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Abstract
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1 Introduction

A system of polynomials {p, (), n € N}, where p,(x) is a polynomial of exact
degree n and N = {0,1,2,...} or {0,1,2,..., N} for a finite nonnegative
integer V, is an orthogonal system of polynomials with respect to some real
positive measure p on X, if {p,(x)} is a set linearly independent in Lo(X, p)
and satisfies the orthogonality relation
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(Di D) = /S pi(@)p;(@)dp(z) = d2;j, ij €N, (1)

where S is the support of the measure p and d; are nonzero constants. If
these constants d; = 1, we say the system is orthonormal.

The measure 4 usually has a density p/(x) = w(z) or is a discrete measure
with weights w(7) at the points z;. The relation (1) then becomes

[ pam @) =5, ig e, 2)
S
in the former case and

M
> pilwn)pi(an)wn = di6ij, i,j €N, (3)
n=0

in the latter case where it is possible that M = oco.

In this paper, we shall present a characterization of the orthogonal gen-
eralized Gegenbauer-Humbert polynomial sequences and give a method to
find the density functions and their supports for a class of orthogonal gen-
eralized Gegenbauer-Humbert polynomial sequences. We shall also give a
characterization of the orthogonal Sheffer-type polynomial sequences. We
now start from a general result on orthogonal polynomial sequences.

It is well-known that all orthogonal polynomials {p,(z)} on the real line
satisfy a recurrence relation of order 2 (see, for examples, [1], [2], [3], [4])

_$pn($) = bnpn+1($) + 'Vnpn(ac) + Cnpn,1($)7 n =1, (4)

where b, ¢, # 0 and ¢, /b,—1 > 0. Note that if for all n € N, p,(0) = 1,
we have 7y, = —(b, + ¢,) and the polynomials p,(x) can be defined by the
recurrence relation

_$pn($) = bnpn+1($) - (bn + Cn)pn(ac) + Cnpn,1($)7 n>1 (5)

together with p_1(x) = 0 and po(x) = 1. Favard proved a converse result
(see, for example, [4]).

Theorem 1.1 (Favard’s Theorem) Let Ay, By, and C,, be arbitrary sequences

of real numbers and let {p,(x)} be defined by the recurrence relation of order
2

pn+1($) = (Anac + Bn)pn(ac) - Cnpnfl (35)7 n = 07 (6)
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together with po(x) = ¢ # 0 and p—1(x) = 0. Then {pp(x)} is a sequence of
orthogonal polynomials if and only if An #0, Cn # 0, and CrLAnAn—1 >0
for alln > 1.

For more references of the orthogonal polynomial sequences, readers may
find from a recently published very nice survey, [5], by Chihara.

In this paper, we will discuss the characterlzatlon of the orthogonal gener-
alized Gegenbauer-Humbert polynomials { 2% (z )}n>0, which are defined

by the expansion (see, for example, [6], Gould [7], and Shiue, Hsu and the
author [8])
O(t) = (C— 2wt +yt*) = P (7)
n>0

where A > 0, y and C # 0 are real numbers. As special cases of (7), we
consider P, ’y’c(ac) as follows (see [8])

Llz) = ( ), Chebyshev polynomial of the second kind,
Pl/2 Ya) = ¢n(x), Legendre polynomial,
PLLY () = Pn+1(ac) Pell polynomial,

P&’*l ! ( ) Foi1(x), Fibonacci polynomial,
+

pLLL (g 1) B, (z), Morgan — Voyc polynomial ([9] by Koshy),
(g) = &,11(x), Fermat polynomial of the first kind,
P1 2a2(g) = Dy (x,a), Dickson polynomial of the second kind,

a # 0 (see, for example, [10] by Lidl, Mullen, and Turnwald),

where a is a real parameter, and £, = £9,(1) is the Fibonacci number. In par-
ticular, if y = C' = 1, the corresponding polynomials are called Gegenbauer
polynomials (see [6]). More results on the Gegenbauer-type polynomials can
be found in Hsu[11] and Shiue and the author [12], etc. It is interesting that
for each generalized Gegenbauer-Humbert polynomial sequence there exists
a non-generalized Gegenbauer-Humbert polynomial sequence, for instance,
corresponding to the Chebyshev polynomials of the second kind, Pell poly-
nomials, Fibonacci polynomials, Fermat polynomials of the first kind, and
the Dickson polynomials of the second kind, we have the Chebyshev poly-
nomials of the first kind, Pell-Lucas polynomials (see [13] by Horadam and
Mahon), Lucas polynomials, Fermat polynomials of the second kind (see [14]
by Horadam), and the Dickson polynomials of the first kind, respectively.

