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Abstract

This paper deals with the summation problem of power series of the Sty x) = 3", <k<b f (k)x*, where
0<a <b<oo,and{f(k)}is agiven sequence of numbers witk [a, b) or f(¢) is a differentiable function defined
onla, b). We present a symbolic summation operator with its various expansions, and construct several summation
formulas with estimable remainders f8f (f; x), by the aid of some classical interpolation series due to Newton,
Gauss and Everett, respectively.
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1. Introduction

It is known that the symbolic operations(difference),E (displacement) an® (derivative) play an
important role in the calculus of finite differences as well as in certain topics of computational methods.
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For various classical results, see, €6,8], etc. Certainly, the theoretical basis of the symbolic methods
could be found within the theory of formal power series, in as much as all the symbolic expressions
treated are expressible as power series,i& or D, and all the operations employed are just the same
as those applied to formal power series. For some easily accessible references on formal series, we may
recommend?2,3,11}

Recall that the operators E andD may be defined via the following relations:

d
AfO)=fe+DH - f@O., Ef(=f0+D), Df @) =3/ (®).

Using the number 1 as an identity operator, vi£(4) = f (t), one can observe that these operators satisfy
the formal relations

E=1+4=¢P, A=E—-1=¢? -1, D=log(l+ 4).

Powers of these operators are defined in the usual way. In particular, one may define for any real number
X, EXf(t) = f(t+x).

Note thate* £(0) = [EX f(1)],_, = f (k), so that any power series of the fodmt” , f (k)x* could be
written symbolically as

Y floxt =Y XFEFFO) =) (E)f(0)=(1-xE) £ (0.

k>0 k=0 k>0

This shows that the symbolic operatdr— x E)~* with parametek can be applied tg (¢) (at7 = 0) to
yield a power series or a generating function f@rk)}.

We shall show in Section 3 that — x E)~* could be expanded into series in various ways to derive
various symbolic operational formulas as well as summation formula}s for, f(k)x*. Note that the
closed form representation of series has been studied extensively. See, for eX@hvgéch presents
a unified treatment of summation of series using function theoretic method. Some consequences of the
summation formulas as well as the examples will be shown in Section 4, can be useful for computational
purpose, accelerating the series convergence. In Section 5, we shall give the remainders of the summatior
formulas.

2. Preliminaries

We shall need several definitions as follows.

Definition 2.1. The expressiory (t) € CEZ,b) (m>1) means thaff (¢) is a real function continuous
together with itanth derivative ora, b).

Definition 2.2. (x, xo, x1, ..., x,) represents a least interval containirgand the numbersyg, x2,
o, Xn-

Definition 2.3. «(x) is called an Eulerian fraction and may be expressed in the forr{¢f.

Ap(x)
(1 o x)kJrl ’

(x#D),

g (x) =
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whereAg(x) is thekth degree Eulerian polynomial having the expression

k
A =) Ak, pxd, Ao =1
j=1

with the A(k, j) being known as Eulerian numbers, expressible as

/ (k+1
A(k,j>=Z(—1)’( l. )(j—i)", (1<j<h).
i=0

19

Definition 2.4. ¢ is Sheppard central difference operator defined by the relétf@gn = f (t + %) —

f(t = 3), sothat (cf[7])

d=AEV2=4/EY? 3% =4 ET

Moreover, in Sections 3 and 4, we will make use of several simple and well-known propositions which

may be stated as lemmas as follows.

Lemma 2.5. There is a simple binomial identity

k

3 ('Z)xm = ﬁ (x| < 1).

m=k
Lemma 2.6. Newton'’s symbolic expression f&r is given by
SR
X __ X
E* =1+ 4) —kZ:%(k)A .
For f e CFOTolo) we have Newton'’s interpolation formula

n

fO=EF0 =Y ()4 0+ (n | 1) Fr©,

k=0
wherex € (0,00) and¢ € (x,0,1,...,n).

Lemma 2.7. Euler's summation formula for the arithmetic—geometric series is given by

o0

. A
o = T = aw. (x1<D,
j=0

where Kk is a positive integeand« (x) is the Eulerian fraction
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Lemma 2.8. For n >1 we have Everett's symbolic express{oh [7, Section129]).

Ex_i x+k\ 4% (x+k—1\4%
N 2k +1) E-1 2k+1 ) EF)°

k=0

For f € C(Z’_"oo’oo) we have Everett's interpolation formula

m—1
_ x+k 2k . x+k_1 2%
fx)= Z<(2k+1)5 @ ( %1 )5 f(O))

k=0

x+m-—1 2m)
+( o )f ©,

wherex € (—oo, 00) and¢ € (x,0,£1, ..., +m, m + 1).
Lemma 2.9. Gauss’s symbolic expression fBr is given by

00 2k 2k+1
k\ 4 k\ 4
Ex = Z ' + + y + :
2k Ek 2k +1) Ek+1

k=0
For f € C(z’_”oo’oo) we have Gauss interpolation formulef. [7, Section129]).

m—1

. x+k 2k _ x+k 2k+1 .
f(x)-Z(( o )A £ k)+(2k+1>A f(—k 1))

k=0
+ (x - ’") £ @),
2m
wherex € (—o0, o0) and¢ € (—m, m — 1).

