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Abstraet

(«, B)

(e B )(tl)qa,l (t2) of two Jacobi functions is expressed as an integral in

The product ¢;

terms of q;S{x’ b )(tg) with explicit non-negative kernel, when « = f = — §. The resulting

convolution structure for Jacobi function expansions is studied. For special values of o« and g
the results are known from the theory of symmetric spaces.

1. Introduetion

This paper deals with harmonic analysis for Jacobi function expansions, which
was initiated in [4]. The functions which we call Jacobi functions and which we
denote by ¢~#)(t) can be expressed as hypergeometric functions and are the non-
compact analogues of Jacobi polynomials P®f(z). Similar to results of Gasper
for Jacobi series ([5], [6]) we will present here results concerning the convolution
structure for Jacobi function expansions.

The Fourier-Jacobi transform is reduced to the classical Fourier-cosine transform
in the case o = f§ = — %. The transform is known as the (generalized) Mehler-
transform when o = f. For certain discrete values of « and g Jacobi functions
have an interpretation as spherical functions on non-compact symmetric spaces
of rank one. In this group theoretic context all the results presented here are well
known, i.e. the product formula, the positivity and commutativity of the convolution
product, the phenomenon of holomorphic functions in a strip as the duals of LrP-
functions, and the structure of the convolution algebra of L'-functions. We will
give the results for all « and B such that « =8 = — 1, only using analytic
methods, although the group theoretic interpretation was an important guide in
our research.

In our opinion Jacobi functions deserve as much interest as Jacobi polynomials.
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They probably constitute the most complicated continuous orthogonal system of
functions in one variable for which all significant aspects of the classical Fourier
transform can be generalized in a nice way.

Section 2 of this paper contains some preliminaries. Section 3 deals with properties
of the Fourier-Jacobi transform for LP-functions (1 < p = 2); in particular, the
injectivity of this transform is proved. The product formula for Jacobi functions
is an important tool for obtaining a convolution structure. In section 4 we derive
this product formula, which is analogous to Gelfand’s product formula for spherical
functions on homogeneous spaces. The formula is proved from the integral represen-
tation for Jacobi functions by using a new series expansion for the product of two
Jacobi functions. This expansion, which generalizes a formula for Jacobi polynomials
due to Bateman, may have some interest of its own. In the second part of section 4
the product formula is rewritten in kernel form and an explicit expression is obtained
for the (non-negative) kernel. The methods used in this section belong to the field
of classical analysis.

A functional analytic approach is used again in the last two sections. Section 5
contains a number of properties of the convolution product. In particular, estimates
are given for |[f+g|,, where f € L? and ¢ € L Generalizing a result of Kunze
and Stein [10] we can improve the well-known classical estimates in certain cases.
Finally, section 6 deals with the structure of the convolution algebra of L!-functions.
It turns out that all the non-zero continuous characters on this Banach-algebra can
be expressed by means of Jacobi functions ¢{*#(t), where 1 lies in a certain
strip in the complex plane.

In subsequent papers the first author will give a group theoretic interpretation
for the convolution structure when « and B are half integers. The second author
will give an elementary proof of the inversion formula for the Fourier-Jacobi trans-
form.

The research presented here was partly done at Institute Mittag-Leffler, Djurs-
holm, Sweden, where both the authors stayed during the academic year 1970—71.
We are grateful to professor Lennart Carleson for his hospitality.

