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UNIVERSAL SCHUBERT POLYNOMIALS

WILLIAM FULTON

1. Introduction. The aim of this paper is to introduce some polynomials
that specialize to all previously known Schubert polynomials: the classical Schu-
bert polynomials of Lascoux and Schfitzenberger [LS1], [M], the quantum
Schubert polynomials of Fomin, Gelfand, and Postnikov [FGP], and the quan-
tum Schubert polynomials for partial flag varieties of Ciocan-Fontanine [CF2].
There are also double versions of these universal Schubert polynomials that
generalize the previously known double Schubert polynomials ILl, [M], [KM],
[CFF]. They describe degeneracy loci of maps of vector bundles, but in a more
general setting than the previously known setting of [F2].

These universal Schubert polynomials possess many but not all algebraic
properties of their classical specializations. Their extra structure makes them
useful for studying their specializations, as it can be easier to find patterns before
variables are specialized.
The main geometric setting to which these polynomials apply is the following.

We have maps of vector bundles

on a variety or scheme X, where each Fi and Ei has rank i. We do not assume
here that the maps F Fi+ are injective or that the maps Ei+l --, E are sur-
jective, as was the case studied in [F2]. For each w in the symmetric group S,+I,
there is a degeneracy locus

(2) fw {x X lrank(Fq(x) --, Ep(X)) rw(p, q) for all < p, q < n},

where rw(p, q) is the number of < p such that w(i) < q. Such degeneracy loci
are described by the double form w(c,d) of universal Schubert polynomials,
evaluated at the Chern classes of all the bundles involved. Unlike the situation
studied in [F2], where these Chern classes were determined by their first Chern
classes, in the present general setting one must have more general polynomials
to describe such loci. There are similar formulas when some of the bundles in (1)
are missing.
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All Schubert polynomials are indexed by permutations w in some symmetric
group Sn+l. We present these universal Schubert polynomials in two forms. The
first (in its single form), denoted w(c), is a polynomial in variables ci(k), for
1 <i< k < n. When ci(k) is specialized to the ith elementary symmetric poly-
nomial ei(xl,...,Xk) in variables xl,...,xk, this polynomial becomes the clas-
sical Schubert polynomial, denoted w(X). When ci(k) is specialized to the ith
quantum elementary symmetric polynomial, in variables Xl,... ,x,ql,..., q-l,

w(c) specializes to the quantum Schubert polynomial q of [FGP]. In our
geometric setting, ci(k) is the ith Chern class of a vector bundle of rank k.
We write the second form of the universal Schubert polynomial, denoted

w(g), as a polynomial in variables gi[j], for > 1 and j > 0 with +j < n + 1.
We regard gi[j] as an indeterminate of degree j + 1. This polynomial w(g) is
obtained from w(C) by replacing each ci(k) by the coefficient of T in the deter-
minant of A + IT, where A is the k by k matrix with gi[j-i] in the (i, j) position
for i< j, and with -1 in positions (i + 1, i) below the diagonal, and zero else-
where. (See Section 4 for another definition of these polynomials.) One recovers
the classical Schubert polynomials w(X) by setting gi[0] x and gg[j] 0 for
j > 1, and one recovers the quantum Schubert polynomials qw by setting gi[0]
x, g[1] q, and g[j] 0 for j > 2. In Section 4 we see that other specializations
give the polynomials defined in [CF2] for Schubert classes in quantum coho-
mology rings of partial flag varieties. Since the variables ci(k) and gi[j] generate
the same polynomials ring (i.e., ,[c]- Zig]), the two forms of universal poly-
nomials are equivalent.
From the single polynomials, we construct universal double Schubert poly-

nomials w(c,d) and w(g,h), which also specialize to the known cases of
double Schubert polynomials. In the geometric setting of (1), the variables ci(j)
become the Chern classes ci(Ej), and the variables di(j) become ci(Fj).
The universal polynomials are constructed in Section 2. The theorems relating

them to degeneracy loci are proven in Section 3. Section 4 contains some deter-
minantal formulas for universal Schubert polynomials and some results and
questions about their algebra.

In IF2], following the classical approaches of [BGG] and [D], the degener-
acy loci formulas were provenin a universal setting on a flag bundleby
starting with the locus of top codimension, which is realized as the zero of a
section of a vector bundle; then the other loci are constructed inductively by a
sequence of Ipl-bundle correspondences. In the present setting, neither of these
methods is available. Indeed, the top double classes w(C, d) do not factor. Our
procedure, roughly speaking, is to find a locus in a flag bundle that maps to a
given degeneracy locus Yw, but where one has injections and surjections of the
bundles, so that one can apply the results of IF2]; then this formula is pushed
forward to get a formula for w.

Ionut Ciocan-Fontanine initiated this project by asking several years ago for a
degeneracy locus formula that would apply when the maps E+I - E are not
surjective. His work in [CF1], [CF2] was a source for this question, and con-
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versations with him have been very useful. Algebraically, the universal Schubert
polynomials are natural generalizations of the quantum Schubert polynomials
of [FGP] (cf. [KM] and [CFF]), and the inspiration of these sources should
be clear. I thank Chandler Fulton and Mel Hochster for advice on computer
testing related to this study.

