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q-analogs of the Catalan numbers c‘, = (I/(n + I ))($) are studied from the view- 
point of Lagrange inversion. The first, due to Carhtz, corresponds to the Andrews- 
Gessel-Garsia q-Lagrange inversion theory, satisfies a nice recurrence relation and 
counts inversions of Catalan words. The second, tracing back to Mac Mahon, arise 
from Krattenthaler’s and Gessel and Stanton’s q-Lagrange inversion formula, have 
a nice explicit formula and enumerate the major index. Finally a joint 
generalization is given which includes also the Polya-Gessel q-Catalan numbers. 
( 1985 Academic Prera. Inc 

1. INTRODUCTION 

In this survey on different q-analogs of the Catalan numbers 

I 
c,, = - 

2n 

i 1 n+l n (1.1) 

we want to stress the importance of using Lagrange expansions instead of 
the customary generating functions. For motivation we briefly repeat the 
well-known case q = 1: 

Starting with the recurrence relation 

C ,,+I= il; (‘kC’,,-k, co= 1, 
k = 0 

which corresponds to a decomposition of Catalan structures, one defines 
the generating function 

f‘(t)= f C,t” (1.3) 
n = 0 

Then (1.2) is equivalent with 

f’(t) = 1 + tf(t)2. (1.4) 
248 
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Now one usually solves this quadratic equation to obtain the explicit for- 
mula (1.1). But we may also use the Lagrange inversion formula, even in 
two ways: 

(i) Either we set f(t) = 1 + y(t) which gives 

.v=t(l+~)* or r=y(l +f’)-? 

Inserting this into (1.3) gives the expansion formula 

y=fc,, y” n=l (1 + y)'"' 
(1.5) 

(ii) Or with z= tf(t)=C,“=, C+,P, (1.4) gives 

z=t+z” or r=z(l -z) 

and hence another expansion 

z= f c, ,2”(1 -z)“. (1.6) 
n=l 

From both expansions (1.5) and (1.6) one immediately gets the explicit 
value ( 1.1) using the Lagrange inversion formula (see, e.g., [6, 231). Of 
course the real advantage of (1.5) and (1.6) over the generating function is 
that they suggest the “right” generalization of Catalan numbers. They will 
be the starting point of our study of q-Catalan numbers. 

Using the q-Lagrange theory of Garsia [S, 91, which unifies the previous 
works of Andrews [l] and Gessel [IO], and where the power g(z)” is 
replaced by g(z) g( qz) . . . g( q” ~ ‘z), one obtains the q-Catalan numbers 
invented by Carlitz and Riordan [4] and studied further in detail by 
Carlitz [3, 51 and other [ 1, 10, 24, 261. They satisfy a simple recurrence 
relation analogous to (1.2) and arise in several q-enumeration problems: 
They count inversions of Catalan words,,and Catalan permutations, area 
below lattice paths, etc. But no explicit formula like (1.1) is known. 

It is shown in Section 3 that the explicit q-Catalan numbers 
(l/[n + 1])[2,“] arise instead from a different q-Lagrange formula for 
expansion (1.5), due to Krattenthaler [ 16, 171 and Gessel and Stanton 
[ 121. Their combinatorial significance for counting the major index of 
Catalan words dates back to MacMahon’s study of “lattice permutations.” 
In fact we study a more general expansion giving a whole family c,(i; q) of 
q-Catalan numbers, which split up into explicit q-Runyon numbers 
(Sect. 4). 

In Section 5 we generalize (1.5) further to obtain 3-variate Catalan num- 
bers C,(x; a, b) and state their combinatorial meaning and recurrence 



250 FtiRLINGER AND HOFBAUER 

relations of type (1.2). Finally we show (Sect. 6) that even the Polya-Gessel 
q-Catalan numbers [22, lo] which count area of polygons are included in 
the C,(x; a, h). 