2. Preliminaries

For « =2 =—1%, for A€C and for ¢e[0, ) let the Jacobi function
#20(t) (or @,(t)) be defined by

() = ¢ Ot) = oF1(F(o + i2), $(o — iA); & + 1; — (sh 1)), (2.1)

where 9 =a + f - 1, and ,F, denotes the hypergeometric function (see [3],
ch. 2)1). It follows by transformation of the hypergeometric differential equation
that ¢!*#(t) satisfies

1) In [4] the parameters » = 2¢ — 28 and ¢ = 28 + 1 were used instead of « and §S.
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(0, 5 + @° + )= t) = 0, (2.2)
where , , is the differential operator defined by
Ay ! (A A ) 2.3
woc,ﬂf: (t) dt (t) dt ( . )
and
A(t) = 2% (sh £)*™*! (ch )T, (2.4)
Let
du(t) = —=— A(t)d; (2.5)
“ \/ (t)

It was proved in [4] that the mapping f—f" defined by

£y = f £ P E)du(t) (2.6)

is a bijection of the space C§°, consisting of the even ('*-functions f(f) of compact
support, onto the space of even, entire, rapidly decreasing functions f*(4) of
exponential type. It was shown that the measure in the inverse mapping

— /f (ac ﬂ) (4) (2.7)

is given by

dv(d) = 12_ lo(2)|~%dA, (2.8)

T
where
207 (G2 (e + 1)
I} + i) I'(k(e + i) — B)
The mappings (2.6) and (2.7) extend to an isomorphism between the L2-spaces

with respect to du(f) and dv(4) ([4], prop. 3).
For a«=p=—1 we have

o(2) = (2.9)

o2 D) = cos . (2.10)

This classical case will not be considered here. If either a>f = — % or
«=f> —1 then o> 0. The cases § = — } and « = f are connected by the
quadratic transformation

o, —1
o5 P20 = o). (2.11)
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The functions ¢ ¥(#) can be expressed in terms of Gegenbauer functions C’(x)
or associated Legendre functions P“z) by

v

#et) = O3 E (eh 20)[C1 o (1) = 22T + 1)(sh 26)7 Py _, (ch 26)

36i—g) G-
(see [3], ch. 3).
In the case of general « and f we will also use the notation

PPty = R"%"(ifjﬁg)(ch 2), (2.12)
where
1 —=z
B =P\~ o+ a4 Lo+ 15— (2.13)
Note that for » = 0,1, 2, ... the function

| R (a) = P @) [P"(1)
is a Jacobi polynomial.
For o > f > — % there is the integral representation (Koornwinder [8], formula

(4)

1 T
@A) = f f [(ch £)2 + (sh £)%2 + sh 2t - 7 - cos 2 Odm(r, y), (2.14)
r=0 =0
where
20 + 1)
Vi D — BT+ 3)
For the proof of this formula see Askey [1] and Flensted-Jensen [4]. If « = or

dm(r, p) = (1 — #2)*F=128+ Ygin ) Pdrdy.  (2.15)

p = — % then (2.14) degenerates to a single integral.
Let 4 =£&4 i €C. In [4] the following estimates are proved for ¢ € [0, o)
()] = @, (1) for all A€, (2.16)
lp, ()] = 1 for all || =< o, (2.17)
o, ()] = K(1 + tell"—2*  for all A €q. (2.18)

In (2.18) K denotes a positive constant independent of A.
LemMA 2.1. ¢, is bounded if and only if [n] < o.

Proof. The condition is necessary by (2.17). Assume # > ¢ and that ¢, is
bounded. From the discussion in [4], section 2.1. of the asymptotic behaviour of
solutions to the differential equation (2.2), it is seen that ¢, and &, are linearly
dependent. But this contradicts the fact that the Wronski determinant
Wip;, D;) = — 2iic(d) is different from zero, ([4], proof of lemma 8). Q.ed.
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3. The Fourier-Jacobi transform of LPf-spaces

Let 1 =p <2 and take ¢ such that 1/p 4 1/g =1. Let D, be the strip
in the complex A-plane defined by

2
Dp={Z:§+in€C!lnl<<;——l>g}.

Note that by (2.18) ¢, € L¥du) for all A€ D, More precisely, |, is uni-
formly bounded in any closed strip contained in D, and, by (2.17), g/, =1
for all 1 in the closure D; of D,.

