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The concept of a generalized Stirling number
pair can be characterized by a pair of inverse
relations. A list of related work on the topic
can be found from Jordan [39], Riordan [37,
58], Gould [61], Gould-Hopper [62], Rota [64],
Comtet [74], Carlitz [80], Joni-Rota-Sagan [81],
Charalambides [83, 84], Howard [84, 85], Cacoullos-
Papageorgiou [84], Tsylova [85], Nandi-Dutta
[87], Todorov [88], Hsu [93], Hsu-Yu [96], Hsu-
Shiue [98, 99], Remmel-Wachs [04], and He-
Hsu-Shiue [05, 06]. Here we present the gener-
alized Stirling numbers and Sheffer-type poly-
nomials generated by univariate power series
and their applications in expansion problems.
The higher dimensional setting will appear in
He-Hsu-Shiue's paper (2006).

Definition 1 Let T = (I, +,-) be the commu-

tative ring of formal power series over the real

or complex field, in which the ordinary addition

and Cauchy multiplication are defined. Then
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any two elements ¢ and i of [ are said to
be reciprocal (compositional inverse) of each
other if and only if g o(t) = o d(t) =t with
¢(0) = (0) = 0.

Definition 2 Let A(t), g(t) and f(t) € I with
A(0) =1, g(0) = 0 and ¢'(0) # 0. Then the
polynomials pn(xz) (n = 0,1,2,---) as defined
by the generating function (GF)

A)e9) = 37 pp(x)t"

n>0
are called Sheffer-type polynomials with pg(x) =
1. Accordingly, pn(D) with D = d/dt is called
Sheffer-type differential operator of degree n
associated with A(t) and ¢g(t). In particular,
po(D) = I is the identity operator.



Note that {p.(x)} is also called the sequence
of Sheffer A-type zero, which has been treated
throughly by Roman-Rota [78] and Rota [84]
using umbral calculus (c¢f. also Boas-Buck
[64]). For formula power series f(t), the co-
efficient of ¢* is usually denoted by [t*]f(%).
Accordingly, we have the expression pi(x) =
[tk]A(t)exg(t). Also, we shall frequently use the
denotation

pr(D)f(0) = [pr(D)f(t)]t=o0-

Throughout this talk all series expansions are
formal, so that the symbolic calculus with op-
erators D (formal differentiation) and E (shift)
applies to all formal power series, where E is
defined by Ef(t) = f(t+ 1), E*f(t) = f(t +
x) (xis a real number), and satisfies the formal
relations

1
E=cl =73 DV E"f(0)=e"f(0) = f(x).
k>0 "



Theorem 3 (First Expansion theorem) Let A(t),
g(t) and f(t) be a formal power series over C,
with A(0) = 1,9(0) = 0 and ¢'(0) # 0. Then
there holds an expansion formula of the form

A f(g(1) = - t*pp(D) £(0)

k>0

where po(D) f(0) = f(0), and pi. (D) are Sheffer-
type differential operators associated with A(t)

and g(t). Moreover, p.(D)(k=0,1,2,---) sat-

isfy the recurrence relations

k
(k+ Dpr+1(D) = > (a; + B;D)py— (D)
j=0

with po(D) = I and «j,3; being given by

a; = G+ T log At), B; = G+ THg(D).
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Noted that Theorem 3 is equivalent to the
computational rule:

pr(z) 1= [tF] A(¢)e*9(t)
= pp(D)f(0) := [t"]A(t) f(g(1)).

Of course the number-sequence {p;(D)f(0)}3
has the (GF) — A(t) f(g(t)).

For the case A(t) = 1, the expansion in the the-
orem is substantially equivalent to the Faa Di
Bruno formula. Indeed, if g(t) = >,,>1 amt™/m!,
it follows that e*9(t) may be written in the form

exp {z Y am—} =1+)> —{Z v By;(a1,az, )}

m>1 k>1 ]=
so that

pr(x) = [t =



Consequently we have

k .
F1£(9(0) = 2= 3 Byj(ar,az, ) DIf(0).

'3
This is precisely the Faa di Bruno formula

k .
[(d/dt)k f(g(tN]i=0 = 3 B;(¢'(0),4"(0),--)f9(0).

j=1

Note that By;(ay,ap,---) is the so-called in-
complete Bell polynomial whose explicit ex-
pression can easily be derived from the rela-
tion on exp{z> ,,>1 am%} (cf. Comtet [74]),
namely

k! al an
Bpjlay, a2, - ap_j41) = Zc lenl ... (1!)61 (5) co -+
(C) 1. 2. . H

where the summation extends over all integers
c1,¢, -+ > 0, such that ¢; +2¢co +3cz3 +--- =
k,ei+co+--- =1



More examples. Let B, (), Cx,@(x) and Tép)(x)
be Bernouilli, Charlier and Touchard polyno-
mials, respectively. Then, for any given formal
power series f(t) over C we have 3 weighted
expansion formulas as follows

t
et — 1

HOED WA
n=0 """

e (log(146) = 3 "G5 (D)F(0) (o 0)

n=0

@)

(1—t)Pf(et —1) = Y "TP(D)F(0). (p > 0)

n=0



Definition 4 Let A(t) and g(t) be given as in
Theorem 1. Then we have a weighted Stirling-
type pair {o(n,k),c*(n,k)} as defined by

SADDY = Y oln k)
. n:k nl
1 * —1/ * k - * "
FAC OO = X o m

where g* = ¢\~1) is the compositional inverse
of g with ¢*(0) = 0, [t]g*(t) # 0, and (0, 0) =
c*(0,0) = 1.

