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THE UMBRAL METHOD: A SURVEY OF ELEMENTARY MNEMONIC
AND MANIPULATIVE USES

ANDREW P. GUINAND

1. Introduction. The basic idea of the umbral method consists in the use of a notation where
certain exponents can be interchanged with suffixes. Its primary use is as an aid in dealing with
sequences whose properties somehow resemble the properties of integral powers of an algebraic
symbol.

The case most often encountered in the literature is that of the Bernoulli numbers, {B,},
when they are expressed in the even suffix notation. That is, for |x| <2,

X - Xt g 1x2Uxt 1 xS
A= 2B =t et

n=0

ks 2

These numbers satisfy the recurrence formula

sl I, (n=1),
Z(r)B’={O, EZ=0,)2,3,4,...). M

r=0
This formula can be written symbolically as
1, (n=1),
0, (n=0,2,3,4,...), @

with the understanding that the expression on the left is to be expanded in powers of B, and
then each term B™ is to be replaced by B,,. The symbol B is referred to as an “umbra,” and the
symbol = is used to denote symbolic or umbral equivalences, in which we have put B”=B,,
(81, [9], [13D.

In (2) this umbral method is only being used as a mnemonic for the recurrence (1), but the
method can also be a great aid in simplifying manipulations.

The notation is sometimes called the Blissard notation [15], but other writers have attributed
it to Lucas [11] or to Sylvester [16]. The method has been used informally by many writers,
sometimes with virtually no explanation [14]. At the other extreme, rigorous presentations as an
algebraic system have been given by Bell [3] and Temple [18], and it has been expressed in terms
of linear operators by Rota and Mullin [16].

The aim of the present survey is to show that there is an intermediate level, almost completely
neglected in the literature, at which the method can be used to great advantage. Instead of
regarding umbral symbols as new algebraic or operational entities, we treat the method as a
matter of notation, subject to rules of interpretation and manipulation, and give examples to
show how the method simplifies both proofs and expressions of results.

2. The rules of the umbral method.

(B+l)"—B"E{

I. RULE OF INTERPRETATION. Expressions involving one or several umbrae are to be interpreted
by expanding as power series in the umbrae and replacing exponents by suffixes.

II. RULE OF MANIPULATION. Additions or linear combinations of equations involving umbrae are
permissible, but multiplication is only valid when the factors have no umbra in common. In general,
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188 ANDREW P. GUINAND [March

any step in manipulation is valid if and only if it remains valid when interpreted in non-umbral form.

Rule I implies that we only give meanings to functions of umbrae which are analytic at the
origin. The expressions B ~! and log B are meaningless, whereas e?* has the interpretation

200 Bx E x" X
eExE ( ) nm=ex—_1', (0<le<277). (3)
n=0 n=0

In Rule II the ban on some multiplications is needed to avoid such fallacious arguments as:
B?x B*=BS, therefore B,B,= Bg: or e*2* ={e?*}?, therefore

2x x 2
e*—1 _{ex—l } '
The general principle contained in the latter part of Rule II ensures a check on such
manipulations as

eBxxex Ee(B+l)x’ (4)
and

d
o {e®*}=Be®, ®)
Of these, (4) follows by Cauchy multiplication of exponential series. (Cf. [4], [19].) That is

e”"Xe"‘z Bmxmz = 2 vam
n: m:mn:

|
n=0 p=0 p: m+n=p

o0
P
= 2 (B+ 1)”%'— =eB+Dx,
n=0 :

Similarly (5) is validated by

[ 1 00

o]
Bx ﬁ = x" = .{i
dx{ }_dx[zo{B"n!} ;B"(n—l)! 'ZBHIn!

=0
o0
B"x’l
=B 2 1 =PBeBx
n=0 '

3. Applications of umbral methods to the Bernoulli numbers. (i) The recurrence formula.
From (3) we have

ebr=_"_ (6)
Hence
e(B+l)x — eBx =x.
Expanding and equating coefficients of x"/n!, we obtain the recurrence (2), as quoted earlier.
Changing the sign of x in (6), we have

— x
e Bx—=_ X _ X _ B+Dx @)

Hence for all integers n >0,
(B+ 1)" =(—-B)".

With (2) this gives B"=(—B)" for ns1 and B,=—B,—1. Hence B,=—1, B;=B;=B5,
— Y =0.