Lemma 3.1. Let 1 <p <2, 1/p+ 1jg =1 and f€ L*du), then f"(1) ts well
defined and holomorphic in D,, and for all 1€ D,

(FA A = 1l pally- (3.1)
In particular if f€ LMdu), f*(1) is continuous also on Dy, and for all 1€ D,
F* A = (1f1h (3.2)

Proof. Formulas (3.1) and (3.2) are proved by using Hélder’s inequality. Observe
that ¢,(f) is holomorphicin 1. Hence, by applying Fubini’s theorem and Cauchy’s
formula we conclude that

A0 A
1w Py A=

for all i, € D,, where the contour is taken around 4, inside D,. Thus it follows
that f*(4) is holomorphic in D,. The rest is now clear. Q.ed.

Let M = M([0, ©)) be the set of bounded mesures on [0, ). For y € M
define " by

0

ﬂszMWW%

0

TuEOREM 3.2. The Fourier-Jacobi transform is injective on LP(du) for 1 < p = 2,
and likewise on M.

Proof. For p = 2 the result follows from the L2-isomorphism mentioned in
section 2. So assume 1 < p < 2. Take ¢ such that 1/p + 1/¢ = 1. For f € L?(du)
and g € 07 we have the inequalities
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I(f, ) = lff(t)g_(t_)dﬂ(t)l = /1l llgll,

and

I(f* 91 = )ffA(l)g“(l)dV(l) < 1 llllgly = consb. - {|fllllg -

Therefore the mappings f— (f, 9) and f— (f", g") are continuous functionals on
L?. Now (f,9)=(f",g") forall f€ LPN L? and by continuity for all f€ L”.
Assume that f€ L? and that f*= 0, then for all g€ (7 we have
(f,9) = (f* 9") = 0 and therefore f= 0. .

Let y € M then by the methods of lemma 3.1, p*(2) is bounded in D; and
holomorphic in D;. Assume that " = 0. By Fubini’s theorem we have for f € C¢.

f f(t)dy(t) = f Fr Ay (A)dv(2) = 0,
0 0

therefore ¢ = 0. Q.e.d.

4. The product formula for Jaeobi functions
The first part of this section contains a new proof of the following theorem.

THEOREM 4.1. Jacobi functions R™P(z) satisfy the product formula

1 =
REP(2)REP)(y) = f f ROA + 1)y + 1) +
00 (4.1)

Mo — 1)y — 1 + V(@2 — 1)(y2 — 1) 7 cosp — 1) dm(r, y),

where x =1, y=1, p€C, a> f> — i The notation from (2.13) and (2.15)
s used.

In the second part of this section we will rewrite formula (4.1) in the so-called
kernel form

A f Pt K (b, ty t)dulty), 4.2)

where the notation from (2.1) and (2.5) is used. The kernel K will be obtained in
an explicit way.
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It was pointed out in [8], where formula (4.1) first occured, that (4.1) can be
proved by analytic continuation with respect to u if the formula is known for
u=0,1,2,... For these values of u the product formula was obtained in [8]
as a corollary to the addition formula for Jacobi polynomials. In a forthcoming
paper [9] the product formula for Jacobi polynomials is directly proved from the
Laplace type integral representation by using an identity for Jacobi polynomials
due to Bateman. Here a similar proof of (4.1) will be given for general complex u.

From (2.14) and (2.12) we obtain

R ff[ (@ + 1) + 3@ — 1) +Va® — Lrcos yldm(r, y), (4.3)

where z =1, u€C, a> > — 1. It follows from (4.3) that

14 2y
w Pla, B) —
(x -+ y)"E (m+y>—

(4.4)
ff[ @+ 1)y + 1) + b — 1)y — 1t + V@@ — 1)@E — 1) - 7 - cos yl'dm(r, p),

where x =1, y = 1.
In our proof formula (4.1) will be derived from (4.4) by applying a generalization
of Bateman’s formula

+ xy)

{ot, B) (e, ) kRl B)
B D) R y) = kZa(x+y)R <x+y

THrEoreEM 4.2. Let x =1, y =1, z £y, 2u+ p non-infeger, « = f = — L.
Then the expansion

