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1. INTRODUCTION

A rook polynomial is a polynomial whose z* coefficient is the number of ways k rocks can
be placed on the squarcs of an arbitrarily shaped chessboard so that no rooks share the same
rows or columns. The k rooks are called non-taking. Rook polynomials pattern combinatorial
situations, especially those involving restricted permutations. The conventional square board
used in the game, chess, is but one configuration.

When all possible board shapes are considered, a wide variety of rook polynomials result.
They can be obtained through interesting algebraic, semi-algebraic, or algorithmic operations
on the (row,column) matrix designation numbers of the individual squares of the board [1],
[3], [7]. Since here we use square boards, our task is simplified because square boards have
easily derived, unique rook polynomials.

ROOK POLYNOMIALS OF SQUARE BOARDS

Consider, for example, finding the z? coefficient of the rock polynomial of a 4 x 4 chess-
board. The value is the number of ways 2 non-taking rooks can be placed on the board, one
of which is shown below.
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In one row, a rook can be in any of 4 positions and in a second row can be in any of 3
positions. There are P(4, 2) ways to place 2 non-taking rooks on any set of two rows. But, there
are C'(4,2) sets of two rows, so the desired coefficient is C'(4,2)P(4, 2) = 72. Similar reasoning
for the general coefficient of z* in the rook polynomial for an r x r board yields C(r, k)P(r, k),
and a general expression for the rook polynomial becomes k=0 Cr, k) P(r, k)z*. The rook
polynomial of our example is

1+ 16z + 7222 + 962° 4 24z* (1)

THE SQUARE BOARD ROOK POLYNOMIAL TRIANGLE (SBRP)

Note that the numerical coefficients of (1) form the 4th row of Pascal’s triangle with each
k™ entry multiplied by P(4,k). It is interesting to explore some of the extensions to a SBRRP
triangle, an example of which appears below. The rows start with r = 0 and continue through
r = 5. Positions start at k = 0 on the left and continue to the right through k = r for that
row. The general term is C(rk)P(rk) = k![C(r,k)]> = 4[P(r, k)]? as compared with C(r, k)
for Pascal’s triangle. An interesting, if minor, feature of the r» row is that the Oth coefficient
is always 1, the 1st is 72, and the r** is 7l
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ROW GENERATION

Pascal’s triangle seems to express its universality by being central to several classes of
integer triangles [4], [5]. The SBRP triangle is a member of one such class in that each entry
of a next row is a function of the sum two entries immediately above it in the preceding row
(as in Pascal’s triangle).

Multiplication of the sum of two adjacent r** row entries by the factor, f1(r, k), yields the
immediately below (r + 1)™* row entry and factor as

[C(r,k)P(r,k) + C(r,k+ )P(r,k + D]fi(r, k) =Cr+ LE+ DPr+1,k+1)  (3)
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For 7 = 4,k = 2, (3) and (4) check out as (72 + 96) %2 = 600 on triangle (2). We can similarly
determine the (r — 1)** row entry of (2) from the sum of the two immediately below r** row
entries. The fo(r,k) becomes

(r—k)*k+1) (5)
r2[(k+ 1)+ (r —k)?]

fz(r:k) =

(Although rarely done in Pascal triangles, the previous (r — 1)** row entry from the sum of

the two immediately below r*" row entries is easily found to be f3(r, k) =

(r—k)(k+1) )
(=S

PROPERTIES OF RIGHT-DESCENDING DIAGONALS

Integers of the right-descending diagonals of (2) appear in Sloane and Plouffe’s [8] ency-
clopedia of sequences as absolute value coefficients of Laguerre polynomials. To be consistent
with conventional terminology, we will express the sequence terms in index n starting with
n — 1, by first finding the diagonal terms as functions of the row number, s, of the left termi-
nus and the row number, 7, of a sequence term. It appears that the first term of a Laguerre
sequence is 1 and the second term is always a square. For agreement with our computations
and terminology, the Laguerre sequence which has (s + 1)? as its second term is the sequence
associated with our parameter s. For example, the diagonal of (2) which reads 1, 9, 72, - - -
has s = 2 since (2 + 1) = 9. For the right-descending diagonals, 7 increases by one for the
next term. Recall also that we have to take into account that we start indexing r with 0, not
1. By noting this, we can derive equivalent forms of a general diagonal term as

r)r—1)---(r—{s—1
C(r,r — 8)P(r,r —s) = [C(r,r — 8)2(r — 8)! = (r)( )(s!§2 ( ))r! (6)

The expresssions of (6) have no value for r < s, ie., until r = s. However, if 7 is replaced
by r = n+ s — 1, we have the sequence values in the more useful and conventional index n
starting with 1 for n = 1. With the substitution for 7, (6) has the closed form