(ii) Power series for certain trigonometric functions. From (6) and (7) it follows that
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coshBx=3(e®*+e B)=1 'é?xff (1+e*)=3xcoth}x.
Replacing x by 2ix we deduce that cotx =(cos2Bx)/x. This can be regarded as a mnemonic for
the non-umbral formula

>, 211
X
cotx= E (—)”22"32,,—2n! , o (xl<m).

n=0

From the identities

cosec x =cot 3 x —cotx, tanx=cotx—2cot2x,
we get
2cos Bx —cos2Bx cos2Bx —cos4Bx
COseC X = s tanx =
x X
That is,
ol -1 x2n—l
cosecx= D (—)' '@ -DBy T, (Ixl<m),
n=0 !

and

tanx= 3 (=)""'(2%—22")B,,(x*"~1/2n!), (Ixl < 37).
n=1

(iii) The Bernoulli polynomials. These are polynomials B,(x), defined as the coefficients in
the expansion ([2])

In umbral form the left-hand side is e2**?, Hence

B,(x)=(B+x)"= %(’;)Bn_,x'.

The basic properties of the Bernoulli polynomials follow readily from this umbral form. We
have immediately

B,(0)=B"=B,, and B)(x)=n(B+x)""'=nB,_,(x).
Further

e—-(B+x)z: —ze ™ _ ze(l—x)z
T eTi—~1 7 e*—1

—(B+1-
=el 0z,

whence
(=)' (B+x)"=(B+1-x)".
That is, the symmetry property ({2]) (—)"B,(x)=B,(1—x). Also

m~—1 m—1 mxz mz __
(mB+mx+r)z — ,m(B+x)z rz — mze € 1
€ =e € == z
r=0 r=0 e™—1"" e'—1

z
=7 X me™* =meB+m)z,

Hence, by equating coefficients of z"/n!,
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-1
m(B+mx)" = 2 (mB+mx+r)"=m 2 (B+x+ )
r=0
That is, the multiplication formula

m—1
B,(mx)=m""! B,(x+L).
2 B(x+5)
(iv) The Euler-Maclaurin summation formula for polynomials ([8], [13]). If

k
f(x)= ZOfW(O)j‘,—,

is a polynomial of degree k in x, then

ko
s+n-fBy= > O (B+1y -7y =1 0) ®
n=0

by the recurrence formula (2). Unit translations of this result give, successively,

f(B+2)—f(B+1)=f(1),
f(B+3)—f(B+2)=f(2),

....................

f(B+n)—f(B+n—1)=f(n—1).

Adding these with (8) we get the umbral form of the Euler—Maclaurin summation formula

FO+f D)+ )+ +f (n—1)=f(B+n)—f(B). &)
In particular, if p is a positive integer and f(x)=x?*!/(p+1),
(B+nyY*'—B

1P+2P 43P+ .- +(n—1¥= P

Also if we put f(x)=(x+z)? in (8) we get B,(z+1)— B,(z)=pz?~!, which is the difference
formula for the Bernoulli polynomials.

If we expand the right-hand side of (9) in powers of B by Taylor’s theorem, it is to be
interpreted as

k
>, Om=10)
If we put ¢(x)=f"(x) and recall that By=1, B,= — 3, B;=Bs="--- =0, then (9) gives
[1r-3]
390)+o()+$Q2)+ -+ +o(n—1)+39(n)= f ¢(x)dx + 2 Zx 51 {847 V(m) =@ (0 }.

This is the usual non-umbral form of the Euler-Maclaurin summation formula.

4. The Euler numbers. The Euler numbers E, in the expansion

sechx—ZE 5:: —61)66—!6+~-, (Ixl<37)

can be associated with an umbra E. That is E”"=E,. Since sechx is an even function of x, it
follows that E,= E;= Es=--- =0. Then from

2
— = _ =sechx=e%*
e*+e™”*
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we get
e(E+Dx 4 o(E=Dx =7
and on equating coefficients, the recurrence formula
2, (n=0),
0, (n=12,3,...).
If f(x) is a polynomial in x of degree k, then the recurrence implies that

S(E=1D)+f(E+1)=2f(0).