N R ) SN Ry
s -S4 a5

4 y\ e ( + xy)
(o, 8)
+ZB(2) R“‘""ery
ts valid, where the coefficients A, and B, are determined from the case y =1, t.e.
o0 u—n fee) 1 —f—o—n
REA) = 3 4 ( + ) +3 5 (er ) (4.6)

The expansion (4.6) is obtained from [3], § 2.10 (3), which is, in fact, the same
as the formula

(4.5)

@:(t) = (DD, (t) + o(— HP_,(t)
in [4]). The coefficients in (4.6) are
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I'(—p+2)I(—p—B+mn)
4, =0 I(—2u — o+ 1 4+ n)I(1 + ) @7

and
T+ o+ ) (g + o -+ 1+ n)
- (- 4.8
B, TCut et 1inl(tn (5
where
I 1
o _ all(x 4 1) (4.9)

sin (w(2p + o)) + o + V) (u + o) I'(— p) I (— u — B)

The expansion (4.6) is valid and convergent for non-ineteger values of 2u 4+ o
and for all x € C such that | + 1| > 2 and |arg (v + 1)} < =

Proof of theorem 4.1. Suppose first that « = y and 2u 4 ¢ non-integer. Putting
z==cht, and y =ch{, we have

1<ch(fh—t)=ay—V @ — D —1) =
SHe+ DY FDFHe—Dy—1)2 V(@ — 1) —1)r-cosy — 1 =
<oy + AV (a2 — 1)y — 1) = ch (t;, +t,)

for 0 =Z=r <1 and 0 =<y =< x. Hence the integrand in the right hand side of
(4.1) can be expanded by using (4.6), and summation and integration may be
interchanged because the series converges uniformly in » and y. Next, formula
(4.4) can be applied to each term and the resulting series is the right hand side of (4.5).
When « =y or 2u -}- ¢ is integer, formula (4.1) is proved by continuity. Q.e.d.

Remark. For o = f or f = — } formula (4.1) degenerates to a single integral.
We still have to prove theorem 4.2. This will be done in several steps. First

observe that the function Rl(f" #(z), defined by (2.13), is holomorphic in the complex
z-plane with cut (— oo, — 1] and satisfies the differential equation

(D, + plp + @))REP(z) = 0 (4.10)
with
&? d
D= (1= ) =5 + (B — o — (o« + f + 2)7) o (4.11)

The function F(z, w) = Rff" A2)BR*P(w) is clearly a solution of the partial
differential equation

(D, — D)F(z, w) = 0. (4.12)
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Lemma 4.3. The function

1 —|—zw>

F(z, w) = (z + wy"R® ﬂ)<z o

18 & solution of (4.12).

Proof. The equation (4.12) transforms under the substitution

1 - 2w
U = . +-@; , v=2+ w
into
o4 :
2 — —
D, + v P + (x4 + 2) av) F(z,w) =0
and the function v*R®"(u) is a solution of this equation. Q.e.d.

Levma 4.4. Let F(z, w) be a solution of (4.12), analytic in a neighbourhood of
(20, 1). Then F(z, w) is uniquely determined by its values F(z, 1) for z in a neigh-
bourhood of z,.

Proof. Expanding the function F(z, w) as F(z, w) = D2, Fi(2)(w — 1)* we
obtain that

(D, — D,)F(z, w) =
= >0 (w— VD, + k(k + 0)Fi(z) + 2(k + 1)(k + o + )F,,(2)] = 0.

Hence all functions F,(z) can be expressed in terms of Fy(z) = F(z, 1) by means
of differential recurrence relations (for « # — 1, — 2, — 3,...). Q.e.d.