Recall that classical Stirling numbers of the
first and second kinds may be defined by the
generating functions A = 1, ¢g(t) = (In(1 +
)k /k!, and g*(t) = (et — 1)k /k!.



Theorem 5 The Sheffe-type operator pn(D)
has an expression of the form

1 n
pn(D) = = > o(n,k)D",
n. k=0

where o (n, k) (associated with A(t) and g(t))
may be written in the form

k

o(n, k) =) (n> an—rBrp(al,az, )

r=k "
provided that A(t) = Y,,>0 amt™/m! and g(t) =
> m>1amt™/m! with ag = 1,a1 7# 0.



Corollary 6 The formula shown as in the ex-
pansion theorem may be rewritten in the form

oo t’rL

AW Fg®) = > (Y oln, k) f*(0)),
k=0

n=0 """
where o(n, k)’s are defined by Definition 4 and
given by Theorem 5.

Corollary 7 For the case A(t) = 1, Theorem
5 giveS U(na k) — Bnk(a’17 an, - - )

Corollary 8 The generalized exponential poly-
nomials related to the generalized Stirling num-
bers o(n,k) and oc*(n, k) are given, respectively
by the following

n

nlpn(x) = Z o(n, k)z"

k=0
and
mn

nlpy(z) = Y o (n, k)z",
k=0



where pn(x) and p} (x) are Sheffer-type polyno-
mials associated with {A(t), g(t)} and {A(¢g*(t))~1,
g*(t)}, respectively

Theorem 9 Definition 4 implies the orghogo-
nality relations

Z o(m,n)c*(n, k)

E<n<m

Y of(m,n)o(n, k) = 6y
kE<n<m
with ¢,,,. denoting the Kronecker delta, and it
follows that there hold the inverse relations

n n

fa= ) o k)gr <= gn= ) o (n,k)fp
k=0 k=0



Applying the reciprocal relations shown as in
Theorem 9 to Corollary 8 we get

Corollary 10 There hold the relations

n

> o (n,k)klpgp(z) = 2"
k=0

and
n

> o(n,k)klpi(z) = z".
k=0

These may be used as recurrence relations for
pn(x) and pk(x) respectively.

Theorem 5 and Corollary 6 imply a higher deriva-
tive formula for A(t) f(g(t)) at t = 0, namely

CAREIONEON

= 3 o(n, k) f*)(0) = nlpn(D)£(0).
k=0
Certainly, this will reduce to the Faa di Bruno
formula when A(t) = 1.



As an application of Theorem 9, we now turn
to the problem for finding an expansion of a
multivariate analytic function f in terms of
a sequence of higher Sheffer-type polynomials

{pn}.

Theorem 11 (Second Expansion Theorem) Let
f(z) be an analytic function defined on C. Then
we have the expansion of f in terms of a se-
quence of Sheffer-type polynomials {p;} as

1) = Y aume(2),
k>0
where
=Y So*(n,k)D"(0)

|
>k ™

From the expression of oy in Theorem 11, it is

not hard to derive Boas-Buck formulas (7.3)-

(7.4) of the coefficients of the series expansion

of an entire function in terms of polynomial
9



pr(z) by using the expression of «aj, Definition
4. Cauchy’s residue theorem, and careful dis-
cussion on the convergence.

We now give algorithms to derive the series
expansion of f(z) in terms of a Sheffer type

polynomial set {pn(x)},eN-

Algorithm 3.1

Step 1 For given Sheffer type polynomial {pn(z) },enN.
we determine its GF pair (A(¢),g(t)) and the
compositional inverse g*(t) of ¢g(t).

Step 2 Use Corollary 8 to evaluate set {o*(n, k) },, >k
and substitute it into the corresponding expres-
sion in Theorem 11 to find a5 (k> 0).



Algorithm 3.2

Step 1 For given Sheffer type polynomial {pn(x)},,eN.
apply the first equation in Corollary 8 to obtain

set {o(n, k) }y>k>0-

Step 2 Use Theorem 9 to solve for set {o*(n, k) },>k
and substitute it into the corresponding expres-
sion in Theorem 11 to find oy (k> 0).

It is easy to see the equivalence of the two al-
gorithms. However, the first algorithm is more
readily applied than the second one.