(E+1)"+(E—1)"z{

Hence
fO=fB+fE) = —f(4n—1)

=L{f(E)+f(E+2)—f(E+2)—f(E+4)+- - —f(E+4n—2)— f(E+4n)}
(f(B)=f(E+4n)). (19)

This is the umbral form of an analogue for alternating series of the Euler—-Maclaurin summation
formula. In particular

1P =3P 457~ 774+ —(4n— 1Y =1{ EP— (E+4n)’)

for positive integral p. In non-umbral form (10) becomes

[STER S|

[1-4]
S~ @IS~ ST+ —fldn=1) =3 > ZE{7@(0)— fe(an)}. -
r=0

5. Asymptotic remainder formulas. The Euler-Maclaurin summation formula and its ana-
logue (11) are, of course, valid for functions other than polynomials, and many useful asymp-
totic formulas for remainders in summing series can be derived from them ([8]). For example, if
we put f(x)=1/x in (11), the result is the formula ([5])

k
1 1 E, —2k—
a3 D g +O0(n 7 12

22)(4n)2r+1 ( ) ( )

for fixed k and n— 0. This result cannot be deduced from (10) since f(E)=1/E has no umbral
interpretation, but another approach can give a short umbral proof.
For any algebraic quantity, by summing geometric series,

'”2_' { (E+1Y  F° ]= (E/G+D)"—{EHD/)" oty )
s=0

b (x+1)! x=1-E

1

for fixed m and x—co. Similarly

m—l[(E_l)s_ E

xs+1 (x_l)s+l } =0(x—m—1). (14)

If we now regard E as the umbra for the Euler numbers, add (13) and (14), and use the
recurrence formula, we get

m—1
2 ' 1 1 I
X 20 E { G- ar ]=0(x )- (15)

If we put m=2k+2, recall that odd order Euler numbers vanish, and divide by 2, then (15), in
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non-umbral form, becomes

k
1 1 1 k-
u(x)= ; - ;} EZr{ (x__ 1)27'0'1 + (x+ 1)2r+l } = O(x 2* 3)' (16)

Now u(x) is a rational algebraic function of x, so for sufficiently large x it tends to zero
monotonically as x increases. Setting x=4n+1,4n+3,4n+5,... it follows that

u(4n+1)—u@dn+3)+u(dn+5)—--- =0(n"%*"3)
as n—oo. That is
1 1 1 1

An+1 In+3  An+5 dns7 T

k

1 1 1
—_ E . + _ [
g} 2, { (4n)2r+l (4n+2)2r+l (4n+2)2r+1 }

=0(n"%*3). an

Since all terms after the first cancel out in the second part of (17), and by Leibniz’s series
PRI U T

the required result (12) follows from (17).

The Leibniz series (18) is usually dismissed as useless for any practical calculation of ,
though it is certainly the simplest series which could be so used. Using (12) with n=2, k=1 gives
an estimate of 7 as 3.14133, an error of some 2.6 X 10~%. Direct use of the Leibniz series (18)
would require about 8000 terms to reach this order of accuracy.

If we set x=4n+2,4n+4,4n+6,... in (16), then similar arguments show that

k

1 1 Ey, —2k-3

—gte _5+2 T +0(n"2%3),

r=0

Q| =

+

] —

log2=1-—

6. Reciprocal sequences and related identities. Two sequences {a,},{b,},(n=0,1,2,...) are
said to be reciprocal if [1]

by=2 (=Y (})an (19)
r=0
since it is then also true that
a,=> (_)’(';)b,. (20)
r=0

To prove this, designate a and b as umbrae. Then (19) becomes b” =(1—a)". Hence > =
e(l—a)x.

Replacing x by — x, we have
e® =e(l~b)x 21
whence (20) follows on reversing the argument. Note that in this case aq, and b, are not
necessarily equal to one, unlike B, and E,,.
If {a,},{ B,} is another pair of reciprocal sequences, then
e(a~a)x = X e~ Ee(1—~b)x X e—(l -B)x Ee([i—b)x.
Hence we get the identity

n

S V(D= 2 (Db

r=0
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Identities involving Bernoulli numbers and reciprocal sequences occur in certain relations
between angle-sums in n-dimensional simplexes ([7]). An extension of these results, in umbral
form, is

(B+a)"'=(—B-b)"=3{(2B+a)"+(—2B—b)"}.
That is, in non-umbral form,
n
2( )Ba,=(=)" 2( )Bbu-r= 2 (7)27B{ @+ (=) Bar):
To prove this, it suffices to show that
e(B+a)er—(B+b)xE %{e(23+a)x + e—(28+b)x}.

From (3) and (21)

e(B+a)x — xx e(1-b)x — __xx e~ —p—Bx x g=bx —p—(B+b)x,
e*—1 e *—1
Also
—(1-
l{e(28+a)x+e—(23+b)x _ 1] 2xe* —2xe”(-ax

2 }_2 2x __ —2x __
e 1 e 1

— Xe¥ _ (B+ax

T e*—1" ’

as required.