Notation. Let S(n, m) be the set of all words w = w, w2 .. w, +m con- 
sisting of n OS and m 1s. With S+(n, m) we denote the subset of S(n, m) 
consisting of those words, such that no initial segment contains more 1 s 
than OS. Moreover let K(n, m) = S(n, m)\S+(n, m) and %$ = S+(n, n) for 
short. We identify such words M: E S(n, m) with lattice paths from (0,O) to 
(n + m, n -m) in the sense of Feller [7, p. 731, drawing an ascending edge 
for a 0 and a descending one for a 1. Then a Cutalan word M’ E %,, 
corresponds to a lattice path from (0, 0) to (2n, 0), where no edge lies 
below the x axis. 

For our q-analogs we use the three classical statistics: The “down set” 
D(w) of a word w = w, .. . w,, is defined as 

D(w)= {i: Wi>W,,,, 1 di6n-1). 
maj w=C (i: iED( 
invw=l{(i,j):i<jand w,>w,}/ 
des w = ID(w)/. 

We will also use the standard q-notation 

[n] =‘“-l 
q-1 

(X;q),,=(X)n=(l-x)(l-qX)~~~(l-q~-ix)= i q(4) (-X)k 
k=O 

(4)n 
= (q)k (q)n-k 

and the well-known result [2, Chap, 3.4; 6, p. 266; 19, Vol. 2, p. 2061 

c q~n~~‘= c qmajw,= n+nm 

w E S(n,m) we S(n,m) [ 1 
2, CARLITZ'S ,q-CATALAN NUMBERS 

In analogy to expansion (1.6) we define q-Catalan numbers C, = C,(q) 
as in [ 1 ] by means of 

z= f c, .12”(1-Z)(l-qz)~~~(1-qn~‘z). (2.1) 
n=l 
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Then we obtain 

251 

z2=k;, C,-,zk(z),q-kykZ 

= i Ck-]Zk(Z)kq-k ,F, c, 4(qkz)‘(qkzh 
k>l 

c, ~1 c[- ] qk”- ” ’ > -f(Z),,. 

Rewriting (2.1) as 

z=C,z(l-z)+ 1 C,._,Zn(Z), 
II>2 

gives CO = 1 and another expansion of z2. Comparing coefficients leads to 

C n-1= 1 c&qck+ “’ 
k+i=n-- 2 

C n+l = f: CkCn-kq(k+‘)(n-k), co= 1. (2.2 
k-0 

Writing 

z’,(q) = q(k,(q-1) (2.3 

we obtain the simplest possible q-analog of the classical recurrence relation 
(1.2) for the Catalan numbers 

Z;,,+,= .f qkZi,&-k. 
k=O 

(2.4) 

The first values are 

c,=c, = 1, c2=1+q, c,= 1 +q+2q2+q3, 

c,=1+q+2q2+3q3+3q4+3q5+q6. 

A simple explicit formula like (1.1) is not known. The analog of the second 
expansion (1.5) leads essentially to the same q-Catalan numbers 

(2.5) 
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Proof: We replace z by qz in (2.5) divide by q, add C,, = 1 on both 
sides and divide by I + 17 to obtain 

Now we “square” this equation in the same manner as we have done above 
with (2.1): 

After a multiplication with z we can compare coefficients with (2.5) which 
gives exactly (2.2). So we see that the numbers C, defined by (2.5) satisfy 
the recurrence relation (2.2) and hence coincide with our q-Catalan num- 
bers. 1 

We now turn to the combinatorial meaning of these q-Catalan numbers, 

C’,, = c q’“““. 
II i R ,) 

(2.6) 

For the proof we decompose a Catalan word u’ E %$ + , in the usual way 
into M’ = OK,, lw, with M?, E gk, M’~ E U;, k for some k with 0 6 k 6 n. Then 
the number of inversions in w is given by 

Hence C (q’“vw: M:E $$,) satisfies the same recursion (2.2) as C,, which 
completes the proof of (2.6). 

