The Generalized Stirling Numbers, Sheffer-type Polynomials and Expansion Theorems

Tian-Xiao He
Department of Mathematics and Computer
Science
Illinois Wesleyan University
Box 2900
Bloomington, IL 61702-2900

CBMS/NSF Regional Research Conference, Kent, August, 2006 The concept of a generalized Stirling number pair can be characterized by a pair of inverse relations. A list of related work on the topic can be found from Jordan [39], Riordan [37, 58], Gould [61], Gould-Hopper [62], Rota [64], Comtet [74], Carlitz [80], Joni-Rota-Sagan [81], Charalambides [83, 84], Howard [84, 85], Cacoullos-Papageorgiou [84], Tsylova [85], Nandi-Dutta [87], Todorov [88], Hsu [93], Hsu-Yu [96], Hsu-Shiue [98, 99], Remmel-Wachs [04], and He-Hsu-Shiue [05, 06]. Here we present the generalized Stirling numbers and Sheffer-type polynomials generated by univariate power series and their applications in expansion problems. The higher dimensional setting will appear in He-Hsu-Shiue's paper (2006).

Definition 1 Let $\Gamma \equiv (\Gamma, +, \cdot)$ be the commutative ring of formal power series over the real or complex field, in which the ordinary addition and Cauchy multiplication are defined. Then

any two elements ϕ and ψ of Γ are said to be reciprocal (compositional inverse) of each other if and only if $\phi \circ \psi(t) = \psi \circ \phi(t) = t$ with $\phi(0) = \psi(0) = 0$.

Definition 2 Let A(t), g(t) and $f(t) \in \Gamma$ with A(0) = 1, g(0) = 0 and $g'(0) \neq 0$. Then the polynomials $p_n(x)$ $(n = 0, 1, 2, \cdots)$ as defined by the generating function (GF)

$$A(t)e^{xg(t)} = \sum_{n\geq 0} p_n(x)t^n$$

are called Sheffer-type polynomials with $p_0(x) = 1$. Accordingly, $p_n(D)$ with $D \equiv d/dt$ is called Sheffer-type differential operator of degree n associated with A(t) and g(t). In particular, $p_0(D) \equiv I$ is the identity operator.

Note that $\{p_k(x)\}$ is also called the sequence of Sheffer A-type zero, which has been treated throughly by Roman-Rota [78] and Rota [84] using umbral calculus (cf) also Boas-Buck [64]). For formula power series f(t), the coefficient of t^k is usually denoted by $[t^k]f(t)$. Accordingly, we have the expression $p_k(x) = [t^k]A(t)e^{xg(t)}$. Also, we shall frequently use the denotation

$$p_k(D)f(0) = [p_k(D)f(t)]_{t=0}.$$

Throughout this talk all series expansions are formal, so that the symbolic calculus with operators D (formal differentiation) and E (shift) applies to all formal power series, where E is defined by $Ef(t) = f(t+1), E^x f(t) = f(t+x)$ (x is a real number), and satisfies the formal relations

$$E = e^D = \sum_{k>0} \frac{1}{k!} D^k, E^x f(0) = e^{xD} f(0) = f(x).$$

Theorem 3 (First Expansion theorem) Let A(t), g(t) and f(t) be a formal power series over C, with A(0) = 1, g(0) = 0 and $g'(0) \neq 0$. Then there holds an expansion formula of the form

$$A(t)f(g(t)) = \sum_{k \ge 0} t^k p_k(D)f(0)$$

where $p_0(D)f(0) = f(0)$, and $p_k(D)$ are Sheffertype differential operators associated with A(t)and g(t). Moreover, $p_k(D)(k = 0, 1, 2, \cdots)$ satisfy the recurrence relations

$$(k+1)p_{k+1}(D) = \sum_{j=0}^{k} (\alpha_j + \beta_j D)p_{k-j}(D)$$

with $p_0(D) = I$ and α_j, β_j being given by

$$\alpha_j = (j+1)[t^{j+1}] \log A(t), \ \beta_j = (j+1)[t^{j+1}]g(t).$$

Noted that Theorem 3 is equivalent to the computational rule:

$$p_k(x) := [t^k] A(t) e^{xg(t)}$$

$$\implies p_k(D) f(0) := [t^k] A(t) f(g(t)).$$

Of course the number-sequence $\{p_k(D)f(0)\}_0^{\infty}$ has the (GF)-A(t)f(g(t)).

