MAHONIAN Z STATISTICS

JENNIFER GALOVICH AND DENNIS E. WHITE

ABSTRACT. The Z statistic of Zeilberger and Bressoud is computed by sum-
ming the major index of the 2-letter subwords. We generalize this idea to other
splittable Mahonian statistics. We call splittable Mahonian statistics which
produce other splittable Mahonian statistics in this fashion Z-Mahonian. We
characterize Z-Mahonian statistics and include several examples.

1. INTRODUCTION

The major index statistic on words was first studied by Major P.A. MacMahon
in the early part of the 20th century [16]. As MacMahon showed, the distribution
of the major index on all rearrangements of a given word is the same as that of the
inversion number. The significance of MacMahon’s work has been recognized by
giving the name Mahonian to any statistic whose distribution is the same as that of
the inversion number (or the major index). In recent years, several other Mahonian
statistics on words have emerged. These include the interpolating statistics of
Rawlings [17], Kadell [13] and White [22], and an important new statistic due to
Denert [7]. Also, Simion and Stanton [20] introduced new Mahonian statistics on
binary words.

Of special interest is the Z statistic introduced by Zeilberger and Bressoud [23],
obtained by summing the major index for each of the 2-letter subwords of a given
word. Zeilberger and Bressoud showed that the Z statistic was Mahonian, a key
step in their proof of the ¢-Dyson conjecture.

At this juncture, we emphasize that the Z statistic and the statistic from which
it was manufactured have the same distribution. It 1s, therefore, natural to look
for other statistics which have this “Z-ing” property. We restrict our attention
to statistics on binary words which are splittable, an idea introduced in earlier
work [9], [10]. In this paper we give precise conditions under which a family of
splittable Mahonian statistics on binary words can be “Z-ed” to give a splittable
Mahonian statistic on words. We call statistics with this property Z-Mahonian.

The next section defines words and statistics on words, and includes a more
extended discussion of Mahonian statistics. In Section 3 we discuss the notion of
a splittable Mahonian statistic and restate a key result from [10]. The definition
of the Z operator that extends the ideas of Zeilberger and Bressoud and our main
theorems appear in Section 4; illustrative examples are provided in Section 5.

In Section 6 we return to the topic of splittable statistics with several counting
theorems. The paper concludes with a few remarks about the general applicability
of our Z-operator results.

Date: August 7, 2003.
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2. MAHONIAN STATISTICS

In this section we first define words and statistics on words. We will introduce
the important class of statistics on words, Mahonian statistics.

Let K be a positive integer. A letter is an element of [K] = {1,2,...,K}. A
word is a sequence of letters. If w is a word, then the i-th letter is w;. The length
of w is the number of letters in w. A letter z appears in w if w; = x for some 1.
If z and y are letters, then w[z,y] is the subword obtained by removing all letters
except z and y from w.

The type of w, p = (p1,p2,...,pK), is a vector representing the number of each
kind of letter in w. That is, p; is the number of 1’s in w. Thus, if the type of w is
p, then z appears in w if and only if p, > 0. Let a(p) denote the number of letters
appearing in words of type p and let |p| denote the length of any word of type p.

The set of all words of type p is denoted W,. If z appears in words of type p,
we write € p. The new type p—x is (p1,...,ps — 1,..., px). That is, one z has
been removed from the type.

An alternative description of type is an exponential form. If w has type p, then
we write 1712P2 . KPK to represent the type. This notation is useful because if x
does not appear in w, then the term z° won’t appear in the exponential form.

If p and p are two types, then p < pif y; < p; for all 1 < < K, with a strict
inequality at least once. If u < p, define p— p = (p1 — p1, ..., pPx — BK).

Two special kinds of types are important. First, binary words are words with
only two letters appearing. Second, permutations are words such that each letter
which appears, appears only once.

