino-
mial coefficients: they count a class of “coloured” Motzkin paths, where
horizontal steps are bicoloured, except for those lying on the z-axis, which
can assume three colours.

On the other hand, from the point of view of ECO, it is well known
that  describes an effective construction for the class of Grand Dyck paths
starting with an up step (recall that a Grand Dyck path is a Dyck path
without the constraint of remaining above the x-axis). For such a construc-
tion we refer the reader to [PPR].

Our fundamental change of basis has therefore provided two different
combinatorial interpretations of the same integer sequence, thus suggesting
the existence of a presumably interesting bijection between the two classes
of paths under consideration. The determination of such a bijection will be
the object of the rest of this section.

Our bijection is basically a generalization of the bijection given in [DV]
between Dyck paths of length 2n and bicoloured Motzkin paths of length
n—1. Such a bijection is obtained by applying the following transformation:

10



1. the first and the last step of the starting Dyck path (which are clearly
an up step and a down step, respectively) are deleted;

2. reading the path from left to right, and denoting by U an up step and
by U a down step, we perform the following substitutions on pairs of
consecutive steps:

a pair UU is replaced by a black horizontal step;

a pair UU is replaced by a green horizontal step;

a pair UU is replaced by an up step;
a pair UU is replaced by a down step.

Call such a transformation f (see fig. 1).

(b)

Figure 1: (a) a Grand Dyck path; (b) the corresponding bicoloured Motzkin
path. For simplicity, green steps are represented by means of dashed lines.

Now let P be a Grand Dyck path starting with an up step. P can
be decomposed into subpaths Pi,..., Py, where each P;, 1 < i < k, is
a primitive Dyck path lying above or below the z-axis. In particular, P,
remains necessarily above the z-axis. Each P, is of the form UP/U or U P;U,
depending on its position with respect to the z-axis (see fig. 2).

11



e

Figure 2: The decomposition of a Grand Dyck path.

Now, if C'is a Dyck path, denote by C the path obtained from C by
interchanging up and down steps. Consider the following operations:

1. apply the bijection of [DV] to P, so obtaining a bicoloured Motzkin
path;

2. for every i, 2 < i <k, if P; lies above the x-axis, then it becomes the
path f(P/) preceded by a green horizontal step, otherwise it becomes
the path f(P/) preceded by a red horizontal step (see fig. 3).

f(P) f(P}) SP5) N f(P) f(P,)

Figure 3: The bicoloured Motzkin path corresponding to the Grand Dyck
path sketched in fig. 2; to denote red steps we have used black steps marked
with dots.

The above described operations determine a bijection. To show
this, consider a bicoloured Motzkin path (with green and black horizon-
tal steps) whose horizontal steps at level zero are possibly tricoloured
(they can also be red). Just scan the path from left to right locat-
ing the red and green horizontal steps lying on the z-axis; for exam-
ple, M = Mired Msred MsgreenMygreenMs, where red and green denote
the red and green horizontal steps, respectively. The path M; preced-
ing the first red or green horizontal step at level zero is transformed
into the path Uf~'(M;)U. Let M;, 2 < i < k, a subpath of M as in
the above example. If M; is preceded by a red horizontal step, then it
is transformed into U f=1(M;)U; if it is preceded by a green horizontal
step, then it is transformed into Uf~'(M;)U. Therefore, applying our
bijection, the inverse image of the above path is the Grand Dyck path
Uf~H(M)UUf=Y(M2)UU f~=H(M3)UU f~H(Ma)UU f~H(M5)U.

12



4 A combinatorial interpretation

In [A3] Aigner succeeds in finding a general way of giving a com-
binatorial interpretation to several sequences of Catalan-like numbers by
considering Aigner matrices whose entries satisfy some kind of nice-looking
recurrence. More specifically, he is able to deal with recurrences of Shef-
fer type; here the terminology is borrowed from classical umbral calculus,
whose roots can be traced back to Rota and his collaborators [RKO]. On the
other hand, no general combinatorial interpretation is known for Catalan-
like numbers associated with Aigner matrices not of Sheffer type; only some
specific examples are considered by Aigner, along with a few connections
with well-known integer sequences.

Here we will provide a new example of an Aigner matrix whose entries
do not satisfy a Sheffer-type relation, together with a combinatorial inter-
pretation of the associated Catalan-like numbers. This has been possible
thanks to our fundamental change of basis and to the typical tools of the
ECO method.