7. Sums of products and dual umbral notation. Many identities involving sums of products of
Bernoulli numbers have long been known. In particular, an identity of Euler, written in the even
suffix notation, takes the form [12]

n—1

2 ( %:,1 )BZrBZn—2r =—(@2n+1)B,, (22)
r=1

Mordell [10] has commented that proofs of (22) in the literature are involved. Since B, = — 1 and
other odd order Bernoulli numbers vanish, (22) can be written for even m as

2( )’(")B,Bp—=(1—m)B,. (23)

For odd m, (23) is trivially true in that both sides vanish. The form of (23) suggests the use of a
dual umbral notation, with two umbrae B and B’, both for Bernoulli numbers, subject to the
interpretation that terms (B)”(B’)? =B, B,. Then (23) becomes

(B—B")"=(1—m)B™. (24)

Such a notation has been used previously to simplify the expression of similar sums of products
([6], [17]). It can also suggest simple proofs; for Euler’s identity in the form (24), we have

d m
2 (B_B/)mgn_'Ee(B—B’)erBxxe—B’x
m=0 ’

— X _TXx __xe
Ter=1T e =1 (ex—1)

—el
X
m!

0 00
m+1
E x E m+1x

] =(1—Bx)e?*
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xm

=> (1-mB"I.
m=0
Equating coefficients of x™/m! we obtain (24).

8. Multiple umbral methods and other extensions. Endless similar results can be found by the
methods of the previous sections. With a multiple umbral notation, (B)Y?(B")4(B") -+ =
B,B,B,- - -, we have

, o n B Bn—l Bn—2
(B+B'+B") =3(3){—n—+3n_1 +2——s ]
’ m\n Bn B"_l
(B+B'—B") 53(3’){7+ﬁ}, (25)

(B+B'+B"+B"+B"")" ss(g'){ B 102 a5 B 508 4 0a B } (26)
The pattern of coefficients in (25) and (26) follows that of
(x+D)(x+2)=x2+3x+2 and (x+1)(x+2)(x+3)(x+4)=x*+10x>+35x2+50x +24.

Another series of identities starts with the Euler identity (24), and continues with
(2B-B')"=(1-2n)B?,
(4B— B’y =(1-2n)B*+n(2n—1)E>"~2,
(8B—B’)""=(1-2n)B*+n(2n—1)E*~2

+2n(2n—1){QRE-1)"""2+QE)"+QE+1)"""*}.
Other identities with Euler numbers are
(2B+E)'=4B+1)", (n+2)(E+E")'=2"+2(2"*2—-1)B"+2,
2E+E'+E")'=E"—E"*2,

The properties of the Euler polynomials can be derived in the same way as was used for the Ber-
noulli polynomials in Section 3 (iii). It is found that their umbral form is ([2]) E,(x)=(G E+x —3)".
Proofs of the results of this section follow the same lines as preceding sections.

9. Remarks. The use of a special symbol, such as = or =, is not essential; some writers use
one ([9], [15]), others do not ([13]). I have used the former in this paper to lessen possible
ambiguities.

The ban on multiplication of expressions with a common umbra, mentioned in Rule II, does
not appear to have been stated explicitly in the literature. Presumably this is because it is usual
for rules to tell what is permitted rather than what is forbidden. Riordan [15] does briefly imply
that there are operations to be avoided; in so doing he also uses a form of dual umbral notation
without,any distinguishing marks for twin umbrae. For an expression such as (a+ a)" he says,
“Like sequences are treated exactly as unlike sequences.” This becomes confusing if applied to
the more involved expressions of Section 8, so I have preferred to make definite distinctions by
using B, B’, B”, and so on.
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THE SEVENTH U.S.A. MATHEMATICAL OLYMPIAD: A REPORT

SAMUEL L. GREITZER

The Seventh U.S.A. Mathematical Olympiad was held on May 2, 1978. From the Honor Roll
of the Annual High School Mathematics Examination, 108 students, who had scored 118 points
or better, were invited to take part, and 106 finally did participate. The papers were graded, first
by Professors Michael Aissen and John Bender of Rutgers University, and then by Professor
Murray Klamkin, of the University of Alberta, and this writer. A copy of the Olympiad
problems appears below.

The table below compares the students’ scores on the Olympiad with those on the Annual
High School Mathematics Examination. As has been the case on all previous Olympiads, there is
little or no correlation, which is not surprising, considering the differing content and goals of the
contests.

Olympiad
Exam 0-10 | 11-20 | 21-30 | 31-40 | 41-50 | 51-60 | 61-70 | 71-80 | 81-90 | 91-100

148-150 1 1 2
145-147 1 1 1 1 1
142-144
139-141 1 1 1 1 1
136-138
133-135
130-132
127-129
124-126
121-123
118-120
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