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The concept of a generalized Stirling number

pair can be characterized by a pair of inverse

relations. A list of related work on the topic

can be found from Jordan [39], Riordan [37,

58], Gould [61], Gould-Hopper [62], Rota [64],

Comtet [74], Carlitz [80], Joni-Rota-Sagan [81],

Charalambides [83, 84], Howard [84, 85], Cacoullos-

Papageorgiou [84], Tsylova [85], Nandi-Dutta

[87], Todorov [88], Hsu [93], Hsu-Yu [96], Hsu-

Shiue [98, 99], Remmel-Wachs [04], and He-

Hsu-Shiue [05, 06]. Here we present the gener-

alized Stirling numbers and Sheffer-type poly-

nomials generated by univariate power series

and their applications in expansion problems.

The higher dimensional setting will appear in

He-Hsu-Shiue’s paper (2006).

Definition 1 Let Γ ≡ (Γ,+, ·) be the commu-

tative ring of formal power series over the real

or complex field, in which the ordinary addition

and Cauchy multiplication are defined. Then
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any two elements φ and ψ of Γ are said to

be reciprocal (compositional inverse) of each

other if and only if φ ◦ ψ(t) = ψ ◦ φ(t) = t with

φ(0) = ψ(0) = 0.

Definition 2 Let A(t), g(t) and f(t) ∈ Γ with

A(0) = 1, g(0) = 0 and g′(0) 6= 0. Then the

polynomials pn(x) (n = 0,1,2, · · ·) as defined

by the generating function (GF )

A(t)exg(t) =
∑
n≥0

pn(x)t
n

are called Sheffer-type polynomials with p0(x) =

1. Accordingly, pn(D) with D ≡ d/dt is called

Sheffer-type differential operator of degree n

associated with A(t) and g(t). In particular,

p0(D) ≡ I is the identity operator.



Note that {pk(x)} is also called the sequence

of Sheffer A-type zero, which has been treated

throughly by Roman-Rota [78] and Rota [84]

using umbral calculus (cf . also Boas-Buck

[64]). For formula power series f(t), the co-

efficient of tk is usually denoted by [tk]f(t).

Accordingly, we have the expression pk(x) =

[tk]A(t)exg(t). Also, we shall frequently use the

denotation

pk(D)f(0) = [pk(D)f(t)]t=0.

Throughout this talk all series expansions are

formal, so that the symbolic calculus with op-

erators D (formal differentiation) and E (shift)

applies to all formal power series, where E is

defined by Ef(t) = f(t + 1), Exf(t) = f(t +

x) (xis a real number), and satisfies the formal

relations

E = eD =
∑
k≥0

1

k!
Dk, Exf(0) = exDf(0) = f(x).
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Theorem 3 (First Expansion theorem) Let A(t),

g(t) and f(t) be a formal power series over C,

with A(0) = 1, g(0) = 0 and g′(0) 6= 0. Then

there holds an expansion formula of the form

A(t)f(g(t)) =
∑
k≥0

tkpk(D)f(0)

where p0(D)f(0) = f(0), and pk(D) are Sheffer-

type differential operators associated with A(t)

and g(t). Moreover, pk(D)(k = 0,1,2, · · ·) sat-

isfy the recurrence relations

(k+ 1)pk+1(D) =
k∑

j=0

(αj + βjD)pk−j(D)

with p0(D) = I and αj, βj being given by

αj = (j+1)[tj+1] log A(t), βj = (j+1)[tj+1]g(t).
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Noted that Theorem 3 is equivalent to the

computational rule:

pk(x) := [tk]A(t)exg(t)

=⇒ pk(D)f(0) := [tk]A(t)f(g(t)).

Of course the number-sequence {pk(D)f(0)}∞0
has the (GF )−A(t)f(g(t)).

For the case A(t) ≡ 1, the expansion in the the-

orem is substantially equivalent to the Faa Di

Bruno formula. Indeed, if g(t) =
∑
m≥1 amt

m/m!,

it follows that exg(t) may be written in the form

exp {x
∑
m≥1

am
tm

m!
} = 1+

∑
k≥1

tk

k!
{

k∑
j=1

xjBkj(a1, a2, · · ·)}

so that

pk(x) = [tk]exg(t) =
1

k!

k∑
j=1

xjBkj(a1, a2, · · ·).



Consequently we have

[tk]f(g(t)) =
1

k!

k∑
j=1

Bkj(a1, a2, · · ·)Djf(0).

This is precisely the Faa di Bruno formula

[(d/dt)kf(g(t))]t=0 =
k∑

j=1

Bkj(g
′(0), g′′(0), · · ·)f(j)(0).

Note that Bkj(a1, a2, · · ·) is the so-called in-

complete Bell polynomial whose explicit ex-

pression can easily be derived from the rela-

tion on exp{x
∑
m≥1 am

tm

m!} (cf. Comtet [74]),

namely

Bkj(a1, a2, · · · , ak−j+1) =
∑
(c)

k!

c1!c2! · · ·

(
a1
1!

)
c1

(
a2
2!

)
c2 · · ·

where the summation extends over all integers

c1, c2, · · · ≥ 0, such that c1 + 2c2 + 3c3 + · · · =
k, c1 + c2 + · · · = j.