In the preprint version of this paper, we conjectured that the universal versions
of these degeneracy loci are Cohen-Macaulay. Claudio Procesi pointed out the
paper [ADFK], which proved, in characteristic zero, that the reduced structures
on these loci are Cohen-Macaulay. Recently, Lakshmibai and Magyar [LM]
succeeded in proving that these schemes, with their natural determinantal struc-
tures, are reduced and Cohen-Macaulay in all characteristics. This strengthens
our results, so that the formulas for the degeneracy loci have the usual meaning
in intersection theory, as in IF1, 14].

2. Definitions of universal Schubert polynomials. We give three constructions
of the single universal Schubert polynomials w(C). We consider independent
variables ci(j) for 1 < < j < n. It is to be understood that ci(j) 1 if 0, and
ci(j) 0 if < 0 or > j. Let w be a permutation in S,,+1, and let l(w) denote its
length.
The quickest definition of w(C) is a variation of that used in [FGP] to define

quantum Schubert polynomials. In the classical case, such a formula can be
found in [LS2, (2.10)]. A classical Schubert polynomial w(X) can be written
uniquely in the form

the sum over (il,..., i,,) with each i= < and ’ i -/(w); here ail i. are unique
integers (depending on w). Define

(3)

The preceding definition is based on the following elementary fact (see [LS2,
(2.7)] and [FGP, Prop. 3.4]), which we use frequently.

LEMMA 2.1. Let R be a commutative ring, and let M be the free R-submodule

of the polynomial ring R[c] spanned by art monomials ci, (1)..... c, (n) with each
i < . Let M’ be the free R-submodule of the polynomial rin9 R[x] spanned by all
monomials x x,J" with each j < n + 1 . Then the map that sends.ci(j) to

ei(xl,... ,xj) determines an isomorphism ofM onto M.
Universal Schubert polynomials can also be defined by a direct inductive pro-

cedure analogous to that for the classical Schubert polynomials. For w0 the per-
mutation in Sn+l of longest length, that is, wo(i) n + 2 for 1 < < n + 1, set

(4) w0 (C) Cl (1)" C2(2)’..." C,,(n).
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The general universal polynomial is determined by the property that if k is an

integer with w(k) < w(k + 1), and v WSk is obtained from w by interchanging
the values of k and k / 1, then

(s)  w(C)

Here tk is an additive endomorphism of the free 7Z-module M spanned by
monomials cil (1) "cin (n) with each i < a. It takes such a monomial to a sum
of signed monomials, each with the same indices except in positions k- 1 and k.
Write for simplicity [a, b] for the monomial with c,,(k- 1) and Cb(k) in these two
positions, with the other positions fixed but arbitrary. Note that [p, q] 0 if p or

q is negative, or if p > k- 1 or q > k. With this notation the formula for Ck is

(6)

Ck([a,b]) [a + i,b- 1 i] [b- 1 i,a + i]
i>o i>l

ifa>b-1;

Ck([a,b])=[b-l+i,a-i]-[a-i,b-l+i] ifa<b-2.
i>0 il

For k 1, t?l([1]) [0] and t31([0]) 0. See [LS2, 3] for similar formulas.
To see that this definition is well defined, it suffices to verify that Ok o t?t--

Ol O Ok if Ik II > 2, and that ?k o t?k+l o Ok ?k+l o Ok o Ck+ for 1 < k < n 1.
This can be verified directly from the definition, but it follows easily from the
lemma, together with the simple verification that Ok is compatible with the stan-
dard difference operator t?x) defined on R[x] t3x)(P) (P- Sk(P))/(Xk Xk+),
where sk(P) is the result of interchanging xk and Xk+l in P (cf. [M, Chapter 2]).
It also follows from this argument that the universal quantum Schubert poly-
nomials form a basis for M, but we will see a stronger reason for this in Pro-
position 2.2.
The third definition defines double versions w(C, y) of these polynomials,

with general first variables ci(j) as above and special second variables yl,..., y,.
This definition is similar to a construction in [KM] (cf. [CFF]), except that
we have included signs with the y variables in order to be consistent with the
original notation of Lascoux and Schtitzenberger. For this, set

(7) )w0(C, y) ci_j(i)(-y,+-i)
i--1 j=0

Now if k + 1 appears in the list of values of w to the right of k, and v inter-
changes the positions of k + 1 and k (i.e., v SkW), then

(8)  w(C, y) y)),
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where c3y) is the standard difference operator, acting on the y variables alone.
Then

(9) w(C) w(C, 0);

that is, the single universal Schubert polynomials are obtained from these double
polynomials by setting the second set of variables equal to 0.

It is not hard to see that these three definitions agree. That the first and second
definitions agree follows from the fact that they both give polynomials in the
module M of the lemma which specialize to the classical Schubert polynomials
under the isomorphism from M to Mp. Next we observe that the double poly-
nomials w(C, y) specialize to the usual double Schubert polynomials w(X, y)
when each ci(j) is sent to ei(j). This follows from the fact that w(X,y)=
(-1)t(W)w-1 (y,x); see [M, (6.4)(iii)]. From this it follows that w(C, 0) special-
izes to w(X) w(X, 0) when ci(j) is replaced by ei(j), and this shows that the
third definition agrees with the first two.