A statistic on words in W, is a function s from W, to the non-negative integers.
If the type is not specified, then the function is from all words to the non-negative
integers. If s is a statistic on words of type p, then the corresponding statistic
generating function is the polynomial

S
weW,

A statistic s on words of type p is Mahonian if its statistic generating function is

[Ipl] E[ o] ]
rl, P1: P2, PK ],

called the q-multinomial coefficient, and defined by

Lhn;?wan:[mhmiﬂf“mgg’

[n]g! = [nlgln — 1]4.. . [1],,
and
[mlg=1+q+q"+ - +q"" .
In the case of binary words, the g-multinomial coefficient becomes the ¢-binomial
coefficient. In the case of permutations, the g-multinomial coefficient becomes the
g-analogue of n!.

Mahonian statistics on words have a long and important history. The interested
reader is referred to [10] for a summary of this history. Over the years, many
Mahonian statistics have been discovered and rediscovered. We list here some of
the important ones, and give some of their definitions.
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Define
INV(w) = #{(4,7) | i < j,w;i > w;}

MAJ(W) = E i.
{ilwi>wiqa}
The statistics INV and MAJ are classical Mahonian statistics, dating back to MacMa-
hon [16].

In their proof of the ¢g-Dyson conjecture, Zeilberger and Bressoud were led to
another Mahonian statistic, which we call ZLB. (In the literature this statistic is
referred to as Z.) This statistic interpolates between INV on permutations and MAJ
on binary words. It is defined by

ZLB(W) = ZMAJ(W[m,yD.

<y

and

In a later paper [3], Bressoud describes “tournamented” statistics. His idea is
extended in Section 4. Other Mahonian interpolating statistics include rRaw [17],
KAD [13] and wHT [22].

Another important Mahonian statistic first appeared in the work of Denert [7].
This statistic, DEN, was first proved Mahonian on permutations by Foata and Zeil-
berger [8], then on words by Han [11].

All the above statistics are defined on all words. However, many Mahonian
statistics are defined only on permutations. These include some recent statistics
due to Babson and Steingrimsson [2].

Since our plan is to bootstrap a Mahonian statistic on binary words up to all
words, our discussion will not include Mahonian permutation statistics.

3. SPLITTABLE STATISTICS

In this section, we introduce the idea of a splittable Mahonian statistic, and we
review a couple of the results in [10].

The idea of a splittable statistic is described in detail in [10]. Roughly speaking, a
statistic on words is splittable if it can be written as a sum of two pieces. One piece
corresponds to the rightmost letter. The second piece corresponds to the subword
obtained by removing the rightmost letter. The second piece must be (recursively)
splittable.

More precisely, a Mahonian statistic s on W, is splittable (or splits) if, for v =
wzx € W,,

(1) s(wz) = ay + T(W),

where T is a Mahonian statistic on W,_, which splits, and a; is an integer.
The following Theorem is a consequence of Theorem 6.2 in [10].

Theorem 1. A Mahonian statistic s 1s splittable on words of type p if and only if
for every v € W, B < p < p, there is a permutation of the letters in p — p, T,
such that if
w==zxzy...2, €W,
with
u; = 21...2;
and
Vi = Zi41...-Tn,
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then .
i=1
where
a; = #{y inw; | 7y, y > w2}
For example, if p = (1 2,1), then s defined below is splittable Mahonian.

5(1223) =3 $(1232) =1 s(3122) = 1 5(2231) = 5
5(2123) = 2 $(2132) =2 s(2312) =3 s$(2321) =3
s(2213) =4 s(1322) =0 s(3212) =2 s(3221) = 4
Thus, s(2312) = 3, since my = (123), m2 = (1)(23), m12 = (23), and 7312 = (2), so

that ay = 0, a3:2,a2:1anda1:0

In what follows, we will identify the permutation m, with the corresponding
transitive tournament on the letters in the permutation.

Many Mahonian statistics on words appearing in the literature are splittable.
These include MAJ, INV, DEN, RAW, KAD, WHT, and zZLB. These examples all
appear in [10].