The class of the generalized Gegenbauer-Humbert polynomial sequences
satisfy (see [12])
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A+n—1 A\y,C 220+n—2 Ay, C
Pyv(a) = 2$TPniy1 (z) — ny’nf’g (2) (8)
for all n > 2 with initial conditions
P () = 9(0) = C,
P (@) = (0) = 20aC M,

[12] also obtained the explicit expression of {£;"*%(z)} as follows.

Theorem 1.2 ([12]) Let x # £+/Cy. The generalized Gegenbauer-Humbert
polynomials { Pr?" () }nso defined by expansion (7) can be expressed as

(3@ + \/m>n+1 _ (3@ T Cy) n+1

Pl,y,C x) = Cfnf2 9
1 () T )
One may write (8) into the form
Cn+1) ayc y2A+n—1) Jyc
Pyl = 2N T ) pAy RASANL RS SN.AY »1 00 E ) 10
Ty ('%.) 2()\?7/) n+1 ('%.) 2()\+n) n—1 (.%') ( )

In [2], Dombrowski and Nevai presented properties of the measures as-
sociated with orthogonal polynomial sequences {F, (z) = ¥,2" + -+ }n>0
(v > 0) defined by the following recurrence relation of order 2:

2P (2) = apy1 P11 (x) + b P (2) + an Pr—1(x), (11)

n = 0,1,..., where P_1(x) = 0, Po(x) = 79, ao = 0, a, = Yp—1/7n and
by, = [*° aP?(x)dp(x). Comparing (10) and (11), we immediately learn
that the polynomial sequences generated by the above recurrence relation
and having generating function shown in (7) must be {P&’C’C(ac)}nzo, C#0.

In this paper, we shall discuss the characterization of the orthogonal
Sheffer-type polynomial sequences, which are polynomial sequences possess-
ing a different type generating functions. Sheffer-type polynomial sequences
have applications to variable subjects including Lévy processes, financial
mathematics, wavelet analysis, mathematical physics, etc. We now present
the definition of Sheffer-type polynomial sequences.

Definition 1.3 Let A(t) and g(t) be any given formal power series over the
real number field R or complex number field C with A(0) = 1, g(0) = 0
and ¢'(0) # 0. Then the polynomials py(x) (n = 0,1,2,---) defined by the
generating function (GF')
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A =3 " p ()t (12)

n>0
are called Sheffer-type polynomials with po(x) = 1.
Sheffer-type polynomials include a lot of famous polynomials as the spe-
cial cases such as the Bernoulli polynomials, Euler polynomials, Laguerre

polynomials, etc. Here, we present a short list of the Sheffer-type polynomi-
als in terms of different choices of (A(%), g(%)).

1
For (t/(e' —1),1), pa(z) = —Bn(ac)7 Bernoulli polynomials,

2/(¢" 4 1),1), pue) = B
el log(1 +1)), pu(x) = (PC)p(x), Poisson — Charlier polynomials,

e (a#0),log(1+1)), pn(z) = (/A’Tga)(ac% Charlier polynomials
Jdog(T+1)/(1—=1)), pu(x) = (ML), (z) Mittag — Lef fler polynomials
— ) Llog(1+1)/(1 =1), pu(x) = (Pi)(x), Pidduck polynomials

— )P ¢/t —1))(p > 0), palz) = Lgpfl)(ac)7 Laguerre polynomials

For
For
For
For
For
For

x), Euler polynomials,

P

1
(1
(1

eMN#£0),1—¢'), pa(z) = (TOS)()‘)( ), Toscano polynomials

1,e! = 1), pu(z) = 0(x), Touchard polynomials

For (1/(1+1),t/(t—1)), pa(z) = Ap(x), Angelescu polynomials

For (1—t)/(1+t)%,t/(t = 1)), pu(x) = (De)n(z) Denisyuk polynomials

For (1—1)"",et —=1)(p > 0), pn(x) = TP (2), Weighted — Touchard polynomials

The set of all Sheffer-type polynomial sequences {p,(z) = [t"]A(t)e*9®)}
with an operation, “umbral composition” (cf. [15] and [16]), forms a group
called the Sheffer group. Some properties and characterizations of Sheffer
group are shown in [17]. In addition, a higher dimensional extension of the
Sheffer-type polynomial sequences are discussed in [18].