There is a natural definition of universal double Schubert polynomials, which
we denote by w(c,d), where c stands for the variables ci(j) and d stands for
another set of variables di(j). These are defined by the formula

(10) w(c,d) -(-1)l(v)u(c)v(d),

where the sum is over all u and v in Sn+l such that /)-lu W and l(u) + l(v)
l(w). The same argument as in the preceding paragraph, together with [M, (6.3)],
shows that w(c,d) specializes to the polynomials w(C,y) when each di(j) is
specialized to the ith elementary symmetric polynomial in yl,..., Yj. In particu-
lar, when ci(j) is also specialized to ei(xa,...,xj), then w(c,d) becomes the
classical double Schubert polynomial w(X, y) of [L] (cf. [M]).
The universal double Schubert polynomials for permutations in $3 are

32 c(1)c2(2) (c1(1)c1(2) c2(2))d1(1) c2(2)d1(2)

+ Cl(1)(d(1)dl(2) d2(2)) + Cl (2)d2(2) d1(1)d2(2);

231 C2(2) c(2)d1(1) + dl(1)dl(2) d2(2);

312 c1(1)c1(2) c2(2) c1(1)d1(2) + d2(2);

132 --c1(2)- dl(2);

213 el(l)- dl(1);

123 1.
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One can make specializations of either or both variables. For example, intro-
ducing variables hi[j] analogous to the variables gi[j], we have polynomials that
we denote by w(g, h). In general we let the position in the alphabet distinguish
among these different single and double universal Schubert polynomials, using
variables c, d for the first case, variables g, h for the second, and x, y for the
classical case. (This seems preferable to introducing different notations for each
realization of these polynomials.)
By construction, the universal Schubert polynomials are expressed as a linear

combination of monomials Cil (1).....ci, (n). We want to say a little more about
this expansion. For this we need a modified version of the code of a permutation
w. For w e Sn+l, we define this code, and denote it c’(w), to be the sequence
(il,..., in), where ik is defined by the formula

(11) ik Card{j < k w(j) > w(k + 1)}.

This number ik is the number of boxes in the kth row of a modified diagram
D’(w) of w, which is constructed as follows. Form an n by n square of boxes
arranged as in a matrix, and, for 2 < < n + 1, remove all the boxes from the
row directly above the position (i, w(i)) that are strictly to the left of this posi-
tion, and also all the boxes in the column directly to the left of and strictly above
that position. So O’(w) consists of boxes (i, j) such that w(i+ 1)<j and
w-l(j + 1) < i. It is easily seen that if c’(w) (il,..., in), then the Lehmer code
of the permutation w0 w w0 (cf. [M, p. 9]) is (in,..., il, 0). In particular, this code
c’(w) determines w, and the sum of the integers in c’(w) is the length of w--
properties that are easily proved directly.

PROPOSITION 2.2. Let C’(W) (il,..., in). Then

w(C)--ci1(1).....ci,(n)+mj, j, cj, (1) cj, (n),

where the sum is over (jl,..., jn) that are strictly smaller than (il,... ,in) in the
lexicographic ordering.

Proof This follows from the second construction of the universal Schubert
polynomials. The assertion is trivial when w w0, so we may assume it for all v
of length greater than the length of a given w. Let k be the smallest integer such
that w(k)< w(k + 1), and let v= ws. Since w(C)= c(v(c)), it suffices to
show that the assertion of the proposition for v implies the assertion for w. When
k- 1, this is completely straightforward, since Ok is so simple in this case. For
k > 1, the code I c’(w) has ij =j for 1 <j < k- 1. The code H c’(v) is the
same as I except in positions k- 1 and k, where it is ik and k, respectively. Write
cj for cj (1) cj,(n). It suffices to check that tk(H) I -+- smaller terms, and
that, if J < H, then Ok(cj) consists entirely of terms that are smaller than ci. The
verification of these facts is straightforward from (6).
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Note that this proposition implies (and is equivalent to) the corresponding
assertion for the expression of the classical Schubert polynomials in terms of ele-
mentary symmetric monomials, or the quantum Schubert polynomials in terms
of quantum elementary symmetric polynomials. It shows effectively why the uni-
versal Schubert polynomials form a basis for the module M that appears in
Lemma 2.1.
Another property, which follows immediately from the definitions, is the sta-

bility of these universal polynomials: if is the canonical embedding of Sn+l in
Sn+2, then i(w)(c,d)= w(c,d). Thus single and double universal polynomials
are defined for w in So J Sn.

Finally, we have the expected duality property, which is also an immediate
consequence of the definitions,

(2) w(d, c) (- 1) t(w) w-, (c, d).

3. Formulas for degeneracy loci. In this section we explain how the universal
double Schubert polynomials describe degeneracy loci of appropriate maps of
vector bundles. We assume that we are given the situation of vector bundles
and maps as described in (1) of the introduction, on an algebraic scheme X over
a field. (This is only to simplify the exposition; the procedures of [F1, 20] show
how to modify the arguments for schemes of finite type over an arbitrary regular
base scheme.) Set ci(j) ci(Ej), the ith Chern class of Ej, and set di(j) ci(Fj).
We claim that w(C, d) is the formula for the locus w defined in (2).
As usual, of course, this assertion must be interpreted correctly, depending on