Levma 4.5. Let o> > — }. Forevery x =1, & > 0, g > 0 there exists a
0 > 0 such that the following holds:
If z€C, lz—2| <6, p=&+1m, £€=0 then
(B AR)] = (@ 4V af — 1)erstabi, (4.13)

(This lemma is a kind of extension of the estimate (2.18) to complex values of £.)

Proof. Formula (4.3) can be written as

R A(z) = /f (A(z; 7, v))dm(r, ) (4.14)

with 2 =1 and
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Az r, ) =%z 4+ 1) + 3z — 12 4+ V 22 — 1 7 cos .

For 2€C, 0sr=1, 0=y <n the function A(z;r, ) is continuous and

z—Va—1ZAxry) e+ Var—1 for x=1.

Hence, forevery 2 =1, & > 0, & > 0 thereexistsa d > 0 such that the following
holds:
If z€C and |z — x| <8 then

e —V a2 — 1) < |A@z; r, p)| < ez + vV a? — 1) (4.15)
and
larg A(z; r, »)| < &.

The function A(z; 7, y) is two-valued for z around 1, but this branching singularity
is removed by the integration in (4.14) with respect to u. Choosing =z, &, &, 0
the same as above we conclude that both the left hand side and the right hand side
of (4.14) are analytic in z for z€ C and [z — z| < §. By analytic continuation
formula (4.14) holds for these values of z. The estimate (4.13) is finally obtained
from (4.14) and (4.15). Q.e.d.

LemMA 4.6, Let F(x, y) denote the right hand side of (4.5). If x =1, y = 1, z +# v,
then the series represented by F(z, w)(z, w complex) converges absolutely and uniformly
m a cerlain neighbourhood of (x, y).

Proof. It follows from (4.7) and (4.8) that 4, = O®*™!) and B, = On*1
for n— o (see [3], § 1.18 (4)).

Choose & > 0. There exists a 6 > 0 such that for z €0, w€CO, |z — 2] <4,
fw—yl <d, n=2Re(u+ ¢) we have

1 - zw 14+ zw 1+ ay l/(l+xy)2 )"
(o, BY — (o, B) en .
Rﬂ—"<z+w>"}R”'”—Q(z+w>[§Ke (x+y B AVETY

(see lemma 4.5) and
(z - w\ " 2 )”
< &n .
( 2 ) = e (w +y

Here K is a certain positive constant. Combining the three estimates we obtain
that for n — co:

2wy (14w 2(1 + ay) + V(@ — 1) — 1))“)
{«, B) _ o—1,2¢en
A"( 9 ) R”—/j’<z+w>_0<n ¢ ( (x + y)* ’

uniformly in z and w for |z — 2| <, |w— y| <. Observe that for x £ y
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21 +ay) +2V @ -1 -1 214wy 42V (-1 - 1)
(@ + v TR ke @D+ F1)

1.

Choosing & small enough we find:

4, (2 . w)u_nR(a, 2 (1 + Zw) — (e

“ar\z 4+ w

for n— w0, |z — 2] <), (w—y| <)
A similar estimate holds for

z + w\"HTeT . 1 4+ zw
(o, 8)
Bn( 2 ) R—M——Q*n (Z _{_ w ) . Q.e.d.

Proof of theorem 4.2. Let F(x, y) denote the right hand side of (4.5) and G{(z, ¥)
the left hand side. By lemma 4.6 the function F(x, y) is analyticfor =1, y = 1,
x # y. Since F(z, w) is a locally uniform convergent sum of analytic solutions of
(4.12) (cf. lemma 4.3), F satisfies the equation (D, — D )F(z, w) = 0 itself. The
function G(z, w) is clearly an analytic solution of the same differential equation
and F(x, 1) = Gz, 1) (cf. formula (4.6)). Hence, by lemma (4.4) and by using
analytic continuation with respect to ¥ we conclude that F(x, y) = G(z, y) for
x>y =1, and also for ¥ > x =1 because of the symmetry. Q.e.d.