12
(((Zti)!(gl))z @

The 0 right-descending diagonal of (2) is 1, 1, 2, 6, 24, ---, (n — 1)!,---. Sloane and Plouffe
[8] list this sequence as M1675 but use n! as the general term because they start the sequence
with the value 1 for n = 0. The 1st (s = 1) right-descending diagonal of (2) is 1, 4, 18, 96,
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600, -+ ,n-nl, .- and appears as M3545 in [8]. The 2nd (s = 2) right-descending diagonal
of (2) is 1, 9, 72, 600, 5400, %‘%}}.F Reference [8] lists this sequence as M4649. At

this point, reference [8] includes a closed generating function in the form of a ratio of two
polynomials in z for M4649. M4649 is listed as an ezponential generating function. This and
higher s-valued right-descending diagonals are identified as Laguerre polynomial coefficient
sequences. However, only M4649 includes a closed generating function. We welcome this
chance to contribute missing exponential generating functions in succeeding sections and to
develop a general generating function applicable to all higher Laguerre polynomials found in,
and suggested by, (8].

GENERATING FUNCTIONS FOR COEFFICIENTS OF LAGUERRE POLYNOMIALS

A quotient of polynomials serves as either an ordinary closed generating function or an
exponential closed generating function depending on how the quotient is expressed. In the
ordinary function, the general term is azz* while in the exponential function the same general

term is klag (%) = by (%’;—) . While it is easy to get ax’s by direct division, it is not possible to

get by’s dircetly this way. (Both Liu 7, pp. 33-34] and Brualdi [2, pp. 237-243] have interesting
discussions on this apparent impasse.) A fruitful approach to the inverse problem of finding
a closed function from either ordinary or exponential coefficients first involves conversion (if
needed) to ordinary coefficients. Finding the closed form generating function is then often
a matter of judgment, experience, and exceptionally good luck. Reference [8] devotes an
interesting chapter to various aspects of this problem.

The simplest solution attempt is indicated when we have a linear sequence of constant
coefficients, and we are reasonably sure that a closed form exists as a ratio of two polynomials.
If this is indeed the case, the sequence is index-invariant and a set of successive forward finite
differences from the sequence leads to a closed form ratio of polynomials. We use the systematic
z-Transform [6] approach which served so well in a similar situation in [4].

As stated earlier, the generating function listed in [8] is an exponential generating function.
It seems reasonable to assume that generating functions from higher order right-descending
diagonals are also exponential. To avoid difficulties with exponential generating functions,
we divide the coefficients of known exponential generating functions by k! for the appropriate
index k and treat them as coefficients of ordinary generating functions for which we might find
a closed form ratio of polynomials.

To review how the z-Transform approach [4], (6] works and to check our calculations, we
examine Sloane and Plouffe’s M4649. For completeness, we will then obtain the two gencrating
functions missing from [8] and develop a general expression for the closed generating function
for all right-descending diagonals of (2).

When working with z-Transforms [6], it is necessary to include ap and any other lowest-
indexed initial conditions. Since here ag = 0, computations are simplified. We start with a
triangular table of forward differences of the coefficients based on a finite number of coefficients.
The size of the table needed also depends on the order of recursion, which in this case is 4. The
first values of M4649 have been divided by the appropriate n! to appear as a,. The A*a,’s
are k" forward differences where we let a, = A, to complete the table.
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n oap, Alay, A%, Ala, Ata,

0 0
1

1 1 2.5
3.5 1.5

2 45 4 0
7.5 1.5 (&)

3 12 5.5 0
13 1.5

4 25 7 0
20 15

5 45 8.5

In (8), ﬁ4(.!n = 0,A3uu+1 = Asan — 0. Since A28n+2 = Azan.;.] = AaanH and Azan+1
Ala, = Adan, Alapio — 2021 + A2, = 0. We reduce to Alapsg —3A%en10 +3A% 41 +
Alg, =0,

Continuing with computing the zero differences leads to the homogeneous difference equa-
tion
Gnts — 4anpg +6an12 —dani1 +ap =0 )

The z-Transform [4], [6] of (9) yields
{z*Z(an) — 2*ap — 2%a; — 2%ay - za3} — 4{2°Z(a,) — 2%ag — 2%a1 — zaz}+

6{2°Z(a,) — 2%ap — za1 } — 4{zZ(an) — zag} + Z(an) =0 (10)

After factoring out Z(ay), rearranging terms, and substituting for ag through a; from (8), we
have the formula for Z(a,) and the numerical closed form ordinary generating function in z as

Z(a) = Zag + 2%(a1 — 4ag) + 2% (a2 — 4a; + 6ag) + z(as — 4as + 6a; — 4ag)
" f#—1)%

=T (1)

If the right side of (11) were expanded, the sequence terms of the ordinary generating function
would appear as coefficients of powers of % By replacing z by i in (11), we obtain as (12) the
ordinary generating funciton for our a’s in z and at the same time the exponential generating
function for the terms of the second right-descending diagonal. Recall this verifies M4649 of
Sloane and Plouffe (8].