In Sections 2 and 3, we shall give characterizations of the orthogonal
generalized Gegenbauer-Humbert polynomial sequences and the orthogo-
nal Sheffer-type polynomial sequences, respectively. In Section 4, we shall
present a method to find the densities of the measures u(x) and their sup-
ports S shown in (1) for generalized Gegenbauer-Humbert polynomial se-
quences {P& ’y’c(ac)} using a technique of representing a polynomial sequence
{pn(x)} generated by a linear recurrence relation of order two in terms of one
or two terms of a orthogonal generalized Gegenbauer-Humbert polynomial
sequence.

For
For

P
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2 A characterization of the orthogonal generalized
Gegenbauer-Humbert polynomials

First, we consider the characterization of the orthogonal generalized Gegenbauer-
Humbert polynomials defined by (8). From Favard’s Theorem, one may
obtain the following result.

Theorem 2.1 A generalized Gegenbauer-Humbert polynomial sequence de-
fined by (8) is an orthogonal polynomial sequence if and only if yC > 0.

Proof. Writing the recurrence relation (8) into the standard form in Theorem
1.1, we have
20 +n—1 A+n
Cph=y———— and Ay =2——.
"V ) T e
Thus from Theorem 1.1, {Pﬁ‘ ’y’c(ac)} is an orthogonal polynomial sequence
if and only if

A+n)A+n—-1)2A+n—-1)
C3n(n+1)2

for all n > 1. Noting A > 0 and n > 1, we immediately learn that the above
inequality is equivalently yC > 0, which completes the proof.

CrAnAn_1 = 4y >0

|
Example 1 Using Theorem 2.1, we may identify the Chebyshev polynomial
sequence of the second kind {Pr'"(z) = Uy,(2)} and the Legendre polyno-
mial sequence {Pﬁ/ 2’1’1(36) = Y (x)} are orthogonal, while Pell polynomial
sequence and Fibonacci polynomial sequence are not orthogonal. Morgan-
Voyc polynomial sequence { B, (2(z—1)) = Py'"!(2)} (and {B,(2)}) and the
sequence of the Fermat polynomials of the first kind, {®,(22) = P;fil (2)}
(and ®,,(x)}), are orthogonal polynomial sequences. Dickson polynomials of
the second kind are orthogonal when ¢ > 0 and non-orthogonal when a < 0.
We will evaluate the measures and their supports for Morgan-Voyc polyno-
mials, Fermat polynomials, and Dickson polynomials of the second kind in
Section 4.
We need the following lemma to find out the recurrence structure of an
orthogonal generalized Gegenbauer-Humbert polynomial sequence.

Lemma 2.2 If {p,(x)} is an orthogonal polynomial sequence, then there
exist sequences {Ap}tn>0, {Bn}n>0, and {Cy }n>1 so that

pn+1($) = (Anac + Bn)pn(ac) - Cnpn,1($)7 (13)
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where

kn+1 Anhn kn+1kn71hn
A = _— = =
" kn ’ Cn Anflhnfl k%hnfl ’ and
_ Ay 2 _ kn+1 2
B, = —— [ apa(z)du(z) = - apn () dp(x),
hn S knhn S

ky is the leading coefficient of pn(x), and

o= [ paladn(o)
S
18 a structural constant.

Proof. The proof can be found in [4] and [3]. However, for the sake of
convenience, we present a brief proof as follows.

We first determine A,, so that p,11(2) — Apap,(x) € 7, a collection of
all polynomials of degree < n. Hence,

Prr1(z) = Apapn(z) = > c;pi(@).
j=0

Using the orthogonality of (p,,+1(2),p;()), = 0and (p,(x),zp;(x)), = 0 for
all j =0,1,...,n—2, it is readily seen that ¢; = 0 for all j =0,1,...,n—2.
Therefore, (13) follows and the expression of A,, is a consequence of (13).
To obtain the expression of (,, we take inner product of (13) with p,_1(x)
and consider

/ P (2)pn 1 (@) dp(x) = 0 = A, / (&) pn 1 (2)dpu(x) — Cun 1,
S S

in which the integral of the right-hand member can be written as

/pn(ac)(knlac" + lower powers)du(x) = hn =
S 3

Thus the relation

h
Ap—"— — =
"y Cphp—1=0

n—1
yields the expression of C,. Taking the inner product with p,(z) on the
both sides of (13) yields
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0= A, /S 2 (2)pn (2)da(2) + Buhin,

which implies the expression of B,.

