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HOW TO GUESS A GENERATING FUNCTION*
SEYOUM GETUY, LOUIS W. SHAPIROt, WEN-JIN WOAN+, AND LEON C. WOODSON¢

Abstract. In this note, a new method for taking the first few terms of a sequence and making an educated
guess as to the generating function of the sequence is described. The method involves a matrix factorization
into lower triangular, diagonal, and upper triangular matrices (the LDU decomposition), generating functions,
and solving a first-order differential equation.

Key words. generating function, Hankel matrix, differential equations, preferential arrangement, Schréder
numbers

AMS(MOS) subject classification. 05A15

Analyzing a sequence. Suppose that we have determined the first few terms of a
sequence and would like to know more about it. The sequence 1, 3, 10, 37, 151, 674,
3263, 17007, 94824, - - - will be used to illustrate. From this limited information, we
would like to guess either a generating function or a recursion relation. Suppose that
looking at differences, Sloane’s handbook [S], or looking for a recursion, have not
helped in identifying the sequence. Here is a new technique that often provides some
insight. Start by forming a Hankel matrix from the sequence. The illustrative sequence
yields that

[ 1 3 100 3 s
310 37 151 674
10 37 151 674 3263
37 151 674 3263 17007

151 674 3263 17007 94824
] i

and Gauss elimination is used to find the LDU decomposition of H as follows:

[ 1 0 [ 1 0
3001 : 1
00 7 1 2!
37 40 12 1

151 221 103 18 1

| ]

and U = L7, the transpose of L.

Obviously, L and the original sequence convey the same information, but often L.
is more tractable.

Let Co(x) be the generating function for the first column, C;(x) the generating
function for the second, and find JS(x) such that Co(x)f(x) = Ci(x).
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In this example, exponential generating functions work, and we solve

x? x3 x? x3 x*
(1 +3x+ 10"27+ 37§'+ . -)f(x)—x+7§!—+40§+2212?+ v
to obtain f(x) = x + x2/20 + x3/3! + -+, leading to a reasonable guess that f(x) =

e*— 1.
The next step is a comparison of the first two columns. Here it seems that Cp+ 10 =

3Cu0 + Cu,1, where L = (Crni)nizo. This leads to
Ch(x) =3Co(x) + Ci(x)=3Co(x) +/(x) Co(x)
=3Cy(x)+ (¥ —1)Co(x).
The solution of this elementary differential equation is
Co(x)=e"*2*~ 1 since Co(0)=1.

We have guessed our generating function. If we define Co(x) = Z =0 P.(x"/n!),
then differentiation yields

Ch(x)=Co(x)(e*+2), s0

" (n
Dni1=2Da% 2 (l)pz.

=0

We can even give a combinatorial interpretation for e**e3* =1 Since e¢” ! generates
the Bell numbers, we can take a set [n], color some elements red and some others green,
then partition the rest into disjoint nonempty blocks Bi, B, -+ , Bi. Let G be the green
elements, R the red elements, and let B,UG, B UG, - ,B UG be the atoms of a
sublattice. The O element for this sublattice is G, while i is [n] — R. This process can
be easily reversed. Thus the sequence 1, 3, 10, 37, 151, - - - could be the number of
Boolean sublattices of the Boolean lattice of subsets of [n].

We have seen one example where we started with the first nine terms of a sequence,
formed the Hankel matrix, row-reduced to obtain the LDU decomposition, found a
recurrence in L, guessed f, and solved a first-order differential equation. From this, we
found the generating function, a recursion relation, and a combinatorial interpretation.

Here are two examples, set as exercises, to illustrate the technique.

(i) We use the sequence 1, 1,3, 13,75, 541, 4683, - -- . We obtain that

1 0 0 0

1 1 0 O

L=1| 3 5 1 0
13 31 12 1

75 233 133 22

= =]

f(x)=x+3x*/2+13x3/31+T5x 41+ - -
A reasonable guess is that Co(x) — 1 = f(x). The differential equation then becomes
Ch(x) = Co(x) +2Co(x)f(x),

so Co(x)=1/(2 — €*). These numbers can arise as the number of preferential ar-
rangements.
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(ii) We use the sequence 1, 2, 6, 22, 90, 394, 1806, - -+ . In this case, ordinary
generating functions work better, as shown below:

f=x+3x2+11x3+45x4+---=§2(—le:—1,

Cn +1,0 = 2C,,,0 + 2C,,,1 SO

2

Now we solve a quadratic equation instead of a differential equation and ob-
tain that

Co(x)=1+2x[{Co(x) + Ci{(x)] =1+ 2x[ Co(x) + Co(x)(—c—b—(f)—:—l—)] .

—x—V1—-6x+x?
2x ’
which generates the (double) Schréder numbers.

If we have the stronger condition that the C,(x) = Co(x)(f(x))" or Cp(x) =
Co(xX)(f(x)™")/n! for all n, then we obtain a group structure for the lower triangular
matrices leading variously to the umbral calculus [R], paths and continued fraction
expansions [F], [GJ], and combinatorics of orthogonal polynomials [ V]. A brief intro-
duction is given in [GSWW ],

For a researcher discovering integer sequences, this technique can be very useful at
the initial work stage. It is hard to judge how many sequences on which this would work,
but the list does include factorials, derangement numbers, telephone numbers (the number
of elements in .S, such that x?> = ), Bernoulli numbers, number of permutations with
no double descents, Bell numbers, both even and odd factorials, Euler numbers, numbers
of preferential arrangements, secant numbers, Catalan numbers, Motzkin numbers,
Schroder numbers (little and big), Delannoy numbers, central binomial coefficients,
directed animals (single source), central trinomial coefficients, and some polynomial
sequences such as Chebyshev Legendre and Hermite sequences.

Co(x)= :
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