Geometrically the inversion number of u’ means the area of the polygon 
which lies between the lattice path of M’ and that of the word 0.. . 01 . 1 
without inversions. Viewing this polygon as the Ferrers graph of a partition 
(see [2]) gives an interpretation of the Catalan numbers C,(q)= 
cm Cnmq” in terms of partitions: C,,, is the number of partitions 
(A, 3 J-2,..., L,) of m with 1,~ n-i + I. From this we may infer, e.g., the 
asymptotic formula for 

Iq/<l:C,(q)-+if (l-q’)- as n-+c0, (2.7) 
I = 0 

i.e., the q-Catalan numbers C,(q) converge to the partition function. For 
the c,,(q) the exponent of q counts the area between the paths of w and of 
0101 . ..Ol. 
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Another combinatorial model for Catalan numbers is described in Knuth 
[ 15, p. 238f, Exs. 2-51; he considers a stack where at each of 2n steps either 
one of the numbers 1, 2,..., n (in this order) is put onto its top or its top 
item is taken off. The output of such an operation gives an arrangement or 
permutation p = p, pz.. . pn of the numbers 1, 2,..., n, which is characterized 
by the following property: Each descending block of p is “complete” in the 
sense that it contains all numbers between the smallest and the largest 
element of this block that have not appeared before; or more formally: 
there are no indices i < j< k such that pj < pk < pi. Let %‘z be the set of 
these permutations. Coding a “put next number onto” by 0 and “take top 
number off’ by 1, we obtain a bijection between Catalan permutations %?z 
and Catalan words %?,,. Now a representation in terms of permutations 
leads immediately to q-analogs by using the standard q-statistics. In fact. it 
is easy to see that 

chl)= c q’“‘“, OEV,* (2.8) 

i.e., the Carlitz q-Catalan numbers count also inversions of Catalan per- 
mutations. 

At this point a remark on a related number sequence, the Bell numbers 
(see [6, 131) seems appropriate. Obviously U,* is contained in the set 9Y,, of 
those permutations where every basic component consists of only one 
decreasing block. Such permutations represent partitions by writing 
elements within each block in decreasing order and ordering the blocks 
along increasing largest (= first) elements. Then 

B,,(q) = 1 qinvo (2.9) 

gives a q-analog of the Bell numbers B, = 1!-%,J, which lit with Gessel’s 
q-exponential formula [ 111: Their generating function is 

.:,g 
t”=e,[e,iu(t)- l] 

and they satisfy the recurrence relation 

(2.10) 

(2.11) 

There are a lot of further interesting results on Carlitz’s q-Catalan num- 
bers, in particular for their generating function f(z) = C,“=O e,,(q) zn, which 
satisfies the relation f(z) = 1 + zf(z)f(qz) and can be written as a con- 
tinued fraction of Ramanujan (see [ 1, 3, 4, 5, 10, 24, 261). 
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3. THE q-CATALAN NUMBERS cn(J*; q) 

For expansions like (1.5) there exists another q-analog than (2.5) for 
which an explicit q-Lagrange formula has been found recently and indepen- 
dently by Krattenthaler [ 16, 171 and Gessel and Stanton [ 121 (see also 
[14] for a unified approach to their theorems). 

THEOREM. If 

f(z+, (lwq-nz)...(l _ CnZn \ q-‘z)(l -az)...(l -q”-bz) 

= .;, (4-12; ,“:,:, (uz; q)n’ 

then 

1 
c,ECnlf’(z)(l -q- (“-‘)z) . ..(I -z)(l-az)...(l -q+‘az) IZ” i, 

where f’(z) is the q-deriuatioe (f(qz) -f(z))/(q - 1) z of f(z) and g(z) IZn 
denotes the coefficient of z” in the formal power series g(z). 