assumptions about how general the maps between the vector bundles are. When
X is an algebraic scheme of pure dimension k, there is a class w in the Chow
group Ak-l(w)(w), whose image in Ak-(w)(X) is w(C, d) c IX]. When w has the
expected dimension k- l(w), then fw is a positive cycle whose support is w. If,
in addition, X is Cohen-Macaulay, then flw- [w], where flw has its natural
subscheme structure defined locally by vanishing of determinants. More gen-
erally, flw [w] whenever depth(flw, X) l(w). Without any depth conditions,
[w] can have larger multiplicities than flw. The construction of the class flw is
compatible with proper pushforward and pullback by flat or local complete
intersection morphisms. In fact, the class flw can be constructed to live in the
bivariant group At(W)(w X); for complex varieties, similar constructions pro-
duce classes in the relative cohomology groups HZI(w)(x,x-w). This whole
package is what is meant by the phrase "w(C, d) gives a formula for w." For
details about these interpretations, see [F1, 14 and 17] and [FP, App. A].
The construction of flw is carried out as follows. Let

n-1 n-1

H- 0 Hom(Fi, Fi+) Hom(F,, E,)0) O Hom(Ei+,Ei),
i=1 i=1
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regarded as a bundle over X. On H there are universal or tautological maps
between the pullbacks of the bundles, and hence there are universal loci fw H.
If X is reduced, it follows from the theorem of Lakshmibai and Magyar [LM]
that these schemes ff2w are reduced, of codimension l(w). Moreover, if X is
Cohen-Macaulay, their theorem implies that fw is Cohen-Macaulay. Note that
on any open set U of X on which the bundles are trivial, H is a product U x H0,
where H0 is the corresponding bundle constructed from vector spaces, and w is
the product of U and the corresponding universal locus in H0; it is these uni-
versal local loci that are studied in [LM].
The given maps on X determine a section s" X - H, and fw s-l(2w). We

define w to be the refined pullback of the class of w, in the sense of [F1],
that is,

To prove that w(C, d) is the formula for the locus f, it suffices to prove that

(13)

in Adim(H)_l(w)(H). As in [F1, 14] and [FP, App. A], the fact that the universal
local loci are Cohen-Macaulay is what makes this construction have all the
stated properties. In the proofs that follow, we therefore replace X by H, so we
may assume the maps are locally universal in this sense.
When the maps Fi Fi+l are injective and the maps Ei+l -+ Ei are surjective,

the formula is exactly that proved in [F2].
Now consider the situation where we do not assume that the maps from each

Fi to Fi+l are injective, but we do assume that the maps Ei+l Ei are surjective.

PROPOSITION 3.1. The formula for 2w is w(X, d), where xi

Cl (Ker(Ei -- Ei-1) lfltd di(j) ci(Fj).

Proof We may assume that the map from Fn to En factors into an inclusion

Fn -- V followed by a surjection V -- En, where V is a vector bundle of rank
n + 1. Indeed, as in [F2], one first considers the factorization Fn --, Fn E,
En given by the graph of Fn --* En, and then pulls back to flag bundles to fill in
between Fn and V Fn En and between V and En; this replaces n + by 2n.

Let p F -- X be the bundle of complete flags in V, with universal subbundles
Ui, so we have

V V. p*(V) - p*(F.) - p*(V).

From these bundles and maps, by the case just considered,
have a locus w on F, and we know that

for each w in Sn+l, we

y) IF],

where yi c1 Ui/ Ui- ).
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Let Zn c F be the locus given by the vanishing of the canonical map from
p*(F,,) to V/U,,. This is given by the vanishing of a section of the bundle
p*(F.) (R) V/V, so

[Z.] cn(p*(F.)’ (R) V/U) c IF].

Notice that on Zn the map from p*(F,,) to V factors through U,. On Z we have
the locus Zn-1 given by the vanishing of the map from p*(Fn-1) to U,,/U,,_I, so
Z,_I is represented on Z, by a top Chern class. On Z,_I the map from
to Un factors through U,-1. Continuing in this way, we get a sequence of loci

Z1 c c Z, F. Let Z Z1. Then

[Z]- fi(ci(p*(Fi)v (R) Ui+l/Ui)) v’ IF].
i=1

It follows from the fact that the given maps are locally universal that w meets Z
properly and that p maps w c Z birationally onto fw. (See the remark follow-
ing the proof.) It therefore suffices to show that

(n(14) p, H(ci(p*(Fi)v (R) Oi+l/Ui)) w(X,y) w(x,d),
i=1

where p, is the pushforward from Am+l(w)(F) to AI(w)(x), with m- n(n + 1)/2.
Let Yk be the flag bundle of subbundles of V of all ranks from k through n. So p
factors into a composite of projective bundle projections

F Y1 Y2- ""- Yn- lP*(V) Yn+l- X.

On Yk we have universal bundles Uk c Un c V. (Here and elsewhere in
the proof we use the same notation for bundles as for their pullbacks by canon-
ical projections.) We know that we can write

w(X, y) E al(x)ci’(U1)ci2(U2) "ci.(Vn),

where the sum is over I- (il,.-., in) with i < a, and the al(x) are polynomials
in the x variables. (Note for this that cj(Ui) ej(yl,..., yi).) It suffices to prove
that for each such I, and for each 2 < k < n + 1, the pushforward of

-I ci(F’ ( Ui+l/Ui) ci, (U1)’’’ i.(Un)
i=1
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from F 1 to Yk is equal to

Hci(Fiv (R) Ui+l/Ui).ci,(F1)...cik_,(Fk_l). cik(Uk)’"ci.(Un).
i=k

To prove this, using the projection formula, it suffices by induction to show that
the pushforward from Yk to Yk+l of ck(F (R) Uk+l/Uk)" ci(Uk) is equal to ci(Fk).
But this is a special case of the following elementary Gysin formula for projec-
tive bundles.