The fact that MAJ splits requires special attention. It splits because of an “en-
coding” due to Han [11] which gives exactly Equation (1). This encoding is as
follows. For z = w; in the word w, a; counts the number of letters to the left of
position j and cyclically between z and y = wj41 (with w,y1 = k), counting y’s
but not z’s.

For example, if

w=21143422313,
then the vector of a;’s is

(0,0,1,3,1,3,0,1,4,5,2).
Thus, MAJ(w) = 20.

4. THE Z OPERATOR

In this section we introduce the Z operator and we give two necessary and
sufficient conditions for the Z operator to produce a splittable Mahonian statistic.

We now consider words of type p which use K letters. We call a collection of
statistics, one for each type z=y’v, a binary family of type p. If each statistic in a
binary family of type p is splittable Mahonian, we say the binary family is splittable
Mahonian. Suppose s is a binary family of type p. If w is a word of type z=y’v, we
abuse notation and write s(w) to denote the value of the statistic in the collection
S on w.

Now suppose s is a binary family of type p. Define Z(s) on words of type p as

follows:
Z(s)= Y s(wlz,y)).
{zy}

It is obvious that if s = INv, then Z(s) = iNnv. In [23] it was shown that if
s = MAJ, then Z(s) is Mahonian. This is the statistic zZLB described in Section 2.
A combinatorial proof that it is Mahonian was given in [12], and a proof that it is
splittable appears in [10]. The statistic ZLB interpolates between INV and MAJ in
the following sense. On binary words we have ZLB = MAJ. On permutations we
have zLB = INV.
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The goal of the rest of this paper is to give general criteria under which Z(s)
is a splittable Mahonian statistic. We call binary families with this property Z-
Mahonian.

The following example will serve as illustration. Define EXS on 4 letters as
follows. Let EXS = INV on words using 1’s and 2’s; on words using 1’s and 3’s, and
on words using 1’s and 4’s. Also, let EXS = INV on words using 2’s and 4’s. Finally,
on words using 2’s and 3’s or words using 3’s and 4’s, let EXS = MAJ. The following
table describes EXS:

2 3 4
1INV | INV | INV
2 MAJ | INV
3 MAJ

Then for any type p, EXS is a binary family of splittable Mahonian statistics of
type p. For instance, if
w=21143422313,
then Z(Exs)(w) = 19, since

Exs(w[l,2]) =1nv(211221)=5
Exs(w[l,3]) =1nv(113313)=2
EXs(w([l,4]) =Nv(11441) =2

EXs(w[2,3]) = MAJ(232233) =
EXs(w([2,4]) = 1NV(24422) =4

EXS(w[3,4]) = MAJ(43433) =

For another example, take EXT to be the binary family given by this table:
2 3 4
1] 1INV | INV INV
: MAJ if w[2,3] has even | INv if w[2,4] has odd
length, INV otherwise length or if ps = pa Z p3
mod 2, MAJ otherwise
3 MAJ if w[3,4] has even
length, INV otherwise

Again, EXT is a binary family of splittable Mahonian statistics of type p. If, for
example,

w=21143422313,
then Z(EXT)(w) = 20, since
EXT(w[l,2]) =1Nv(211221)=5
EXT(w[l,3]) =1mvv(113313) =
EXT(w[l,4]) = INv(l 1441)=2
EXT(w(2,3]) = MAJ(232233) =
EXT(w[2,4]) = INv(24422) =4
EXT(w[3,4]) =1NV(43433) =
We shall find that EXS is not Z-Mahonian while EXT is Z-Mahonian.

Suppose s is a binary family of splittable Mahonian statistics of type p. There-
fore, for each word b of type z*y/, ¢ < p, and j < py, there is a “ranking” of z and
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y. That 1s, for each word of the form axb, the contribution of z, a,, will depend
upon b, and will be either the number of ¥’s in a (if y beats z) or 0 (if z beats y).
Similarly, for each word of the form ayb, the contribution of y, a,, will be either
the number of z’s in a (if z beats y) or 0 (if y beats z).

Now suppose v is a word of type u < p. Each v[z,y] determines a relative
ranking of z and y, given by s. Together, these rankings form a tournament, which
we call T5.