Sketch of the proof Set g,(z)=z”/(q-“z), (a~),. Then the theorem is 
equivalent to the orthogonality relation 

ddz)(q’pkz)k (az)k izk-l = InI 6nk 

which is obtained by calculating the q-derivative of gk/g,, and looking at its 
residue. 1 

This motivates us to define a new kind of q-Catalan numbers c,(A; q) = 
c,(A) by means of the expansion formula 

a, c,(k 4) zn zr 
rt?, q(Z)( -q mmnz), (-qiz),,’ (3.1) 

Using the above q-Lagrange formula, we obtain 

,-Wcn(i)=~ (-q--n+lz), ( -qiz)n );.-I (3.2) 
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and finally the explicit formula 

c,(A)=’ i Lnl k=O [r][kT 11 qk2+‘k. (3.3) 

The terms in this sum are q-analogs of the Runyon numbers rnk = 
(l/n)($)(,;,) from [23, p. 171. They count the lattice paths w in %‘,, with k 
“valleys” or k + 1 “peaks,” i.e., des w = k. 

For certain values of 1, (3.2) may be evaluated in a simpler way. In par- 
ticular, we obtain for L = 1, 

c,,(l)=q(;)$ (-zq’-n)zn 
;n I 

2n = ,(;I 1 [ 1 [n] n-l 4 (-n+l)(fl-l)+(“;‘) 

1 2n =- [ 1 [n+l] n (3.4) 

which is the most obvious q-analog of the Catalan numbers. For ,J = 0 a 
similar calculation gives 

1 
c,(O) = - 2n l+q [ 1 -JY- [‘y-y& [n’“l]. 

[n+l] n l+q” [n+l] 

The first values are given by 

c(Ji) = c,(A) = 1, c*(A)= 1 +q”i, 

c3(A)= 1 + [3] q’+“+q4+2i,.... 

As for Carlitz’s q-Catalan numbers, the c,,(I) have a nice combinatorial 
interpretation: 

c,(n)= c 4 maj w’ + (2 ~ I ) des H’. (3.5) 
-,tW6, 

We will first present a simple proof of the important special case 1. = 1 and 
defer the proof of the general case to the next sections. Using an idea 
similar to the reflection principle we can state 

LEMMA. There exists a bijection cp: S-(n, n) -+ S(n + 1, n - 1) which 
satisfies maj p(w) = maj w - 1. 

Proof: Given a path w E S-(n, n) we determine the first of its “deepest” 
points. Call it P and let P’ be the lattice point on w before P. Now we tip 
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up the decreasing piece P’P (coded by a I ) into an ascending one (coded 
by a 0), add the remainder (shifted upwards for two units) and call this 
path cp( ~2). Apparently cp( W) E S(n + 1, n - 1) and maj cp( W) = maj II‘ -- 1. 

It is easy to see that this map is a bijection: Starting with 
\I” E S(n + 1, n - I ) we find the critical point P’ to be now the rightmost of 
the “deepest” points. [ 

This implies 

Hence 

which concludes the proof of (3.5) for i = 1. 
Of course the same works also for S _ (n, m) and s(n + 1, m - 1) which 

would give q-ballot numbers. These results are due to MacMahon [ 19, 
Vol. 2, p. 214; and 20, p. 13451, who called elements of s+(n, m) “lattice 
permutations,” but we could not find the above simple combinatorial proof 
in the literature. Another proof was given by Aissen [27]. 

4. q-RUNYON NUMBERS AND A THEOREM OF MACMAHON 

Obviously (3.5) is equivalent with 

x (qmajw: WE%?,,, des w=k}=i Cn, [;l[k; 1]4LlilI’ t4’l) 

As Gessel has pointed out to us, this is actually a special case of the folfow- 
ing result on “sublattice permutations” of MacMahon, stated in [20, 
p. 14291: Let 

S(a,6;k)=(w~S(a,b):desw=k) 

S,(a, b; k) = S(a, b; k) n S,(a, b) 

and Ma, 6; 4 = C,, S(o.6;k) q majw and analogously M, , M- . Then for 
a Z b, 

M+(a,b;k)=qk2+k [a-k+l]...[a-l][b-k+l]...[b] 
[k]! [k+ l]! 

x ([u-k] +q”-““[a-b][k]) (4.2) 
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For a = b = n, (4.2) reduces to (4.1). Since MacMahon stated this formula 
without proof, we take the opportunity to present two proofs of (4.2). An 
elementary calculation shows that (4.2) may be written in the more 
suggestive form 

M, (a, b; k) = qk2 
([i][L]-[f-:1[K]). 