T—o) (12)
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The “4-ness” and relationship to coefficients of the 4th row of Pascal’s triangle in (8)-(11),
and the fact that the recursion order is 4 = 2s for the s = 2 diagonal is not a coincidence.
ATl of the right descending diagonals have the same recursion, 2s. We observe the orderly
appearance and arrangement of binomial cocflicients from Pascal’s triangle and use the inverse
z-'Transform to get the common generating function in z and .

PLES P m—§—2z2~l~%i

(z=1)8 - (1—mz)b ()

Ry applying the same procedures, we obfain generating fanctions in z and z for the
right-descending diagonals for s = 4, 5, and 6.

'z"'+~9—§i+3z5+54: z+§§—2+3:£3+§

el - 15
’ o —1)8 -2 i
L AABP 12T+ 5 S o812 4 1 T 16)
o (z—1)© 1= 1)1

11, 2520 |, 100s° 8 7 i 25z° | 100z° 4 5 s
I + =5 + =~ + 25z + 52 +%_}z+T+T"+25z +52° + 5

(z 1)1 1 -z an

GENERAL GENERATING FUNCTION IN S

Consider the triangle formed by and implied by successive rows of the numerator terms
of the right sides of generating functions (14)-(17).

1z
Kz 1z?
. 2 1,3
1 & 9.2 - 343 N (18)
T 2r T iz .
lx 82 1223 4z* 15
1z %1:2 %za 257 5x° 1.6

A significant fact about (18) is its triangular form whose rows are the successive numer-
ators of the closed (either exponential or ordinary) generating functions like those which we
exemplified in (13)-(17). Moreover, should we multiply a rook polynomial by = and divide
each coefficient by the factorial of the power of its associated = in the new expression, the
result would also be the entries of (18). Another interesting feature of (18) triangle in the
development of the extension of (11).
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We purposefully chose ¢ = 2 as our derivation parameter for demonstrating the z-
Transform approach because the derived generating function could then be compared with
the only function listed in [8].

The case for 3 = 0 is unique in that the generating function, —log(1 — =), is logarithmic.
The terms of its series expansion may be observed as the 0% diagonal of (18), while the
adjusted coefficients of a series “exponential” expansion appear as the 0** diagonal of (2).

For s = 1, the generating function is ;7Z5r. The terms of the ordinary series expansion

can be seen from the lst diagonal of (18), while the coefficients of the exponential series
expansion appear as the 1st diagonal of (2).

SOME MISSING CLOSED GENERATING FUNCTIONS
The 3rd (s = 3) right-descending diagonal of (2) can be extended to yield series coefficients,
1, 16, 200, 2400, 29400 , - -- , % -+-. This sequence is listed in [8] as M5019 with, of

course, the Laguerre polynomial connection. The ordinary generating function which shares
the same closed form with the exponential gencrating function of M5019 yields 1, 8, %, 100,

245, 1538 1008, 1800, ﬂ_';"zs' zn_, ---. Because s = 3, and the recursion order is 6, the

difference triangle requires only ag = 0, and a; through as from the above series to find the
closed form ordinary gencrating function. We learned earlier [4] that we can bypass much of
the development and substitute the sequence values in

2%ag + 2°(a1 — 6ag) + 2% (as — 6a1 + 15a0) + 2%(az — 6as + 15a; — 20ap)+

zz(a.; — 6as + 15a — 20ay + 15ag) + 2(as — 6as + 15a3 — 20a; + 15a; — Bag) (13)
fw - 1)°

is that it has a terms of its right-descending diagonals, the terms of series ordinary generating
functions. In terms of s, (7) indicates that the general serics exponential generating function
for right-descending diagonals and corresponding series ordinary generating functions in 7,
starting with n = 1 are, respectively,

= ((n+s-1) i n+s—1)H7 |
2_: (L—sll(gl))g ' Z(( % (19)

n=1

For s = 3, for example, the generating function numerator of (14) occupies the s = 2 row in
(18). This difference of one is s for row occupation in general. However, the denominator term
s (1 —z)* or, in general, (1 — z)%. Hence, for a given s, the general generating function for
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either of the parts of (19), depending on exponential or ordinary interpretation, becomes the
desired general generating function.

5—1 (s=1®  _ (k+1)
k=0 ({s=k=1)N2 (k2 (k1) (20)
-y
SUMMARY

We have shown elementary, but interesting, comparisons of Square Board Rook Polyno-
mial (SBRP) triangles with Pascal triangles. We have investigated and extended the sequence
properties of the right-descending diagonals of SBRP triangles. In so doing, we have added to
and generalized known Laguerre sequence listings.
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