Theorem 2. Suppose s is a binary family of splittable Mahonian statistics of type
p. Then s s Z-Mahonian on type p if and only if for each v of type p < p, Ty 1s
transitive on the letters in p — p.

Proof. If Ty is transitive on the letters which appear in p—pu = v, then it corresponds
to a permutation my on these letters, and is exactly the permutation required by
Theorem 1 for Z(s) to be a splittable Mahonian statistic.

Conversely, suppose 7 (s) is splittable Mahonian. By Theorem 1, the tournament
T, must be transitive. O

Note that it is possible for s to be Z-Mahonian on some types, but not all types.
Notable cases of splittable Mahonian binary families which are not Z-Mahonian for
some types include DEN, RAW and KAD.

It is possible to describe how splittable statistics Z(s) can be built up. Suppose
T is a transitive tournament. A transitive tournament S such that only team =z
changes positions relative to the remaining teams is called a reassignment of z in

T.

Theorem 3. Suppose S is a binary family of splittable Mahonian statistics of all
types. Then each Ty ts a reassignment of x in Ty if and only if s 1s Z-Mahonian
on all types.

Proof. The “only if” part is immediate. For the “if” part, since Z(s) is splittable
on all types, by Theorem 2, Ty, is transitive for each v. But all the 2-letter subwords
of zv which do not involve z will be the same as the 2-letter subwords of v, so the
order of these letters in T,, will be the same as the order of these letters in 75 .
Therefore, Ty will be a reassignment of z in Ty . O

5. EXAMPLES

In this section we will illustrate Theorem 2 and Theorem 3 with three basic
examples. We can form other examples by combining these three basic examples
in various ways.

Our first example is based on MAJ and the Zeilberger-Bressoud statistic ZLB.
Using Han’s encoding of MAJ [11], if the binary family is MAJ, then Ty, is defined
as follows:

x beats y if and only if the leftmost x in w appears to the left of the leftmost y.

To deal with cases where not all letters appear in w, we concatenate a trailing
KK—1...1tow. It is immediate from this description that Ty, is transitive; in
fact, 7 is the permutation of leftmost occurrences.

There are now several possible modifications. For example, instead of the left-
most x and y, we could choose the & which is p, positions from the left, where p,
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is a nonnegative integer for each z (and similarly for y). Or we could choose the
rightmost z and y.

The second example arises from a statistic related to work of Simion and Stan-
ton [20]. Suppose w is a word using letters 1 and 2. An inversion in w, w; = 2,
w; =1, with 2 < 7, is of type A if there is a 1 to the left of w;. It is of type B if, for
every 1 < k < j, wg = 2. Then sss(w) is the number of type A inversions plus the
number of type B inversions. Note that some inversions get counted twice, while
others not at all. For example, if

w=2212111221211,

then sss(w) = 20 since there are 14 type A inversions and 6 type B inversions.

This can be translated into an obvious splittable encoding as follows. For a word
w using letters 1’s and 2’s, 1 beats 2 if and only if 1 appears in w. In the above
example, the rightmost 1 contributes 6 to the statistic (2 beats 1), but thereafter 1
beats 2, so the reverse inversions are counted (14 of them).

For a word w of arbitrary type p, the tournament Ty will have, for z < y, =
beats y if and only if z appears in w. This tournment is clearly transitive. The
permutation 7 will first list all the letters appearing in w in increasing order, then
all the letters not appearing in w in decreasing order.

Once again, many variations are possible. For example, instead of the first
appearance of z, the p, appearance could be used. Or, as letters appear in w, they
could become losers instead of winners.

The final example is the interpolating statistic hinted at in [22]. Call a subset
A C [K] contiguous if it has no “holes;” that is, if z,y € A and ¢ < z < y, then
z € A. Suppose Aq,..., A, 1s a collection of disjoint contiguous subsets. Now
define wHT(w) on words using z’s and y’s as follows. If z and y are in the same
A;, then wHT(w) = MAJ(w). Otherwise, WHT(w) = INV(W).