Remark. Let Ql(j" P(x) be a second solution of (4.10) with expansion

1+ x)'“""
3 .

o =3 4

It follows from the proof of theorems 4.1 and 4.2 that for x >y =1

- . ® x4+ y\r " 1+ 2y
QM) B Ply) =24, (T) R D) (m) =

= [ [ePte+ 0+ 1 + e — Dy — 0o +
[

NV (2% — 1)(y® — 1)r cos p — 1)dm(r, ).

We next come to the second part of this section and will derive an explicit
expression for the kernel K(t,f,,t;) in formula (4.2). Let f(ch 2f) be a function
which is absolutely integrable in every finite {-interval. Let the substitution
(r, p) = (t5, 1) be defined by

cht; e = cht, cht, I sh shi,re.



256 MOGENS FLENSTED-JENSEN AND TOM KOORNWINDER

Then by making this substitution of the integration variables, it follows easily
(cf. [9], section 5) that

f f F2[(ch &R(ch 1, + (sh £)(sh )22 -
0 0 (4.16)

-+ 2sht cht, shi, chityrcosy] — Ldm(r, ¢) = ff(ch 2t5) K (8, by, t5)Aults),
0

where for & € (|6, — t,], t + &)
K(tl’ ty t3) = 0
and for 4 — 4| <t <t -+,

26/2=2 (g 1 1)

Kt b, t) = I — BB+ 1)

-2,
(sh & sh t, sh &) (4.17)

f (1 — (ch #)? — (cht,)?® — (ch ;)2 + 2 cht, ch, chy ¢t cos 1) P! - (sin x)¥dy.
0

Here (x)+ =2 for 2 > 0 and (x)+ =0 for x =< 0. Taking
fleh 2t) = g,(t) = R{G7) o(ch 2t)

we obtain formula (4.2) by substituting (4.16) for the right hand side of (4.1) with
u = 34 — o). Thus we have an explicit expression for the kernel K(¢, %, I5)
in (4.2).
The kernel K can be expressed as a hypergeometric function (see Gasper [6]
and Koornwinder [9]). Writing
(ch#)® 4 (chiy)® + (chiy)? — 1

— 4.1
B 2¢cht chi,chi, (4.18)

we have for | — 6| <t; <, + 4 (ie. |B| <1):

94 P(o + 1)(cht, ch t, ch £,

Kt b ) =~ T Ti(sh, sh i, oh 1)

L& (4.19)
(1 — B2)°‘_%2F1(oc + B, a—p; at+ T)

The function K¢, fy, ;) is non-negative, and it is symmetric in the three
variables. It is a C®-function, singular or identically zero according to whether
the sum of two of the variables is greater, equal to or less than the third variable.
Since ¢,,(f) = 1 we conclude from (4.2) that
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f K(ty, ty, t)du(ts) = 1. (4.20)

K, t,, t;) is not well-defined as a function if one of the variables is zero; but in
this case K(0,{,, {;) can be counsidered as a distribution and it follows from (4.16)
that

f FEK(O, b, ty)dults) = fity). (4.21)

In section 5 we shall use the kernel K to define a convolution structure associated
with the Fourier-Jacobi transform. We shall need the following lemma.

Lemma 4.7. The function
Hitty 5 ) = [ Kty oy 0K (sy 8 M)
0

18 well-defined if no two of the numbers |t; — t,|, t; + 5, |87 — S|, 8 + 8o are equal.
Moreover H is symmetric in the four variables.

Proof. It follows from (4.20) that K(t,, t,, 7)K (s, S5, 7) 18 integrable with respect
to du(r) if K4, 1%, 7) and K(sy, s,, 7) do not have a singularity in common.
Hence the function H(t,,?,, s;, s,) is well-defined. Using Fubini’s theorem, and
formula (4.2) we find that

H(:, 1y, 51, 85)"(4) = @;(la)@a(s1)9:(S2)s

and similar results hold for the Fourier-Jacobi transform in the other wvariables.
By applying theorem 3.2 it is proved that the function H(t,, &y, 81, 8,) is sym-
metric. Q.e.d.