Consider the Aigner matrix A of type (o,7), with ¢ = 1 and 7 =
(2,3,4,...). The first lines of A are the following;:

1 0 0 00
1 1 0 00
3 2 1 00

A=17 8 3 1 0
23 24 15 4 1

We point out that the sequence 1,1,3,7,23,71,... does not appear
in [S]], so a combinatorial interpretation would be particularly interesting.
Applying the fundamental change of basis we get the following matrix F':

1 00 0 0
0 100 0
2 010 0
F=AP'=|1 501 0
11 2 9 0 1

Proposition 4.1 F is the ECO matrix associated with the following suc-
cession Tule:

@
0 { (2 — 1) ~ (1)(3)(5) - - (2 — 5)(2k — 3)F(2k + 1) (7)

13



Proof. As we did in theorem 2.1, we will prove the equivalent statement
that, if F' = (f,x)nk is the ECO matrix defined by €, then A = (ank)n i =
FP is the Aigner matrix of type (o,7), with 0 = 1 and 7 = (2,3,4,...).
Therefore we have to show that the following recurrence relation holds:

O(n+1)k = Qn(k—1) T Onk + (k+ 1)an(k+1). (8)

As usual, the idea is to use linear operators, so that (8) is equivalent
to
[T*(Bnt1(2)]a=o = [(T*1+ T% + (k + DT (Ba(@))]o=o-  (9)

The application of proposition 2.1 translates (9) into

n+1 n
h—1 h—1 h—1 h—1
S (1)t =3 (1 o)+ (o) + e+ (") )
h=1 h=1
(10)
Now we use our hypothesis, which is essentially the following recursion:

Sk = fae—1) + (K + D) fagrr) + faeso) T+ fan-
Plugging the above formula into (10) returns:

L1\ [ &
Z <k - 1> ( Z fri + Pfngnrr) — fm)

(D o O e (e

Once again, using the equality (6) of theorem 2.1, we see that the last
equality is equivalent to

3 (0027 - (L)) =3 (1) (D) e

But the equality (h — 1)(2:?) = k(h;1> is trivially true, whence the
proposition follows. H

Our next goal is to find a class of objects generated according to €.

Below we will show that a particular class of coloured steep polyominoes
has an ECO construction described by such a rule.

14



4.1 Coloured steep polyominoes

Let us begin by introducing some basics of the combinatorial objects
we are going to deal with, and their main features.

In the plane Z x Z a cell is a unit square, and a polyomino is a finite
connected union of cells having no cut point. Polyominoes are defined up
to translations. For basic definitions on polyominoes we refer to the book
of Golomb [G].

A column (row) of a polyomino is the intersection between the poly-
omino and an infinite strip of cells whose centers lie on a vertical (horizon-
tal) line.

A particular class of polyominoes are the parallelogram polyominoes,
defined by two lattice paths that use north and east unit steps, and intersect
only at their starting and ending point. These paths are commonly called
the wpper and the lower path. Without loss of generality we assume that
the upper and lower path of the polyomino start in (0,0). The area of a
parallelogram polyomino is the number of its cells, and the semi-perimeter
is given by the sum of the numbers of its rows and columns. Figure 4 (a)
depicts a parallelogram polyomino having area 30 and semi-perimeter 19.

(@) (W]
Figure 4: (a) a parallelogram polyomino; (b) a steep polyomino.

It is known [P, St] that the number of parallelogram polyominoes hav-
ing semi-perimeter n + 1 is the n-th Catalan number i (*").

A lower parallelogram steep polyomino (briefly, steep polyomino) is
a parallelogram polyomino whose lower path has no consecutive east
steps (see Fig. 4). This class of polyominoes was introduced and stud-
ied in [BDFP]; in particular the authors proved that the number of steep
polyominoes having semi-perimeter equal to n + 2 is given by the n-th
Motzkin number. A simple proof of this statement can be given using the

ECO method. Let S,, be the set of steep polyominoes having semi-perimeter

15



equal to n 4 2, and let ¥ be an operator such that, for any n > 0:
9: S, — 251,
and ¥ acts on a polyomino P € S, as follows (see Fig. 5):

i) ¥ glues a column of length h, 1 < h < k — 1 to the rightmost column
of P, with the top of the glued column at the same level as the top
of the rightmost column;

ii) ¥ glues a cell on the top of the rightmost column of P.