LEMMA 3.2. Let G be a vector bundle of rank k + 1 on a scheme Y, and let
IP IP* (G) be the projective bundle of hyperplanes in G, with projection p IP Y
and tautological sequence

0 -- H p*(G) -- (9(1) -- 0

of bundles on IP. Let K be a vector bundle of rank k on Y. Then, for 0 < < k,

p,(ck(p*(K)v (R) (9(1)). ci(H)) ci(K).

Proof Let (-c1((9(1)). We use the basic fact that for any integer r,
p,((r+k) (_l)rsr(G), where st(G) denotes the jth Segre (inverse Chern) class of
the bundle G. We use the formula for the top Chern class of a tensor product
with a line bundle

k

Ck(p*(K)v @ (9(1))- Z(-1)aca(p*K)k-a,
a=0

and the Whitney formula ci(H) Y’b=0 (--1)bci-b(P G)b" This gives

p,(ck(p*(K) (R) (9(1))-ci(H)) Z(-1)aca(K) (--1)b+b-aci_b(G)Sb_a(G)
a=O b=O

The inner sum vanishes unless a i, when it gives (-1) i, so the right side is the
required ci(K).

This completes the proof of Lemma 3.2, which constructs the required class in
the case where the right maps are surjective but the left maps are not necessarily
injective. The dual case, where the left maps are injective and the right maps are
arbitrary, can be handled by a dual construction, or simply by taking the duals
of all the maps, and applying the case just considered to the situation
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The locus fw for the original maps is the locus fw-, for this dual sequence. So
we define the class fw for the original maps to be the class fw-i for this dual.
The duality property (12) guarantees that this class has the right image in the
Chow group of X.

Remark 3.3. In the preceding proof, we used the fact that the scheme w c Z
is reduced when X is reduced. Although this can be seen directly, this argument
can be avoided. Otherwise, the argument would prove that w(X, d) represents
some multiple of the class of the reduced subscheme of fw. This would imply
that the polynomial w(X, d) is a power of some other polynomial, but we know
that this is not the case even after specializing to w(X, 0).

PROPOSITION 3.4. Suppose we are given, on a scheme X, vector bundles and
maps

F1 Fn En El,

the ranks of Ei and Fi being i. Then for each w in Sn+l the formula for fw is the
universal double Schubert polynomial w(c,d), where ci(j)= ci(Ej) and di(j)=
ci(Fj).

Proof We proceed exactly as in Proposition 3.1, first reducing to the case
where one has an intermediate bundle V. One then has the formula for the cor-
responding locus w on the flag bundle F, this time applied to the case where the
second maps are arbitrary. This class maps to w(C, y) c IF] in the Chow group
of F, where ci(j) ci(Ej) and Yi-- Cl(Ui/Ui-1). We apply the same construction
as before, pushing down the product of this class and the class [Z]. This time we
must prove .the formula

P*(I(ci(p*(Fi)v(R)i=l Ui+l/Ui))" w(C,y))-w(c,d).
The only difference is that the polynomials at(x) that appeared in the preceding
proof are replaced by polynomials in the classes ci(Ej) for this proof.

Remark 3.5. As the proof shows, the Schubert polynomials w(C, y) represent
the loci fw for the situation of the theorem, but under the conditions that the
maps Fi Fi+l are injective. Here ci(j.) ci(Ej) and yi Cl (Fi/Fi-1). One has a
dual interpretation for w(X, d).

There is a corresponding and more general theorem for maps of bundles of
arbitrary increasing and decreasing ranks. Suppose we have vector bundles and
maps

F1 -- ...-- F --’ Er -- "’"-- El,
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with rank(E/) ai, rank(Fi) bi, such that

al < al <... < ar and bl < bl <.-. < bs.

Let w be a permutation whose diagram Dr(w) is contained in A B, with A
{al,..., ar} and B {bl,..., bs}. There is a degeneracy locus fw c X defined by
the conditions that the rank of the map from Fj to Ei is at most rw(ai, bj) for all
andj.

LEMMA 3.6. If Dr(w) c A x B, then no c(k) occurs in w(c,d) with k q A, and
no dj(l) occurs in w(C, d) with q S.

Proof This follows from two claims, valid for any permutation w with code
c’(w)- (il,... ,in) and an integer k such that ik- O. The first claim is that all
terms ci (1)... c, (n) occurring in w(C) have jk 0; this is proved as in the proof
of Proposition 2.2. The second claim is that if is an integer with w-1(i + 1) <
w-l(i), and v- siw, and c’(w)- (jl,...,jn), then jk- 0; this follows immedi-
ately from the definition. It then follows that in the sum (10) expressing w(c,d),
all the u(c) have no term ci(k) with k A. The assertion for the d(1) then
follows from (12). [

Let w(e(Eo), c(Fo)) denote the result of specializing ci(ap) to ci(Ep) and di(bq)
to ci(Vq) in w(C, d).
THEOREM 3.7. The formula for w is w(c(Eo),c(Fo)).

Proof Take n- max(r,s), and add trivial bundles to the given bundles so
that one has two sets of bundles of all ranks between 1 and n. Insert maps

Fk -- Fk 1 Fk lbk+’-bk-1 __+ Fk+l,

where the maps to successive additions of trivial factors are the evident inclu-
sions, and the map from the last bundle to Fk+l is the given map on the factor Fk
and the zero map on the trivial factors. The dual construction is made on the
other side. Then one is in a position where Proposition 3.4 applies. The hypoth-
eses on w guarantee that all of the rank conditions on the added bundles follow
from the rank conditions on the given bundles, so that the locus flw is the same
whether defined for the given bundles or for all the bundles. Proposition 3.4
gives the required formula.