Notice that if m = 0, then wHT = INV and Z(WHT) = INV, while if m = 1 and
A; = [K], then WHT = MAJ and Z(WHT) = ZLB.

Theorem 4. The statistic WHT is Z-Mahonian.

Proof. The tournament Ty, is as follows. If z and y are both in the same A;, then
z beats y if and only if z appears to the left of y in w. Otherwise, z beats y if and
only if z > y. This tournament is clearly transitive. a

Once again, many variations are possible. Instead of MAJ, one of the statistics
related to MAJ described above may be used. Or the statistic sss may be used. Or
MAJ on some of the A; and $ss on other A;.

We now return to the two examples given in Section 4, EXS and EXT. In the case
of EXS, if w = 23, then in T3, 2 beats 3, 3 beats 4, and 4 beats 2.

In the case of EXT, the following table summarizes the situation. The first three
columns are the possible mod 2 classes for ps, ps and ps. The next three columns
give the statistic produced by EXT. The last column describes Z(EXT).
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P2 | P3| pPa 23 24 34 Z(EXT)

0 |0 |0 |MAJ|MAJ | MAJ | WHT, Ay = {2,3,4}
0 [0 |1 |maJ|INV |INV | WHT, A; = {2,3}

0O |1 |0 |INV | INV |INV |INV

0 (1 |1 |Inv [INV | MAJ | WHT, A; = {3,4}

1 10 [0 |INnv [ INV | MAJ | WHT, A; = {3,4}

1 |0 |1 |INV |INV |INV | INV

1 |1 [0 |MAJ|INV [ INV | WHT, A; = {2,3}

1 |1 |1 |MaJ|MAJ | MAJ | wHT, Ay = {2,3,4}

A few calculations will illustrate the frequency of splittable Mahonian statistics
which are Z-Mahonian.

For type (2,1, 1), there are 32 binary families of splittable Mahonian statistics.
Of these, Of these, 18 are Z-Mahonian.

For type (2,2, 1), there are 512 binary families of splittable Mahonian statistics.
Of these, 138 are Z-Mahonian.

For type (2,2, 2), there are 32768 binary families, with 1122 Z-Mahonian.

6. COUNTING SPLITTABLE STATISTICS

In this section, we derive a generating function for the log of the number of
splittable Mahonian statistics.

Given the simple recursive definition of a splittable Mahonian statistic, it is not
surprising that we can find a recursion for the number of splittable statistics. Let f,
be the number of splittable Mahonian statistics on words of type p. We have a(p)!
different choices for the permutation m, and for each of these and for each possible
letter x ending the word we have f,_, possible splittable Mahonian statistics on
the shorter word. Putting this together, we get

Theorem 5.

fo=(alp)!) H Jo-z .

Tep
Letting g, = log f,, we have
(2) 9o =log(a(p)) + Y 9= -
TEp

We can then find the generating function for the g,. Let x = {z1,25,...} be an
infinite set of indeterminates and let ¢ be another indeterminate. For a given type

p, let
x’ = H:L‘f’ .
i>1
Now let
G(x;t) = ngx”tlpl .
P
Theorem 6.
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where

Ho(x:1) = t"e, (%) H 1 ’

1 —tei(x) ish 11—zt
and e, (X) is the n-th elementary symmetric function in the variables x.

Two interesting special cases can be computed exactly. First, when the words
have two letters, we have this corollary.

Corollary 7. The coefficient of mﬁx%t“’j in G(x;1) s
((’JTJ) —1)log?2.
i

Corollary 7 has a simple combinatorial proof. If the list of words using ¢ 1’s and
j 2’s is written in a natural recursive way, that is, with the reverse word ordered
lexicographically, then between any pair of adjacent words, v and w, in this list,
there is a unique location k (from right to left) where they first differ, with v having
a 1 and w having a 2. There are 2 possible tournament choices for this k. Since
there are (2?) words in the list, there are (Z-i.']) —1 such adjacent pairs and therefore

2(")-1

possible statistics.
For permutations, we have this result.