3 @ @ “@
|

Figure 5: The ECO operator 9 applied to the steep polyomino on the left
produces the three polyominoes on the right. The cells added by ¥ have
been shaded.

We easily prove that the operator ¥ satisfies the two fundamental con-
ditions to be an ECO operator [BDLPP]:

1. for each P’ € §,,41, there exists P € S,, such that P’ € 9(P),
2. for each P, P’ € S,, such that P # P', 9(P)NJ(P") = 0.

Thus all the objects of S are generated, and each object P’ € S, is
obtained from a unique P € S,,. Moreover, the succession rule associated
with 1 is:

(1)
{ (k) ~ (1)...(k=1)(k+1), k> 2. (11)

We point out that the succession rule (11) has already been studied
in [BDLPP], where it was proved that (11) defines Motzkin numbers.

Our aim is now to define a new class of steep polyominoes, namely
2-coloured steep polyominoes where some columns can have a coloured cell,
and to give an ECO construction for such a class. Since, up to now, we
have tacitly assumed that a generic parallelogram or steep polyomino has
all white coloured cells, then we will allow these new cells to be coloured
black.

16



Let us give a formal definition of the class of 2-coloured steep poly-
ominoes 2S. Let P be a steep polyomino having m > 1 columns, namely
Ci,...,C,, numbered from left to right, and assume that for 1 < i < m,
h(i) and h(i) are the ordinates of the bottom and top cell of C;, respectively.
The polyomino P is in 2§ if:

i) the first column of P has all white cells;

ii) for any 1 <4 < m—1, the column C;; has all white cells if h(i+1) >
h(i) + 1. Otherwise, if h(i + 1) = h(i) + 1, the column C;; can have
at most one black cell, and its height must be between h(¢) + 1 and
h(i), (see Fig. 6 (a)).

Figure 6 (b) depicts a 2-coloured steep polyomino, having four black
cells, in columns C3, Cy, Cg, and Cs.

R0
- h(i)+1
e h(l) —
Ci Ci+1 IR
(a) (b)

Figure 6: (a) Definition of a 2-coloured steep polyomino. The polyomino
can have one black cell in column C;i; at height k(i) + 1,...,h(i). The
possible positions where a black cell can be placed have been marked with
x. (b) A 2-coloured steep polyomino. Columns Cy and Cs cannot have a

black cell, since h(2) =2 >1=h(1)+1, and h(5) =7 > 5= h(4) + 1.
Let 2S5, be the set of 2-coloured steep polyominoes having semi-
perimeter equal to n + 2, and let 95 be an operator such that, for any
n > 0:
¥y 1 28, — 225"“,

working as follows on a polyomino P € 2§, (see Fig. 7):

17



4 ) ) ) 4

“ “ ﬁ (5)

Figure 7: The ECO operator 95 applied to a 2-colored steep polyomino.

i) Y2 glues a column of length h, 1 < h < k—1 to the rightmost column
of P, with the top of the glued column at the same level as the top
of the rightmost column;

ii) Y2 glues a column of length & — 1, with one black cell, at height
1,...,k—1, to the rightmost column of P, with the top of the glued
column at the same level as the top of the rightmost column;

iii) ¥ glues a white cell on the top of the rightmost column of P.

The application of ¥ to a polyomino P having k cells in the rightmost
column produces (k — 1) + (k — 1) + 1 = 2k — 1 polyominoes whose semi-
perimeter is increased by 1. It is clear that ¥4 is an ECO operator on the
class 5.

The succession rule associated with 1, is then:

(1)
{ (k) ~ (1) ... (k= DFEk+1), k> 2. (12)

The key point in writing down such a succession rule is that the label
(k) denotes the number of cells in the rightmost column of a polyomino.

We point out that the succession rule (12) is equal to (11), except
for the exponent k of the label (kK — 1) in the production of (11). Despite
this similarity, and according to the notation introduced in [B et al], (11)
is clearly a succession rule of a factorial form, leading to an algebraic
generating function, whereas (12) is a transcendental system, leading to a
transcendental generating function (for more details see [B et al.], Prop. 6).

18



We also would like to remark that the rule (12) has not the consistency
property for succession rules, that any label (k) should produce exactly k
labels. It is easy to show that the succession rule (12) is equivalent to the
rule in (7), which instead has the consistency property.
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