From Lemma 2.2, one may obtain

Theorem 2.3 If the generalized Gegenbauer-Humbert polynomial sequence
{2V ()Y defined by (8) is an orthogonal polynomial sequence, then

y o nhy(A+ n) (14)
C hpa(A+n—-1)2 A +n—1)
for alln > 1, where hy, = fS(PTi"y’C(ac))Qdu(ac). In addition, every element

of the sequence {Pp*C (z)} satisfies

/wgwﬂmfmmmzo. (15)
S

Proof. From the definition (8) of {£;"*“(z)} and the expression of C), in
Lemma 2.2, we have

2x+n—-1 2hn()\+n) 2hn,1()\+n—1)
Cnr )  “Clnt) Cn ’

which implies (14). Comparing (8) and the standard recurrence relation
(13), we know B,, = 0 for all n > 0, which is equivalent to (15).

Remark 1 From (14) one immediately have

W yA+n—1)2A+n—-1)
" nC(A+n)

hn*h

which implies

Nt A+ —=1DR2A+n—1)2
}M—<6> n!(\ +n)n

where the falling factorial notation #= (sometimes also denoted (z),) is de-
fined by o~ = z(z — 1)==%(r > 1) with 22 = 1. Using the above equations
and equation (15), we may evaluate the measures and their supports.
Example 2 For the orthogonal sequence of the Chebyshev polynomials of
the second order { Py (2) = U, (x)}, we have y/C = 1 that implies h,, =
hy = 7/2 and

h07
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/1 2V1 — 22Uy (2))%dz =0
-1

for all n > 0. The above equation is obviously true by observing that
Ugn—1(x) are odd and Uy, (z) are even.

For the sequence of the Legendre polynomials {P%/Q’l’l(ac) = Y(x)}, we
have

hn  n—1/2
hy 1 n+1/2
which implies iy, = 2/(2n + 1), and

/1 ac(wn(ac))Qdac =0
1

for all n > 0. The last formula holds obviously because %2,4+1(x) are odd
and 9, (x) are even.
Example 3 We know both U, (z) and v, (x) are special cases of Gegenbauer
polynomials { P2 ()} (A > 0). From Theorem 2.1, we know {P)"" (z)}
(A > 0) is orthogonal. Using Theorem 2.3, we obtain

I, A+n—-1)2Ax+n—-1)

hpo1 n(A+mn)

which implies
B 72\ + n)

222=Inl(\ + n) (T(A))?
where I'(x) is the gamma function. In addition, we have

1 2
/ z(1 — 2?12 (Pg"l’l(ac)) dxr = 0.

—1

n

3 A characterization of the orthogonal Sheffer-type
polynomial sequences

Meixner determined all sets of monic orthogonal Sheffer-type polynomials in
his historic paper [19]. Here, a polynomial is said to be monic if the coefficient
of its highest order term is 1. We now use a modified Meixner’s approach to
give a characterization of all orthogonal Sheffer-type polynomials. Denote
D = d/dx and f = ¢!, the composition inverse of g. Expansion (12)
suggests
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fD)pm () = mpm-—1(z) (16)

because of

D@D = AWt (1)) = LAL)em
n+1 n
= Y n@) = S wa),

n>0 n>0

where we have used p_;(x) = 0.

Theorem 3.1 Let A(t) and g(t) be defined as Definition 1.3. Then the
polynomial sequence {pp(x)} defined by (12) is orthogonal if and on if it
satisfies

Prt1(2) = (Ao + Bo + nA)pn(z) = n(Cr + (0 = )7)pn-a(x),  (17)

where Ag # 0, By, C1, A, andry are constant, and C1,7v > 0. Furthermore, g(t)
and A(t) satisfy

B A and Aty  By—Cit
L= Mt A(t) 1=\t +t2

q'(t) (18)

Proof. All orthogonal polynomial sequences including orthogonal Sheffer-
type polynomial sequences, {p,(z)}, satisfy the recurrence relation (13)
shown in Lemma 2.2:

pn+1($) = (Anac + Bn)pn(ac) - Cnpn,l(.%). (19)