(4.3 1 

Proof: Looking at the last letter of a word w E S, (a, b; k) we observe 

~+(a,b;k)=S+(a-1,b;k)O+S+(a,b-1;k)1-S+(u--1,b-1;k)1o 

+S+(u-Lb-l;k-1)lO 

for u>h and 

S+(u,u;k)=S+(u,u-1;k). 

This implies the recurrence relation 

M+(u,b;k)=M+(u-1,b;k)+M+(u,b-1;k)-M+(a-1,b-1;k) 

+9 “+b-lM+(u-l,b-l;k-l) for a>b, (4.4) 

and 

M+(u,u;k)=M+(u,u-1;k). (4.5) 

It is now straightforward to verify these relations for (4.3). 1 

We note that relation (4.4) is satisfied by qkZ[;::;] [i zi] for any fixed s 
and holds also for M(u, b; k) and M-(a, 6; k), but with a different bound- 
ary condition instead of (4.5). From this we can conclude the following 
refinement of (4.3): 

M(u, b; k) = qk2 ; 
[ IL 1 

; (4.6) 

M. (a, b; k) = qk2 [~I:][~~~] for u2b. (4.7) 

We now present a more direct proof of (4.6): Given a word w E S(u, 6; k) 
we count for each of the k descents of w the number of OS and 1 s to the left 
of it. Obviously these two sequences (Ai), QiGk and (B;), <, Gk, which 
satisfy 

O<A,<A,< ... <A,<u 

O<B,<B,< ... <B,<b. 

(4.8 i 

(4.9 1 
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determine the given word w E S(a, h; k) uniquely, and 

maj pi= i (A,+ Bi). 
I-~ I 

But now it is well known (see, e.g., [Z]) that 

c9 

where the sums are taken over all sequences satisfying (4.8) (resp. (4.9)). 
This proves (4.6). 1 

A similar but more technical argument is possible for (4.7), like Krat- 
tenthaler’s [16] related direct proof of (3.5). 

5. A GENERALIZATION 

In this section we give a further proof of (3.5), now using recurrence 
relations analogous to (1.2), similar to the simple proof of (2.6). This 
method works in a more general case: We refine the maj-statistic in the 
following way: For a word w = MJ, w2.. w,+, E S(n, m) set 

a(w)= 1 I{j<i: w,=O}l 
ic D(a 1 

P(w)= 1 I{j<i:w,=l}l, 

It D(Wl 

where D(w) is the down set of u’. Obviously a(w) + p(w) = maj w. 
Now we can state our main result: 

THEOREM. The following statements are equivalent: 

c,(x; a, b) = 1 Xdes+“aWbP(“‘f; 
11’ E %” 

(5.1) 

CL (;)C,(x; a, b) z” 
a -'z)...(l++a “z)(l +xbz)...(l +xb”z)’ (5.2) 

n- I 
C,+,(x)= C,(xu)+x c (ab)k+’ C,(xa) C,m.k(x(ab)k+l), CO= 1; (5.3) 

k = 0 

C,+,(x)= C,(xa)+x .f (ab)k C,(x) C,mk(xak+‘bk), 
k=l 

co = 1; (5.4) 

C,+,(x)=C,(xab)+xb 1 ak+‘Ck(Xab) C,_k(x(ab)k+‘), CO= 1; (5.5) 
k=O 

where we have written C,(x) instead of C,(x; a, 6) for short. 
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Proof: (5.1)* (5.3). Again we decompose a word w E %?,, + I into 
w=Ow11w2 with w~E%‘~ and wzE’&,-k for some k with O<k<n. Then for 
k<n we have 

desw=desw,+l+desw, 

a(w)=cr(w,)+desw,+(k+l)+a(w,)+(k+l)desw, 

P(w)=P(w,)+(k+ l)+B(wZ)+(k+l) des wz; 

and for k=n, des w=des wl, a(w)=a(w,)+des w,, and fl(w)=fl(w,). 
This gives immediately the recurrence relation (5.3). 