More examples. Let Bn(x), Ĉ
(α)
n (x) and T (p)

n (x)

be Bernouilli, Charlier and Touchard polyno-

mials, respectively. Then, for any given formal

power series f(t) over C we have 3 weighted

expansion formulas as follows

t

et − 1
f(t) =

∞∑
n=0

tn

n!
Bn(D)f(0)

e−αtf(log(1+t)) =
∞∑
n=0

tnĈ
(α)
n (D)f(0) (α 6= 0)

(1− t)pf(et − 1) =
∞∑
n=0

tnT
(p)
n (D)f(0). (p > 0)



Definition 4 Let A(t) and g(t) be given as in

Theorem 1. Then we have a weighted Stirling-

type pair {σ(n, k), σ∗(n, k)} as defined by

1

k!
A(t)(g(t))k =

∞∑
n=k

σ(n, k)
tn

n!

1

k!
A(g∗(t))−1(g∗(t))k =

∞∑
n=k

σ∗(n, k)
tn

n!
,

where g∗ ≡ g〈−1〉 is the compositional inverse

of g with g∗(0) = 0, [t]g∗(t) 6= 0, and σ(0,0) =

σ∗(0,0) = 1.

Recall that classical Stirling numbers of the

first and second kinds may be defined by the

generating functions A = 1, g(t) = (ln(1 +

t))k/k!, and g∗(t) = (et − 1)k/k!.
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Theorem 5 The Sheffe-type operator pn(D)

has an expression of the form

pn(D) =
1

n!

n∑
k=0

σ(n, k)Dk,

where σ(n, k) (associated with A(t) and g(t))

may be written in the form

σ(n, k) =
k∑

r=k

(
n

r

)
αn−rBrk(a1, a2, · · ·)

provided that A(t) =
∑
m≥0αmt

m/m! and g(t) =∑
m≥1 amt

m/m! with α0 = 1, a1 6= 0.
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Corollary 6 The formula shown as in the ex-
pansion theorem may be rewritten in the form

A(t)f(g(t)) =
∞∑
n=0

tn

n!
(
n∑

k=0

σ(n, k)f(k)(0)),

where σ(n, k)’s are defined by Definition 4 and
given by Theorem 5.

Corollary 7 For the case A(t) ≡ 1, Theorem
5 gives σ(n, k) = Bnk(a1, a2, · · ·).

Corollary 8 The generalized exponential poly-
nomials related to the generalized Stirling num-
bers σ(n, k) and σ∗(n, k) are given, respectively
by the following

n!pn(x) =
n∑

k=0

σ(n, k)xk

and

n!p∗n(x) =
n∑

k=0

σ∗(n, k)xk,
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where pn(x) and p∗n(x) are Sheffer-type polyno-

mials associated with {A(t), g(t)} and {A(g∗(t))−1,

g∗(t)}, respectively

Theorem 9 Definition 4 implies the orghogo-

nality relations∑
k≤n≤m

σ(m,n)σ∗(n, k)

=
∑

k≤n≤m
σ∗(m,n)σ(n, k) = δmk

with δmk denoting the Kronecker delta, and it

follows that there hold the inverse relations

fn =
n∑

k=0

σ(n, k)gk ⇐⇒ gn =
n∑

k=0

σ∗(n, k)fk.



Applying the reciprocal relations shown as in

Theorem 9 to Corollary 8 we get

Corollary 10 There hold the relations

n∑
k=0

σ∗(n, k)k!pk(x) = xn

and
n∑

k=0

σ(n, k)k!p∗k(x) = xn.

These may be used as recurrence relations for

pn(x) and p∗n(x) respectively.

Theorem 5 and Corollary 6 imply a higher deriva-

tive formula for A(t)f(g(t)) at t = 0, namely

(
d

dt
)
n

0
(A(t)f(g(t)))

=
n∑

k=0

σ(n, k)f(k)(0) = n!pn(D)f(0).

Certainly, this will reduce to the Faa di Bruno

formula when A(t) ≡ 1.
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As an application of Theorem 9, we now turn

to the problem for finding an expansion of a

multivariate analytic function f in terms of

a sequence of higher Sheffer-type polynomials

{pn}.

Theorem 11 (Second Expansion Theorem) Let

f(z) be an analytic function defined on C. Then

we have the expansion of f in terms of a se-

quence of Sheffer-type polynomials {pk} as

f(z) =
∑
k≥0

αkpk(z),

where

αk =
∑
n≥k

k!

n!
σ∗(n, k)Dnf(0)

From the expression of αk in Theorem 11, it is

not hard to derive Boas-Buck formulas (7.3)-

(7.4) of the coefficients of the series expansion

of an entire function in terms of polynomial
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pk(z) by using the expression of αk, Definition

4, Cauchy’s residue theorem, and careful dis-

cussion on the convergence.

We now give algorithms to derive the series

expansion of f(z) in terms of a Sheffer type

polynomial set {pn(x)}n∈N.

Algorithm 3.1

Step 1 For given Sheffer type polynomial {pn(x)}n∈N,

we determine its GF pair (A(t), g(t)) and the

compositional inverse g∗(t) of g(t).

Step 2 Use Corollary 8 to evaluate set {σ∗(n, k)}n≥k
and substitute it into the corresponding expres-

sion in Theorem 11 to find αk (k ≥ 0).



Algorithm 3.2

Step 1 For given Sheffer type polynomial {pn(x)}n∈N,

apply the first equation in Corollary 8 to obtain

set {σ(n, k)}n≥k≥0.

Step 2 Use Theorem 9 to solve for set {σ∗(n, k)}n≥k
and substitute it into the corresponding expres-

sion in Theorem 11 to find αk (k ≥ 0).

It is easy to see the equivalence of the two al-

gorithms. However, the first algorithm is more

readily applied than the second one.