We now apply f(D) defined by (16) on the both sides of the relation and
note that f(0) =0 and f/(0) # 0 implies f(D)x = f/(D). Thus,

(n+Dpu(x) = f(D)pns1(x) = f(D) [(Anz + Bp)pn () — Cppn—1(7)]
= Anf'(D)pn(ac) +n(Anz + Bp)pn—1(z) — (n — 1)Cppn—2(x),
(20)
where we need C, A, A,—1 > 0, which is a necessary and sufficient condition

of the orthogonality of {p,(x)} presented in (19) (See Lemma 2.2). On the
other hand, multiplying n to the both sides of relation (13) for p,(x) yields

npn(l') = n(Anfll' + anl)pnfl(-%') - ncnflpn72($)- (21)
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Subtracting (21) from (20), we obtain

(1= Aaf (D)pal@) = 1l(An = Au-1)a+ (Ba = Bu-1)lpn1(0)
—nn-0 (2 =S o, @)

n n—1

Applying f(D) on the leftmost and rightmost sides of (22) yields

n(l = A f'(D))pn—1(2)
= n(4, — A4, 1) (D)pn-1(x)
+n(n —1)[(An — Ap—1)z + (Bp — Bp1)]pn—2(x)

(=1 =2) (£ - E2Y ),

n—1

By transferring n to n 4 1, the above equation implies

(1 + (An - 2An+1)f/(l)))pn($) = n[(AnJrl - An)ac + (BnJrl - Bn)]pnfl(ac)
(1) (C"“ - C—) Pua(a).

n+1 n
(23)
From (22) and (23) we have identity
—(1 = Anf'(D))pn(2) + n[(An = Ap1)x + (Bn = Bn1)lpn-1(2)
—n(n—1) (% — Sn_i) Pn—a(x)
= —(1+ (An = 24000) f/(D))pn(@) + n[(Ans1 — An)2 + (Bps1 — Bn)lpn-1(2)
Cn+1 Cn
—(n)(n—1) (n 1 7) Pn—a(x). (24)
Comparing the nth degree terms on the both sides of (24) yields
—(1 = Anf'(D)pn() + 1(An — An-1)zpn1(2)
= —(1+ (An = 24001) f'(D))pn(@) + n(Ant1 — An)wpn1(2).
(25)

In (25) the constant terms on the both sides are equal, which implies
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—(1 = A f/(D))pn(2) = —(1 + (An — 24011) f'(D))pn(a),
or equivalently, 4,, = 4,11 for every n > 0. Hence, (25) holds if and only if
A, = Ay, (26)

a nonzero constant for every n > 0. Comparing the terms of degree n — 1
and n — 2 on the both sides of (24), we have the results

Bn+1 - Bn = )\
and

Cn+1 . ﬁ _

n+1 n "

for every n > 0, where A and v are constants. Hence,

B, = By +n\ and Cp, = n(C1 + (n —1)7) (27)

for all n > 1, where Cy,~ > 0 because of the request Cp, A, A,—1 = C, A2 >0
for all n > 1 (see Theorem 2.1). Substituting all of the established relation-
ship of the sequences { Ay }n>0, {Bn}n>0, and {Cp}n>1 into (19) and (22),
we obtain, respectively,

Prsi() = (Agz + Bo + n\)pa(e) = n(Cy + (0= D)pa 1), (28)
where Ag # 0 and C1,v > 0, and

(1= A0S (D)pla) =\ (Dhpu@) = 12 Dhpala). (29)
From (29), we further have

f(y) = Aiou M) W),

which implies

Ag

/
=0
I =T

by using the inverse function theorem.
From (28), we have

Pn+1(0) = (Bo + nA)p,(0) — n(C1 + (n — 1)7)pn—1(0). (30)
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Noting A(t) = 3,50 pn(0)%;, (30) implies

Aty By—Cit
A(t) 1 —Xt+t2

because

AD)(Bo — Cut) = Y- (Bopa(0) —~ nCip 1(0)
n>0 ’
= Y n1(0) = 1Apn(0) + o~ D A O)
n>0 ’
= A=) Y pan 0

n>0
= A1 =X +7t),

which completes the proof of the theorem.

|
Let the zeros of the denominator of ¢’(¢) shown in (18) be a and 3. Then
one may solve ¢(t) and A(t) from (18) as follows.