(5.1) 0 (5.4). This is proved in the same way using the decomposition 
w= w,Ow,l. 

(5.2) 0 (5.3). Adding 1 and multiplying by z/( 1 + z) both sides of (5.2) 
gives 

a-(k,(x) zn+’ = Fz 
#!, (1+z)~~~(1+a-“z)(l+xbz)~~~(1+xh”z)’ 

Now we add a further factor 1 + xb”+ ‘z = 1 + xdb” + ‘(za ~ “), replace ZU-‘I 
by the series (5.2) with xa”b”+ ’ instead of x and obtain 

z= 
,Fo (-z; $;;;;((?;;;‘@+ 1 

x 1 +xa”b”+’ f 
1 

(2 - (:)Cj(xa”b” + ‘) ,ju ~~ F’ 

,=, (-za -n- ‘; a-‘)., (-xb”+*z; b)i 1 

am (‘;)z”+’ 

~;a-‘),+, (-xbz;b),,+, 

1 n- 1 

x C,(x)+x 1 akbk+‘C&) C,&xukbk+‘) 
k=O 1 

Comparing the coefticients in this series again with (5.2) (after replacing z 
by az), we obtain the recurrence (5.3). 

(52)o (5.5). This is proved in the same way by adding the factor 
1 + xz instead of 1 + xb”+ ‘z. 

Remarks. (1) We do not have direct proofs of any other combinations. 
(2) Obviously this 3-variate version of the Catalan numbers extends 

the q-analog of Section 3 by setting a = b = q: 

C,(q”- ‘; 4, 4) = c,(J-; 4). (5.6) 



260 E.tiRLINC;tR AND HOFBAL!EH 

(5.1) is just (3.5) (5.2) is (3. I ). and (5.3)(5.5) are recurrence relations 
extending (1.2). 

(3) Surprisingly the Carlitz q-Catalan numbers also are covered by 
them, as we recognize from (5.2) by setting u = q ‘, h = q’, .Y = q I. and 
comparing with (2.5): 

C,,(q ‘; q ?, q2) = q -W,(q) 

or 

c?(q) = C,(q; q2, q~-2L 

But then (5.1) implies that the two statistics “(‘;) - inv” and 
“2ct - 2p + des” have the same distribution on %,;,. One can show that they 
are also equally distributed on S(n, n). We will give a “bijective proof’ of 
this fact in the next section, 

(4) It would be interesting to extend the above theorem further by 
including the inversions in (5.1). 

(5) We suppose that most of the things that are known for the 
statistics (des, maj) can be extended to (des, ~1, fi). E.g., it is easy to 
generalize (4.6) to 

which is the answer to a general Simon Newcomb problem [2,6, 191 for 
two different letters. 

6. POLYGONS AND THE POLYA-GESSEL q-CATALAN NUMBERS 

Until now we have formulated the combinatorics of our q-Catalan num- 
bers only in terms of O-l-words and lattice paths. In this last section we 
describe a further combinatorial model, which is the basis for a q-analog of 
the Catalan numbers introduced by Polya [22] and Gessel [lo]. 

Following Gessel [lo], we consider pairs of lattice paths in the plane, 
each path starting at the origin, but now consisting of unit horizontal and 
vertical steps in the positive direction. 

Let grin., be the set of such path-pairs (TC, (T) with the following properties: 

(i) both ‘II and 0 end at the point (j, n -j), 
(ii) n begins with a unit vertical step and cr with a horizontal, 

(iii) n and u do not meet between the origin and their common 
endpoint. 
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Obviously the elements of pn = U;= I pn,] are polygons with circumference 
2n. It is well known that lgn+rl=Cn, and IYn+,,il =(l/n)(r)(.ill), the 
Runyon numbers (see [ 18, 21,251). Gessel [lo] considered more generally 

P,(s; q) = i 1 q’c(n%‘. 