Remark 3.8. If w is a permutation satisfying the weaker conditions that the
descents of w are contained in A and the descents of w-1 are contained in B, then
the same construction as in the proof of Theorem 3.7 produces a class gw in
Adirn(X)_l(w)()w). Its image in Adim(X)_l(w)(X is the polynomial obtained from
w(C, d) by specializing ci(k) to ci(Ep) if ap < k < ap+l, with ci(k) sent to zero if
k < al, and to ci(Er) if k > ar; similarly di(l) is sent to ci(Fq) if bq < < bq+l.
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Remark 3.9. The same class is obtained if arbitrary bundles are used in place
of trivial bundles in the construction in the proof of the theorem. However, this
is no longer true for the more general classes constructed in the preceding
remark.

Remark 3.10. Even in the situation of Proposition 3.4, this theorem applies
to more general loci fw, where w is not in S,+1 but D’(w) In] x In].
Remark 3.11. The degeneracy loci fw are defined by many rank conditions,

but some of them are superfluous. In fact, the rank conditions that are needed
on Fj ---, Ei are precisely those described by the boxes (ai, bj) in the diagram we
denoted by D’(w) in Section 2. In the case when the first maps were injective and
the second maps surjective, we saw in [F2] that the essential rank conditions
were given by those in a subset of the diagram D(w), which we called the essen-
tial set of w. In fact, this essential set is exactly the intersection of D(w) with
D’(w). For general maps as considered here, the entire set D’(w) is needed. The
proof of this statement is the same as in [F2, Prop. 4.2]. Note that D1(w) consists
of l(w) boxes, which is exactly the expected codimension of fw.

4. Determinantal formulas. We first prove a determinantal formula for cer-
tain of the polynomials w(C, y), which is used to show that the universal Schu-
bert polynomials specialize to the quantum polynomials for partial flag varieties
of [CF2]. For this, fix an integer > 2, and fix a set

N= {nl < n2 <... < nl-1 < nl}

of positive integers. Set no 0, and set ki ng- ni-1 for < < l. Let

S(N) (w ft. Sn, ]w(i) < w(i + 1)if q N}

be the permutations in Snt with descents in N. Let w- wN) be the element of
longest length in s(N); that is,

W(np_l + i) nl np+ for 1 < kp, p I.

For nonnegative integers a, b, a positive integer k, and an arbitrary integer m, set

(15)
m

f(k,a,b) Z(-1)Pcm_p(a)hp(Yb+l, Yb+k),
p=O

where hp(Zl,..., zi) denotes the pth complete symmetric polynomial in zl,..., zk.
Equivalently,

b+k

Z f(k, a, b)t Z ci(a)ti H (1 + yjt).
i>0 j=b+l
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For k > 0, a > 0, b > 0, set

(16) D(k, a, b) det(fa+j_i(k, a + k i, b))

PROPOSITION 4.1. For w wN),

l-1

w(C’ Y) H D(ki+l’ Yli’ tll- /i+1).
i=1

Proof Note that both sides of the identity to be proved are in the R-module
M described in Lemma 2.1, where R [Yl,..., yn,-1]. By that lemma, it there-
fore suffices to prove the formula after specializing each ci(j) to ei(xl,...,xj).
The permutation w is dominant, so, by [M, (6.14)], w(X, y) I-I(xp- yq), the
product over all (p, q) that appear in the diagram D(w) of w. That is,

1-1 ni nl ni

w(X,y)- HH H (Xp- yq).
i=1 p=l q=nl-ni++l

We want to show that the ith term in the product of the proposition specializes
to the ith term of this product. Equivalently, we must show that D(k, n, 0) spe-
cializes to 1-[p=l I-[2=l(Xp- Yq) for any positive n and k. But this also follows
from [M, (6.14)] (cf. [F2, (9.6)]).

We next want to see what happens to the Schubert polynomials w(C) when
we carry out a specialization c H 9- For this, it is useful to have a more graphic
description of this specialization. Write x 1,..., Xn+l as the vertices of the Dynkin
diagram for (An), and regard 91[1],... ,gn[1] as the edges, with 9i[1] connecting xi
to xi+. Now regard 9i[j] as the path starting at vertex xi, moving j steps to the
right, and ending at vertex xi+j; in particular, this identifies 9i[0] with xi. With
this interpretation, ci(k) is the sum of all products of disjoint paths that cover

exactly vertices, all in {Xl,..., xk}.

g2121 g6[11

X1 X2 X3 X4 X5 X6 X7 X8 X9

This figure illustrates, for example, that the monomial xlg212]x5/6[1]x9 appears
in the expansion of c8(9).

This definition is equivalent to the inductive definition

(17) ci(k) Z gk-j[j]ci-j-l(k -j 1).
j=0
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This inductive definition is seen to be equivalent to the matrix definition given in
Section 1 by expanding the determinant along the right column.
We consider the determinant D(k,a, b) and polynomial fm(k,a,b) defined

before Proposition 4.1, but with each ci(j) replaced by the corresponding sums
of products of 9[t]’s. We need the following fact.