5. The convolution produect

DErixtTIoN 5.1. Let f be a suitable function on [0, o) and let z € [0, o). The
generalized translation operation 7T, is defined by

@) = [f&E @ u6). 51

Obviously T.f(y) = T, f().
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Lemma 5.2. For 1 <p = oo, fE€LP(du) and z =0
1TAllp = 1f1,- (5.2)

Proof. For p = oo (5.2) follows from (4.16). For 1 = p < o we use Holder’s
inequality for the bounded measure K(z,y, z)du(z) and we obtain

IT.fiE < f f 1@ 1PK @, y, 2)du@)duty) = If1L. Q.e.d.
0 0

DEFINITION 5.3. For suitable functions f and g the convolution product fxg
s defined by

Frgl@) = f FO)T.g)duly) = f f FORK @ v Ddu)duty).  (5.3)
0 0 0

The following properties of the convolution product are easily proved from
results in section 4 on the functions K and H;

(i) frg=g%f

(i) (f*g)xh=fx(g=*h),
(iii) If f=0 and ¢ =0 then fxg =0,
(V) (f *9)'(h) = (gD

whenever these Fourier-Jacobi transforms are well-defined.

(5.4)

THROREM 5.4. Let P, q, 7 besuchthat 1 < p,q,r < oo and 1/p + ljg — 1 = 1/r.
For f€LFP(du) and ¢ € LYdu) f =g is a well-defined element in L'(dy) and

IS = gl = 1171l llglly- (5.5)

Proof. (The idea of the proof is from [11], p. 278). For r = co the result follows
from (5.2) and Holder’s inequality.

Assume r < oo, which implies p,q < oo. First take f, g € C, (continuous
of compact support), and let s = p(1 — 1/g) and 1/g - 1/¢' == 1. Then 0 <s < 1
and s¢’ = p. We assume s> 0 or equivalently ¢ > 1. (In the case s = 0 the
proof is almost the same except for some obvious modifications.) Using (5.2) and
Holder’s inequality we find

v ~ , aq
Fraar = [ TS0l ) - [ / ITxf(y)l"qdﬂ(y)} <
0 0 (5.6)

< Ifl- f h(@)du(y),
(1]
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where h(z) = |T.f(y)"~g(y) "
Clearly the mapping y — k, is continuous and of compact support from [0, c0)
into L¥u) for 1 < a < . Using vector integration we get

H /‘*’ h,du(y)

After taking L*norms in both sides of (5.6) if follows by some calculations that

L gl < Nghe IAG =22 1A

This inequality is reduced to (5.5) by the substitution « = r/q (observe that
(1 — s)r = p). Now the theorem is proved by using the fact that C, is dense
in L'(du) for 1 =y < oo. Q.e.d.

= f 1,1 du().

We can get the following improved inequalities for the convolution. In the
special case « = f = 0 theorem 5.5 was proved by Kunze and Stein [10].

THEOREM 5.5. Let 1 <p <2 and 1/p + 1)g = 1. There exists a constant
A, > 0 such that
(i) If f€ L*du) and g€ L¥(du) then fx=g€ L¥dy) and
If = gll: = Al flllgll,
(i) If f, g € LXdu) then fxg€ LYdu) and
I1f = glly = AIS1llgll-

Proof. (i) Let f, g € CF then by lemma 3.1 and formula (2.16)
If* gz = 1" 9"l = llg )17 1E = gl f15-

Since O is dense in L* and L” the result follows with A, = [l@ll,.

(i) Let k€ LP(du) and f,g€C, then from (i)

l / f x g@)(x)du(e) = f lg(@) 1kl = | fl()du(@) = liglls || 1] = 1112 = llgllaA Kl flls-

Taking supremum over {k € L¥(du)| |k, < 1} we get

If = glly = A4,lLSallg]ls
and the result follows. Q.e.d.