Corollary 8. The coefficient of x1 ... x,t" in G(x;1) is

n

3 <Z) (n — k)!og(k!) .

k=2
proof of Theorem 6. We first prove a finite version. Let
Gr(x1, ..., 2rt) = G(Xt)|o,=0, j>k ,
and
Hyn(x1, .. 255t) = Ho(X5t) 2,20, j>k -
For a subset A of letters, let x[A] denote the list {z; | i € A} and x4 = [[;c 4 .
We will show

n

> (m) (~=1)™ log((n — m)!)

m=0

k
(3) Gk($1,~~~,$k;t):ZHk,n(l‘h..-,l‘k;t)
n=0

satisfies the recursion (2). Since the initial conditions are trivially satisfied, we must
have Gy = Gy. Letting k£ — oo gives the theorem.
Recursion (2) and the definition of G translate into this identity:

@ Y X (1=t D) G (Al ) = e [ =7
i=0 ACIK] =t Z
|A|:k—j

Replace G with G into the left hand side of (4) and subtitute (3), giving
k

S S (- terAD) Y Hae a0 3 () (-1 ol (= m))

Jj=0 AC[k] m=0
|Al=k—j
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If we now substitute for H and simplify, then the coefficient of
k

(=1)
z:l
is
Z( )|A|+|B|+|D|t|3|+|D|;LBa:D
where the sum is over subsets A, B, C, and D satsifying C C B C A C [k], D C A¢,
and |C'| = m. Tt is easily seen that the coefficient of

tlleU

in this expression is 0 unless C = B = A = [k], D = 0, and m = k, in which case
the right-hand side of Equation 3 emerges. d

We have not been able to derive a similar formula for all Z-Mahonian statistics
of a given type. However, in the special case of permutations, we have this corollary
of Theorem 2.

Corollary 9. The number of Z-Mahonian statistics on permutations of length n
s nl.

Proof. We count the number of binary families which yield Z-Mahonian statistics
under Theorem 2. For the empty word, we have n! possible transitive tournaments.
Let T be one such tournament. Now suppose w 1s a permutation ending in v and
suppose that v is not the empty word. Then 75 is T" with the letters appearing
in v reassigned. But the letters remaining in w do not appear in v, so these
reassignments do not affect the original arrangement of the remaining letters. That
arrangement is the same as in the initial 7T'. d

7. REMARKS

n [10] a new statistic, LP, was introduced. This statistic is notable for two
reasons. First, it is splittable (though not Mahonian). Second, its distribution
generating function is the same as the generating function for charge on words.
Charge is the statistic discovered by Lascoux and Schiitzenberger [14] to resolve the
Foulkes conjecture on the Kostka-Foulkes polynomials. For further details about
charge, see [15].

Many of the results of this paper carry over to arbitrary splittable statistics with
permuteable distribution generating functions (see [10] for definitions), as long as
there is a generating statistic family (such as INV in the case of Mahonian statistics).
In particular, it was conjectured in [10] that LP is such a generating statistic family,
and this has since been proved by the second author. Therefore, not only can LP can
be used to construct charge-distributed analogs of MAJ, DEN and other splittable
mahonian statistics, but a theorem similar to Theorem 2 can be stated to describe
when the Z-operator produces a charge-distributed statistic. In particular, there
are charge distributed analogs of both MAJ and ZLB.

As a direction for further investigation, we note that several authors (see, for
example, [1], [4], [5], [6], [18], [19], and [21]) have constructed statistics on signed
permutations analogous to Mahonian statistics. These constructions invites the
question: Can any of them be extended to “signed words?” If so, is there a concept
corresponding to a splittable statistic and an analogous Z operator?
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Finally, we suspect that, except for perhaps some sporadic cases, the only binary

families which are splittable Mahonian are Z-Mahonian. However, we have no

evi

(1]
(2]

(3]
(4]

dence and no theorems to this effect.
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