For the case $A(t) \equiv 1$, the expansion in the theorem is substantially equivalent to the Faa Di Bruno formula. Indeed, if $g(t) = \sum_{m \geq 1} a_m t^m / m!$, it follows that $e^{xg(t)}$ may be written in the form

$$\exp \left\{ x \sum_{m \ge 1} a_m \frac{t^m}{m!} \right\} = 1 + \sum_{k \ge 1} \frac{t^k}{k!} \left\{ \sum_{j=1}^k x^j B_{kj}(a_1, a_2, \dots) \right\}$$

so that

$$p_k(x) = [t^k]e^{xg(t)} = \frac{1}{k!} \sum_{j=1}^k x^j B_{kj}(a_1, a_2, \cdots).$$

Consequently we have

$$[t^k]f(g(t)) = \frac{1}{k!} \sum_{j=1}^k B_{kj}(a_1, a_2, \cdots) D^j f(0).$$

This is precisely the Faa di Bruno formula

$$[(d/dt)^k f(g(t))]_{t=0} = \sum_{j=1}^k B_{kj}(g'(0), g''(0), \cdots) f^{(j)}(0).$$

Note that $B_{kj}(a_1,a_2,\cdots)$ is the so-called incomplete Bell polynomial whose explicit expression can easily be derived from the relation on $exp\{x\sum_{m\geq 1}a_m\frac{t^m}{m!}\}$ (cf. Comtet [74]), namely

$$B_{kj}(a_1, a_2, \dots, a_{k-j+1}) = \sum_{(c)} \frac{k!}{c_1!c_2! \dots} \left(\frac{a_1}{1!}\right) c_1 \left(\frac{a_2}{2!}\right) c_2 \dots$$

where the summation extends over all integers $c_1, c_2, \dots \geq 0$, such that $c_1 + 2c_2 + 3c_3 + \dots = k, c_1 + c_2 + \dots = j$.

More examples. Let $B_n(x)$, $\widehat{C}_n^{(\alpha)}(x)$ and $T_n^{(p)}(x)$ be Bernouilli, Charlier and Touchard polynomials, respectively. Then, for any given formal power series f(t) over \mathbf{C} we have 3 weighted expansion formulas as follows

$$\frac{t}{e^t - 1}f(t) = \sum_{n=0}^{\infty} \frac{t^n}{n!} B_n(D)f(0)$$

$$e^{-\alpha t} f(\log(1+t)) = \sum_{n=0}^{\infty} t^n \widehat{C}_n^{(\alpha)}(D) f(0) \quad (\alpha \neq 0)$$

$$(1-t)^p f(e^t - 1) = \sum_{n=0}^{\infty} t^n T_n^{(p)}(D) f(0). \quad (p > 0)$$

Definition 4 Let A(t) and g(t) be given as in Theorem 1. Then we have a weighted Stirling-type pair $\{\sigma(n,k), \sigma^*(n,k)\}$ as defined by

$$\frac{1}{k!}A(t)(g(t))^k = \sum_{n=k}^{\infty} \sigma(n,k)\frac{t^n}{n!}$$

$$\frac{1}{k!}A(g^*(t))^{-1}(g^*(t))^k = \sum_{n=k}^{\infty} \sigma^*(n,k)\frac{t^n}{n!},$$

where $g^* \equiv g^{\langle -1 \rangle}$ is the compositional inverse of g with $g^*(0) = 0$, $[t]g^*(t) \neq 0$, and $\sigma(0,0) = \sigma^*(0,0) = 1$.

Recall that classical Stirling numbers of the first and second kinds may be defined by the generating functions A = 1, $g(t) = (\ln(1 + t))^k/k!$, and $g^*(t) = (e^t - 1)^k/k!$.

Theorem 5 The Sheffe-type operator $p_n(D)$ has an expression of the form

$$p_n(D) = \frac{1}{n!} \sum_{k=0}^n \sigma(n,k) D^k,$$

where $\sigma(n, k)$ (associated with A(t) and g(t)) may be written in the form

$$\sigma(n,k) = \sum_{r=k}^{k} {n \choose r} \alpha_{n-r} B_{rk}(a_1, a_2, \cdots)$$

provided that $A(t) = \sum_{m \geq 0} \alpha_m t^m / m!$ and $g(t) = \sum_{m \geq 1} a_m t^m / m!$ with $\alpha_0 = 1, a_1 \neq 0$.