Corollary 3.2 Let A(t) and g(t) be defined as Definition 1.3. Then the
polynomial sequence {pn(x)} defined by (12) is orthogonal if and on if

g(t) = {aA_Oﬁln (%ﬁ)v if a#p,
Ak, if a=p.
and
S In(L—at) — G (L =B, i 0Fa# fAO,
In f(t) = -t (1 —at) — Sepf g, if a=3#0,
C’l—;gﬂln(l_at)"‘%tv if a# =0,
_%ﬂ + Bot, if a=p8=0,

Example 4 As an example, we set Ag = —1, Bp=C) =1, anda=5=1
in Corollary 3.2 and obtain
—t 1

g(t) = T3 and A(t) = T3
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Thus, from Theorem 3.1, the Laguerre polynomial sequence, {Ly(z)}, gen-
erated by (12) in Definition 1.3 with (A(¢),¢(¢)) = (1/(1 —¢t),—t/(1 — 1))
is an orthogonal polynomial sequence. Furthermore, from the expansion of
(1—1)2, we can read A = 2 and v = 1, which implies the following recurrence
relation for { L, (z)}:

Lnii(z) = (2n+1—2)Ly(x) — n’Ly 1 (2)

with the initial conditions L_;(z) = 0 and Lg(x) = 1. Thus, Li(x) =1 — =z,
Ly(z) =2 —4x + 22, Lz(z) = 6 — 18z + 922 — 23, etc. Using Lemma 2.2, one
may check the assumption of By = C; = 1 is satisfied for {L,,(z)}. Since

ho = /SL%(ac)du(ac) = /Ooo e “der=1

and
hi = / L3(x)dp(x) = / (1—x)%e “de =1,
s 0
we have
A (o]
By = ——0/ L (x)dp(x) :/ e “dr =
ho Js 0
and
Athy My
“ Aoho  ho

4 Evaluate the measures and their supports of or-
thogonal sequences {P!¥*(z)}

In this section, we will present a method to find the densities of measures
(#(x) and their supports S (see (1)) of orthogonal generalized Gegenbauer-
Humbert polynomial sequences, {Pﬁ’y’c(ac)} (Cy > 0), using a technique of
transferring a polynomial sequence defined by a recurrence relation of order
two to an orthogonal Gegenbauer-Humbert polynomial sequence. This trans-
fer technique can also give an orthogonal representation of non-orthogonal
polynomials satisfying recurrence relation of order 2 in terms of only one
or two terms of an orthogonal polynomial sequence. Thus, many useful ap-
proximation properties for orthogonal polynomials (for instance, Gaussian
quadratures) can be transfered to some non-orthogonal polynomials.

Many number and polynomial sequences can be defined, characterized,
evaluated, and classified by linear recurrence relations with certain orders.
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A polynomial sequence {a,(x)} is called sequence of order 2 if it satisfies the
linear recurrence relation of order 2:

an () = p()an—1 + (x)an—2(x), n=>2, 31)

for some coefficient p(z) Z 0 and ¢(x) # 0 and initial conditions ag(x)
and aj(x). To construct an explicit formula of its general term, one may
use a generating function, characteristic equation, or a matrix method (See
Comtet [6], Hsu [20], Strang [21], Wilf [22], etc.) [12] presented a new method
to construct an explicit formula of {a,(x)} generated by (31). For the sake
of reader’s convenience, we cite this result as follows (see also Miller and
Takloo-Bighash [23] with different approaches).

Proposition 4.1 Let {a,(z)} be a sequence of order 2 satisfying the linear
recurrence relation (81). Then

o) | (e () — (e gz, if afa) £
' nas(@)a™ (@) = (n — Dao(x)a” (@), if ofx) =

where a(z) and B(x) are roots of t> — p(x)t — q(x) = 0, namely,

o(x) = 5 (p(x) + V(@) T 4a(m)), B(a) = 5 (o) — v/pP(@) T dax). (33)

We now give a transfer formula between different generalized Gegenbauer-
Humbert polynomial sequences. This technique can be used to transfer
any polynomials defined by recurrence relations of order 2 to a generalized
Gegenbauer-Humbert polynomials.