ComroLLARY 5.6. Let 1 <p, <2, 1=Zp, =<2 such that 1l/p, + 1/p, < 3/2.
Let r be determined by 1[p, + 1/py — 1 = 1/r. Suppose that f€ L*(du) and
g € LP(du). Then f g€ L(du) for all s€[2,r).
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Proof. Clearly L*NL c L* for s€[2,7r]. By theorem 54 fxg€L’. It
remains to prove that fxg€ L% Write g =g, + ¢, where g3 =91y 2y
and g, =g 1,y Then g, €L'N L™ and g, € LN L® c L*. By theorem 5.4
fxg € LN L c L? by theorem 5.5 (i) f*g, € L2 Thus

frg=f+g +f=g €L Q.ed.

6. The Banach algebra (L'(dy), %)

It is clear from theorem 5.4 that (IXdu), *) is a commutative Banach algebra.
From (5.4) and (8.2) it is seen that the functional y, defined by

u(f) =F(2)

is a continuous character on Ll(du) for all 1€ D, = {& + i €C| [n| = o}.

Theorem 3.2 implies that L;(du) is semisimple. Obviously complex conjugation
is an isometric involution. It was shown in [4], that L}(du) has an approximate
identity.

Lemma 6.1. Let f€C® and v = v, then
(0, — 0,)T.f(y) = 0.

Proof. Since the kernel K(z, y, 2), if considered as a function of z, has compact
support it is easily seen that it is sufficient to prove the lemma for f€ Cy. Using
(4.2) we can write for such f

T.f(y) = / F D@0 ) (),

therefore

o0

0, T.f(y) = o, T.f(y) = f — (2 + A (D (@), (y)dv(4). Qe.d.

0

Lemuma 6.2. Every non-zero continuous character on (L'(du), *) has the form

x(f) =14
for some A€ D,.

Proof. (The idea of the proof is taken from [7], p. 400.) Assume x = 0 is a
continuous character on Ll(du). Since the dual space of L' is L®, there exists a

function g € L®(du) such that yx(f) = f o f@)g(x)du(x). In view of the identity



THE CONVOLUTION STRUCTURE FOR JACOBI FUNCTION EXPANSIONS 261

w(fi = f) = x(f)x(fo) it follows by a straight-forward calculation that for almost
all «,y

o]

g@)g(y) = f 9K (@, y, )du(z) = Tg(v). (6.1)

0

Choose y € O such that f o g(@)yp(@)du(x) = ¢ 5= 0. Then for almost all y
we get

0

1 1
9y) = f 9(z) f y@)K(z, y, 2)dp(@)du(z) = — (g * v)y)-
0 0
It follows easily from the definition of the convolution that g x ¢ is a C®-function.
Thus we can assume that ¢ is a C®-function.
From (6.1) it is seen that g(0) = 1. Lemma 6.1 applied to (6.1) gives

(wg)(2)9(y) = g(x)(wg)(y).

By taking y = 0 it is clear that g is an eigenfunction of w with eigenvalue wg(0).
Therefore g(x) = ¢,(x) for some A€ €. Since g is bounded it follows from lemma
2.1 that A€ D,. Q.e.d.

TarorEM 6.3. (LY(dp), =) is a semisimple, commutative Banach algebra with
involution and approximate identily.

The maximal ideal space is D, with A and — A identified. The set of self-adjoint
moximal ideals are given by {A € A2 - ¢ = 0}, with 1 and — i ideniified.

Proof. The only thing left to be proved is that for A € D, y, is self-adjoint if
and only if A% 4 p? = 0. But this follows easily from the fact that ¢, is real if
and only if 42 is real. Q.e.d.

CororrarY 6.4. The function @,(x) for A€C is characterized by the integral
equation (6.1).

This follows from the proof of lemma 6.2.
Remark. It was pointed out by H. Chébli in [2], that Weinberger’s maximum

property for differential equations [12] can be applied in order to prove the positivity
of the generalized translation operation (5.1).
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