LEMMA 4.2. Suppose a, b, and k are 9iven, and assume that 9i[j] 0 whenever
a < + j < a + k and j > O. Then

D(k,a,b) det(fa+j_i(k,a,b))l<i,j<k.

Proof The hypotheses imply that f(k, p, b) f(k, p 1, b) +
xpf_l(k,p-1,b) for a < p < a+ k. It is then a matter of elementary row
reduction to show that the rows of the matrix for D(k,a,b) can be replaced
by the rows of the determinant on the right, by successively subtracting linear
combinations of lower rows.

We next show that the polynomials that give Giambelli formulas in quantum
cohomology for Schubert varieties in partial flag manifolds [CF2] can also be
realized as specializations of the universal Schubert polynomials. With N a set of
positive integers as above, let F(N) be the flag variety of flags V1 c c

Vl-1 V, with V Vt a fixed hi-dimensional vector space, and dim(V/)= ni.
For computations in quantum cohomology of F(u), one introduces variables
ql,..., ql-1, where qi has degree ni+l ni-1. For a permutation w in S (N), we let
(wu) be the result of specializing in w(9) the variables 9i[0] to xi, the variables

(18) 9,i_,+1[ki-+- ki+l 1] to (--1)k’+’+qi

for 1 < < 1- 1, and all other variables ti[j] are set equal to zero.
Another procedure is used in [CF2], which amounts to the following. First

do the substitutions ci(j)Hci(nk) for j e [nk, nk+l), and then do the preceding
substitutions from the ci(nk) to polynomials in x’s and q’s.

PROPOSITION 4.3. For w in S(N), these two procedures 9ive the same poly-
nomial (wN) in 7l.[Xl,..., xn,, ql, ql-1].

Proof When w- wN), this follows from Proposition 4.1 and Lemma 4.2;
note that the vanishing of many 9i[j] guarantee that the lemma applies to each
determinant D(ki+l,ni, nl- hi+l). The general case then follows from this case,
since every other Schubert polynomial, for w in S(N), can be obtained from the
polynomial for wN) by a sequence of operations t3y) acting on the y variables
alone, and specializing in the c variables commutes with these operations.

Other determinantal formulas for universal Schubert polynomials can be
deduced from corresponding formulas for classical Schubert polynomials by the
same procedure as in Proposition 4.1. For example, this is the case whenever all
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the appearances of ci(j) in entries of the matrix never have the same j appearing
in two different rows, or if the same j never appears in two different columns.
Indeed, the determinant of such a matrix is in the module denoted M in Section
2. In fact, as in the proof of Lemma 4.2, the same is true if the matrix can
be transformed by an appropriate sequence of elementary row (resp., column)
operations into a matrix of this form.

For example, suppose w is a Grassmannian permutation with descent at r.
The shape of w is the partition 2 (w(r) r,..., w(2) 2, w(1) 1). Let p 2,
which is the shape of w -1. Let b be the flag of w-i; this is an increasing sequence
of positive integers, constructed from the Lehmer code (Cl,...,cn) of w-1 by
arranging the integers of the form max{j cj > ci}, taken over those with
ci 4 O, in weakly increasing order (see [M, p. 14]). Let fm(k,a)-fm(k,a,O),
where fm(k,a,b) is defined in (15). Then we have the following proposition.

PROPOSITION 4.4. If w is a Grassmannian permutation, then

w(C, y) det(fa+j-i(qi, r + j 1)),

with lu and el) as defined in the precedin9 parayraph.

Proof The second indices r +j- occuring in the matrix guarantee that the
determinant is in the [y] -module M. It therefore suffices to prove the corre-
sponding formula in the classical case, that is, to prove that

w(X, y) det(ei+j_i(qki, r +j 1)),

where em(U,v)denotes the coefficient of m in I-IiV=l(1 + xit)/1-IjU=l (1 + yjt). This
formula is known (see [M, (6.15), (3.8)]; cf. [F2, (9.18)]), except that in these
references the determinant is of the matrix (%+j_i(bg, r)). But these two deter-
minants are seen to be equal by doing elementary column operations, adding
multiples of left columns to those on the right. Fl

Remark 4.5. When the universal Schubert polynomial w(C,y) is specialized
to the quantum variables, one recovers the formula of Kirillov [K] for Grass-
mannian permutations.

Other formulas can be proved in the same way; they give formulas for some
Schubert polynomials w(c) as determinants of matrices with entries ci(j), where
j is constant in columns, but with different values in different columns.

However, some experimentation indicates that there may be more determi-
nantal formulas if one looks for such matrices with j being constant in rows, with
different values in different rows. In fact, many of these polynomials have the
following special form. For arbitrary sequences al,..., an and bl,..., bn of non-
negative integers, form the n x n matrix C(a,b) whose (i, j) entry is
except that, if ai 0, then the (i, j) entry of C(a,b) is the Kroneker index
Note that C(a,b) has the numbers Cai(bi) appearing down the diagonal. Define
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Da,...a,,(bl... bn) to be the determinant of this matrix C(a,b). The formulas we
are looking for have the form

(19) w(C) D,a,>...,<.> (or(I)... or(n)).

Here w is a permutation in Sn+l, I (il,..., in) is the code c’(w) defined in Sec-
tion 2, and tr is some permutation in Sn. Note that the product of the diagonal
terms in such a determinant is the leading term of w(C) found in Proposition
2.2. Here are some examples, for permutations in $5:

w=51423 I=(1,1,2,2) w(C) D2211 (4 3 2 1)

w=35124 I=(0,2,2,1) w(C) DLO22(4 32)

w=32514 I=(1,0,3,1) w(C) D1013(4 2 1 3).