Theorem 4.2 If {a,(x) = P&’C,’y,(ac)}, a generalized Gegenbauer-Humbert
polynomial sequence with parameters C' and y', which is defined by (7) with
coefficient polynomials p(x) = 2x/C" and q(x) = —y'/C' and initial con-
ditions ap(z) = 1/C" and a1(x) = 2x/(C")?, then we have the following
transfer formula from {PrYC (2)}nso to {P&’y,’c,(ac)}nzo:

' v cont? 4 " 2/yC
Ly",C — ¢ 1,y,C !
b () = = <i1 / UOC,) Pl (i U’C’) . (34)

In particular, every polynomials sequence {P&’y,’c,(ac)} defined by (7)
can be transfered to the Chebyshev polynomial sequence of the second kind
by using the formula
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ol 1 y/ " xz
Ly",C _
PR @) = (i C,) Uy, (i y/C/). (35)

Proof. We first modify the explicit formula of the polynomial sequences
defined by linear recurrence relation (32) of order 2. If a(z) # B(x), the first
formula in (32) can be written as

ay (@) ((a(@)" — (B(x)") — ao(@)a(@) (@) ((a(@)" ! = (B(x))" ™)
a(r) = 3(x) '

Noting that —a(z)3(z) = a(z)(a(z) — p(z)) = B(@)(B(x) — p(r)), we may
further write the above expression of a,(x) as

an(x) =

(36)

Denote r(x) = & + /22 — Cy and s(x) = © — /2?2 —Cy. To find a
transfer formula between expressions (9) and (36), we set
r(z) 5(%)

a(z) := R) and fS(z):= @) (37)

k
for a nonzero real or complex valued function k(x), which are two roots of
t? — p(z)t — g(z) = 0. Thus, adding and multiplying two equations of (37)
side by side, we obtain

~—
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and at

pk() _ v [yC

xTr = = s
2 2\ —q=@)

r(x) and s(z) give expressions of a(x) and F(z) as

i w) L ng”). (39)

+ +

a(z)
*q(w) *q(w)
It is clear that a(z) and F(x) satisfy a(x) + 8(z) = p(x) and a(x)3(x) =

—q(x).
We first consider the case of k(x) = /—yC/q(z). Substituting the cor-

responding (38) with positive sign 1nt0 (36), we have

an ()
ao(x)(r™+(x) — s" " (2)) + k(x) (a1 (x) — ag(@)p()) (r" () — 5" (x))
kn(z)(r(z) — s(@))

= ao($)C"+2< %gc)) P&ﬂﬁ(’“(@f(@)

n—1

~ iz [ [ma@\ e (p@) [ 40
= aO(-%')C +2< yC ) Pﬁy(j( 9 _q(.%,))

n—1

+<a1<w>—ao<x>p<x>>0"“< %) by (1% _Z?w)-

(39)

Similarly, for k(x) = —v/—yC/q(z), we have

an(z) = ag(z)C™H? (_ |~ ) 1yC’< p(x) / )

+(ay (%) — ao(z)p(x))C™ ( ;Igc ) phyc ( p(x) _‘Z?;)) .

(40)
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Therefore, a,(x) defined by (31) can be presented as

—q(x)
n—1
+(ax () = ao (@)p(2))C" ! (i %) =y (i@ —Z@))’
(41)

where {P& Y1 is the sequence of any generalized Gegenbauer-Humbert poly-
nomials with A = 1. In particular, a,(z) can be expressed in terms of
{P&’l’1 = U,}, the sequence of Chebyshev polynomials of the second kind:

an(x) = ap(x) (j:\/—q(ac)>nUn (iﬂ)

2v/—q(x)

+(a1(x) — ao(z)p(z)) (i —q(gc)>"*1 o (i%) |

(42)

which is a special case of (41) for (y,C) = (1, 1).

If a,(x) = Pﬁ’y,c,(ac) defined by (7) with coefficient polynomials p(z) =
2x/C" and q(x) = —y'/C’ and initial conditions ag(z) = 1/C" and a1 (x) =
22/(C")2, then a1(x) — ag(x)p(x) = 0 and (41) and (42) are reduced to (34)
and (35), respectively.

From Theorem 4.2, we immediately have transfer formulas

FPoyi(z) = (£8)"U, ($aci)’7
Foyi(z) = (£9)"Un (¢%) )
Bua) = (11 (% (5+1)).

b, 1(r) = (i\/i)nUn (i%ﬁ)
1
2
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Remark 2 It is obvious that when both y and C' are integers, the cor-
responding generalized Gegenbauer-Humbert polynomials have integer co-
efficients. Formulas (34) can be used to transfer between the generalized
Gegenbauer-Humbert polynomials with integer coefficients and the gener-
alized Gegenbauer-Humbert polynomials with non-integer coefficients. For
instance, the last transfer formula shown above presents the Dickson poly-
nomial of the second kind with real coefficients in terms of the Chebyshev
polynomials of the second kind.