Corollary 6 The formula shown as in the expansion theorem may be rewritten in the form

$$A(t)f(g(t)) = \sum_{n=0}^{\infty} \frac{t^n}{n!} (\sum_{k=0}^n \sigma(n,k) f^{(k)}(0)),$$

where $\sigma(n,k)$'s are defined by Definition 4 and given by Theorem 5.

Corollary 7 For the case $A(t) \equiv 1$, Theorem 5 gives $\sigma(n,k) = B_{nk}(a_1,a_2,\cdots)$.

Corollary 8 The generalized exponential polynomials related to the generalized Stirling numbers $\sigma(n,k)$ and $\sigma^*(n,k)$ are given, respectively by the following

$$n!p_n(x) = \sum_{k=0}^n \sigma(n,k)x^k$$

and

$$n!p_n^*(x) = \sum_{k=0}^n \sigma^*(n,k)x^k,$$

where $p_n(x)$ and $p_n^*(x)$ are Sheffer-type polynomials associated with $\{A(t), g(t)\}$ and $\{A(g^*(t))^{-1}, g^*(t)\}$, respectively

Theorem 9 Definition 4 implies the orghogonality relations

$$\sum_{k \le n \le m} \sigma(m, n) \sigma^*(n, k)$$

$$= \sum_{k \le n \le m} \sigma^*(m, n) \sigma(n, k) = \delta_{mk}$$

with δ_{mk} denoting the Kronecker delta, and it follows that there hold the inverse relations

$$f_n = \sum_{k=0}^n \sigma(n,k)g_k \iff g_n = \sum_{k=0}^n \sigma^*(n,k)f_k.$$

Applying the reciprocal relations shown as in Theorem 9 to Corollary 8 we get

Corollary 10 There hold the relations

$$\sum_{k=0}^{n} \sigma^*(n,k)k! p_k(x) = x^n$$

and

$$\sum_{k=0}^{n} \sigma(n,k)k! p_k^*(x) = x^n.$$

These may be used as recurrence relations for $p_n(x)$ and $p_n^*(x)$ respectively.

Theorem 5 and Corollary 6 imply a higher derivative formula for A(t)f(g(t)) at t=0, namely

$$(\frac{d}{dt})_0^n (A(t)f(g(t)))$$

$$= \sum_{k=0}^n \sigma(n,k)f^{(k)}(0) = n!p_n(D)f(0).$$

Certainly, this will reduce to the Faa di Bruno formula when $A(t) \equiv 1$.

As an application of Theorem 9, we now turn to the problem for finding an expansion of a multivariate analytic function f in terms of a sequence of higher Sheffer-type polynomials $\{p_n\}$.

Theorem 11 (Second Expansion Theorem) Let f(z) be an analytic function defined on \mathbb{C} . Then we have the expansion of f in terms of a sequence of Sheffer-type polynomials $\{p_k\}$ as

$$f(z) = \sum_{k>0} \alpha_k p_k(z),$$

where

$$\alpha_k = \sum_{n \ge k} \frac{k!}{n!} \sigma^*(n, k) D^n f(0)$$

From the expression of α_k in Theorem 11, it is not hard to derive Boas-Buck formulas (7.3)-(7.4) of the coefficients of the series expansion of an entire function in terms of polynomial

 $p_k(z)$ by using the expression of α_k , Definition 4, Cauchy's residue theorem, and careful discussion on the convergence.

We now give algorithms to derive the series expansion of f(z) in terms of a Sheffer type polynomial set $\{p_n(x)\}_{n\in\mathbb{N}}$.

Algorithm 3.1

Step 1 For given Sheffer type polynomial $\{p_n(x)\}_{n\in\mathbb{N}}$, we determine its GF pair (A(t),g(t)) and the compositional inverse $g^*(t)$ of g(t).

Step 2 Use Corollary 8 to evaluate set $\{\sigma^*(n,k)\}_{n\geq k}$ and substitute it into the corresponding expression in Theorem 11 to find α_k $(k\geq 0)$.

Algorithm 3.2

Step 1 For given Sheffer type polynomial $\{p_n(x)\}_{n\in\mathbb{N}}$, apply the first equation in Corollary 8 to obtain set $\{\sigma(n,k)\}_{n>k>0}$.

Step 2 Use Theorem 9 to solve for set $\{\sigma^*(n,k)\}_{n\geq k}$ and substitute it into the corresponding expression in Theorem 11 to find α_k $(k \geq 0)$.

It is easy to see the equivalence of the two algorithms. However, the first algorithm is more readily applied than the second one.