Note that the last permutation is not vexillary. In fact, all but 8 of the 120 per-
mutations in $5 have such determinantal expressions, but these do not include
all of the 103 vexillary permutations. For example, w 53 2 4 is vexillary, but
has no such determinantal expression. It would be interesting to characterize
those permutations that have such a determinantal expression or to give a rule
for a permutation tr (which is often not unique) for those that do. As before, such
a formula can be verified by computing its classical specialization, but the for-
mulas seem easier to detect for the universal polynomials.
One can write a product of two universal Schubert polynomials as a linear

combination of universal Schubert polynomials, with coefficients in the ring [9]
generated by all 9i[j], j > 0:

(20) aw(o)Sw( ).

Even when specialized all the way to the classical case, formulas for the coeffi-
cients are only known in special cases (cf. [S]). Many of these special cases have
been extended to the quantum setting (see [FGP], [CF2]). In these settings, the
coefficients that appear with monomials in the x and q variables are all positive,
for geometric reasons. This is no longer the case for these universal polynomials.
Indeed, given the signs with which the q variables appear in the quantum partial
flag specializations, one knows that certain of these coefficients must be negative.

There is one special case where one does have a positive expansion, which is
the case of multiplying two single terms ci(k), cj(k). Note that ci(k)= w(C),
where w is the Grassmannian permutation in Sk+l with descent at k and
w(k+l)=k+l-i.
To state this result, let i, j, and k be integers, with k positive and 0 < i, j < k.

Let (i, j, k) be the set of Grassmannian permutations w in Sk+l with descent at
k 1, such that w(k) < k + 1 max(i, j) and w(k) + w(k + 1) 2k + 3 (i + j).
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PROPOSITION 4.6. For 0 i, j k,

k-1

ci(k) cj(k) Z w(C) + Z gk[1]w(C) + Z gk-p[P + 1] Ap,
ws’(i+l,j+l,k+l) wezC(i,j,k) p=l

where Zp u(C), the sum over u of the form u- Wtk-p,k, where w varies over
those permutations in zu(i, j,k) for which w(k- p) > w(k), and u- Wtk_p,k is the
result of interchanging the values ofk- p and k.

Proof The proof is by explicit calculation, using the following facts. First, for
w z(i, j,k), with a w(k) and b w(k + 1),

(21) w(C) Ck-a(k- 1)Ck+l-b(k) Ck-b(k- 1)Ck+l-a(k).

This is a special case of Proposition 4.4. It then follows from (6) that for
u Wtk-p,k as in the sum for Ap,

(22) u(C) Ck-a-p(k- 1 p)Ck+l-b(k) Ck-b-p(k- 1 p)ck+l-a(k).

With these formulas, one can expand each w(C) and u(c) that occurs in the
statement of the proposition. On the other hand, from the definitions we have
the formula

s-1

(23) cs(k + 1) cs(k) + tk+l-r[r]Cs-r-1 (k- r).
r=O

One then substitutes (23) for each occurrence of any cs(k + 1) in the expansion
of the first sum in the formula of the proposition and verifies that one has an
identity.

Remark 4.7. The first sum in the formula can be written in the form

ci_,(k -+- l)cj+l(k) Ci-l(k)cj+l(k -+- 1).
1>o I>1

When specialized to the classical case, the other sums vanish, and the propo-
sition becomes a standard formula for multiplying elementary symmetric poly-
nomials.

Remark 4.8. The preceding proposition can be used inductively--in the
explicit form given in the proof--to write an arbitrary polynomial in variables
ci(k) as a linear combination of such monomials so that no product ci(k)cj(k)
occurs with positive and j. Such a polynomial can be written as a linear combi-
nation of universal Schubert polynomials, using Proposition 2.2.
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One can construct a universal ring Rn, which is a natural place for calcula-
tions, and which specializes to the classical and quantum cohomology rings of
flag and partial flag varieties. This is an algebra over the polynomial ring Zig] in
variables gi[j] for j > 0 and / j < n + 1. The ring can be defined as

(24) R, Zig]Ix,,... ,xn+]/(c(n + 1),... ,c,,+](n + 1)),

where each ci(n / 1) is the polynomial in x and g variables defined in Section 2
or (17). The Schubert polynomials w(g), as w varies over S,+I, form a basis for
this algebra over Zig].

This ring has an obvious inner product (,), with values in ;E[g], which is
obtained by multiplying and then picking off the coefficient of x’x’-l...x, or
the coefficient of w0 (g). Computations in low degrees lead one to conjecture the
orthogonality

(25)

where o is the involution defined by o3(gi[j])- (-1)J+lg,+2_i_j[j]. Such an
orthogonality was difficult to prove in the quantum case (see [FGP], [KM]) and
promises to be even more difficult for this generalization. Similar calculations
lead one to believe that

(26) w(C,c)-O forwl.

In a more recent work [BF], formulas for the general degeneracy loci de-
scribed in [ADFK] and [LM] are found by different methods. When specialized
to the loci considered here, they give different formulas for the universal double
Schubert polynomials.

It should be interesting to look for analogues of these universal polynomials
for the other classical groups.

[ADFK]

[BGG]

[BF]

[CF1]

[CF2]
[CFF]
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