If yC > 0, from Theorem 2.1 we know that {Pr¥(2)} is an orthogonal
polynomial sequence. Let w(z) and S = [a,b] be the density function and
its support interval of {Pr¥""(x)}. We now use Theorem 4.2 to find the
density function and its support interval of {PyY"C (g(x))}, where g(z) is a
one-to-one and differentiable function.

Theorem 4.3 Let {P+*“(2)} be a polynomial sequence defined by (7), and
let g(x) be a one-to-one and differential function. Then sequence {Pﬁyc(q(ac))}
is an orthogonal polynomial sequence associated with the density function

w(@) = g'(x)V1 — (9(x))?/(yO)

with support interval between g1 (—/yC) and g *(v/yC), where g1 (x) is
the composition inverse of g(x), i.e., (g7 og)(z) = (gog ') (x) = z. Fur-
thermore,

4 (Vi) (9(2)? , _ VT (y\"
1,y,C 1,y,C / _ _ R
L @B g oy~ B e = T (F) b
(43)
where Oy, 15 the Kronecker symbol.
In particular, if g(x) = x, then {P&’y’c(ac)} is an orthogonal polynomial
sequence with respect to density function \/1 — x2 /(yC) over support interval
[—vyC,VyC], and {Pr¥C (2)} satisfies (43) when g(z) = ¢~} (z) = x.

Proof. Let us consider inner product (Pr¥% (), Pﬁ;y’c(m))m over

[—vyC,v/yC], in which the transfer formula (35) will be applied:
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VyC n+m 2
- / iQ (i 3) U, (ii) Unn, (ii) 1— 2 da
el C VyC VyC yC

_ éa(iwég)nmi/lUnmﬁUmmﬁVTjZEVEEmE

where the rightmost integral yields (7/2)d,,, due to the orthogonality of
{Un(x)} (see, for examples, [24] by Mason and Handscomb and [25] by
Rivlin).

Hence, using a transformation we obtain

[ e p g @y 1 - B

g1 (—VI0) yC
VyC 22
= / PLC () PLYC (1), [1 — —da
Vil yc
VYO rynn
= 2 (&) 3o

Corollary 4.4 Let {Pﬁ’c’c(ac)}, C #£ 0, be a polynomial sequence defined by
(7) with A =1, and let g(x) be a one-to-one and differential function. Then

1,6,C . : o
sequence {Pp""" (g(x))} is an orthogonal polynomial sequence satisfying re-
currence relation (10) associated with the density function

with support interval between g (—|C|) and g1 (|C]), where g~ () is the
composition inverse of g(x), i.e., (g7 o g)(x) = (gog ') (x) = x. Further-
more,

7|C|
—_— 44
202 6n7m7 ( )

g~ H(ICD !
[ pecwpiecwL ) Ver= G -
L) €]
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where op m is the Kronecker symbol.

In particular, if g(x) = x, then {Pnl’c’c(ac)} s an orthogonal polynomial
sequence with respect to density function /1 —x2/C? over support interval
[—|C1,|C]], and {Pnl’c’c(ac)} satisfies (44) when g(z) = g '(z) = .

Example 5 From Theorem 4.3, Morgan-Voyc polynomial sequence { By, () =
Pyt (2 +1)} is orthogonal with respect to the density function w(z) =
vV —4x — 22 /4 with support [—4,0]. The sequence of Fermat polynomials of
the first kind, {®,(z) = Pnlf’ll(ac/Z)}, is orthogonal with respect to the den-
sity function w(z) = V8 — 22/(4v/2) with support [—2v/2,2v/2]. Dickson
polynomials { Dy, (x, a) = Pn***(2)} of the second kind are orthogonal when
a > 0 with respect to the density function w(z) = vV4a — 22/(2+/a) over the
support interval [—2y/a,2+/a]. In addition, we have

0 _4 _ 2
/ B () By ()" dz = =6,
) 4 2™
2v2 V8 — 12
/ &, (1) Dy, (1) ———dx = 72"~ /D5,
22 42
2v/a [Aa — 12
/ Un('%.v a)l)m(mva)ﬂdl. = zan+1/25n,m-
,2\/& 2\/5 4
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