,= I (n,u)E*n, 

(6.1) 

where A(n, a) denotes the area enclosed by the polygon (n, a), and studied 
their generating function in detail. Polya [22] had considered the case 
s= 1. 

We are now going to show that also these q-Catalan numbers can be 
subsumed under the 3-variate C,(x; a, b) of Section 5. To this end remem- 
ber the bijection between words in S(n, n, k) and pairs of sequences 

O<A,<A,< ..’ <A,<n 

Q<B,<B,<... <B,<n 
(6.2 1 

we have constructed in (4.8) and (4.9). With this bijection the subset 
S + (n, n, k) corresponds to sequences with Ai > B,. Now set x, = A ; - i + 1, 
/?,= Bi-i for i= I,..., k, so that (6.2) is equivalent to 

(6.3) 

We now assign to (6.3) two lattice paths from (0,O) to (k + 1, n-k): 
The one, which we call rr, joins the lattice points (i, a,) to (i, cci+ , ) and 
(i. a;, 1) to (i+ 1, cli+ ,), and the other, CJ, joins (i, pi) to (i+ 1, /Ii) and 
(i+ 1,/j,) to (i+ l,fli+,) for i=O ,..., k, where c1~=,!&=0 and zk+,= 
B k + , = n -k. Then LX, > flj just means the above condition (iii). Obviously, 

desw=k 

x(w)=A,+ ... +A,=a,+ ... +a,+ (6.41 

where A(x) denotes the area below the path 7c in the positive quadrant. 
Thus we have found a bijection between %?,, and Yn+ , which translates our 
three statistics (des, a, fl) in a simple way. Hence we can interprete the 
results of Section 5 in terms of polygons. In particular, (6.4) implies 
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A(rr, a)=A(n)-A(cr)=u(w)-fi(+~)+n, so that comparing (6.1) with (5.1) 
leads to the desired result 

p,, + ,(K 9) = ~q”c,l(.c q, q ’ ). (6.5) 

Hence our 3-variate C,,(x; a, b) reduce to the Polya-Gessei q-Catalan num- 
bers for ab = 1. Looking at (5.7) we observe that for s = q’,!2 we obtain 
Carlitz’s q-analog again. This is shown also by the following combinatorial 
argument: 

As in [lo] we represent a path-pair (rr, a) E Yn., as a sequence of pairs of 
steps: let v be a vertical step and h the horizontal step. Then we write the 
pair (n, cr) with ~=a,a, .“a,,, a = b, . . b,, each ai and hi being a v or h, 
as the sequence of step-pairs (a,b,) ‘.. (a,b,). In order to find a bijection 
with g,;,, we code a sequence of step-pairs as a word in 0, I as follows: 

(v,h)-tO 0 (v, v) -+ 1 0 

(h,v)+l 1 (h,h)+O 1. 

Omitting one “0” at the beginning at a “1” at the end, we obtain a word u 
in V,,. It is easy to see that this encoding is bijective and that 

2A(7c, a)-2n+i- 1= ‘; 
0 

- inv u’ 

which is essentially the area below w, as we observed in Section 2. This 
implies 

the connection between Carlitz’s and Polya-Gessel’s q-Catalan numbers. 
Together with (6.5) this shows 

C(4) = C,(q; Y2, q *I 

which gives the promised purely combinatorial proof of (5.7) by combining 
the above two bijections between %‘R and gn+, . 

We should remark that for the Polya-Gessel q-Catalan numbers our 
Lagrange expansion (5.2) is equivalent to Gessel’s results on their 
generating function if we apply the q-inversion theorem of Garsia ES, 
Theorem 1.11. 

We conclude with the following nice result, which was found by 
Schwarzler, a student of our institute, and which can be derived from (5.2): 
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(i) The sum of the areas of the polygons in Pn + 1 is exactly 4” ‘. 
(ii) (Conjecture) These polygons may be put together to a square of 

side 2”- I. 
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