Lemma 2.10(Mean value theorejn Let Y 2 ;a,x" with a, >0 be a convergent series fare (0, 1).
Suppose thad(z) is a bounded continuous function of t 6roo, o0), and {z,} is a sequence of real
numbers. Then there is a numhiee (—o0, oo) such that

D anpta)x" = (&) Y anx".
n=0 n=0
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3. Main results
We now state and prove the following proposition of various expansiotis-ofx E) 2.

Proposition 3.1. The operator1 — x E)~* has four symbolic expansiores follows

°° k
B X
(1—XE) 1: ];mﬂk, (31)
1 e )
1—xE) = ZTD", (3.2)
k=0
k+1 AZk AZk
00 k+1 2k 2k
R * 147 A7
(1—-xE) _1+l§)<(1_x)2> (x o Ek+1>’ (3.4)

where the conditionr # 1 is assumedand moreoverx # 0 for (3.4).

Proof. Herewe presenta proofinthe sense of symbolic calculus, viz., every series expansionis considered
as a formal series.
Clearly (3.1) may be derived as follows:

A—xE) 1=Q-x@Q+4)t=Q-—x—xn?
00 kAk

6 N1 NS o S S N
(1-0 " L -x4/(1=x) };(l_x)kﬂ

For proving (3.2) it suffices to make use Bf= ¢” and Lemma 2.7. Indeed we have
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Egs. (3.3) and (3.4) can be justified in an entirely similar manner by using Lemma 2.5, Lemma 2.8 and
Lemma 2.9, respectively. Indeed, (3.4) may be derived as follows.

1—xE)y1— 1:Z(xE)j
j=1
o0 ]+k j ﬁ e} ]+k A2k+1
{(Z( 2%k )x ) EF T (Z(2k+1> ) ET
Jj=1 j=1
{ xk AZk xk+l A2k+l}
( X

(1 _ x)Zk-FlF + (l _ x)2k+2 Ek+1
k+1 1—x AZk N A2k+1
(1 _ X)Z X Ek Ek+l

x N\ a4
X)) (e e

Once (3.3) is derived by the aid of Lemmas 2.5 and 2.8, it can also be verified by symbolic computations.
In fact we have

k A2 k
RHS of 33)=1+ (1_x)22( x)z) (E) (E —x)

M

k

Il
o

M

k

Il
o

M

k=0

IIP”18

_ X E—x _1 x(E —x)
TA a2 2T +(1—x)2—xA—2
(1-x)? E E
Ex(E —x) B Ex

=1
(1—x)°E — x(E — 1)? 1 E
=1 —xE)*=LHS of (3.3).

Certainly (3.4) could also be verified in the like manner as aboveé.

Remark 3.1. Note that all the operators displayed on the right-hand sides of (3.1)—(3.4) inyalve
D, so that they will yield finite expressions when they are applied to any polynoftialatz = 0. In
particular, we see that for thgth degree polynomia (¢), (3.1) gives a generating function (GF) in
the form

k
Zf(k)x —ZW /(0). (3.5)

Actually, this is a well-known formula and was mentionedidinSection 11]Moreover, an exact formula
parallel to (3.5) may be obtained from (3.2), namely

o0

P
> et =3 2 ko). (3.6)

k=0 k=0
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Certainly, both (3.5) and (3.6) may be used either as summation formulas for the poweZﬁﬁr&eﬁ(k)xk
with |x| < 1, or as a tool for getting GFs for the sequefi¢éx)}.

Remark 3.2. Observe that Euler’'s formula as given by Lemma 2.7 is a particular case of (3.6) with
f (@) =1t” (p>1). Obviously, Euler’s formula may also be deduced from (3.5) by recalling the fact that

(cf. [3])

xJ
ok (x) = ZJ'S(k ”W’
j=0
whereS(k, j) are Stirling numbers of the second kind.

Proposition 3.2. Let{ f (k)} be a given sequence of numbéesal or comple, and leth(¢) be infinitely
differentiable at = 0. Then we have formally

00 00 k
Z £y = Z ﬁA"f(O), (3.7)
Zh(k) Z o"‘(X)D’%(O) (3.8)
k 0
X k+1
Zf(k)x = Z ( . )2) (6% f (1) = x6* f(O)), (3.9)
X k+1
Zf(k)x = Z( . )2) 1% F(0) — 6% f (=1, (3.10)

where we always assume thatt 0 andx # 1.

Proof. Clearly (3.7)—(3.10) are merely consequences of (3.1)—(3.4) by applying the operafors do
h(t)atr =0. O

As in the case of (3.5)—(3.6), we have a corollary form (3.9)—(3.10), namely

Corollary 3.3. If f(¢) is a polynomial in t of degree, phen

00 [p/2] X k+1

D =) ( (1_x)2) 0% f (L) = x6™ f(0)). (312)
k=1 k=0

00 [p/2] k+1

D =) ( (1_xx>2) (1% f(0) = 6% (= 1)) (312)
k=1 k=0

Certainly, (3.11)—(3.12) may also be used as a rule for obtaining GF&(bJ}.
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4. Consequences of Proposition 3.2 and examples

As observed in Section 3, any of formulas (3.5), (3.6), (3.11) and (3.12) solves generally the summation
problem of power seri€s ;- o f(k)x*inthe casef (r) is a polynomial. Thus for instance, a few summation
formulas of the forms

o0 P N k
k'S(p, k, 1|0)x
§ k _ §
(k +)v|9)px = W, (4.1)
k=0 k=0

2”: x*k!S(p, k, 2|0)xF

4.2
(1-— x)k—l—l ( )

o0
Y Dp(k, a)x* =
k=0 k=0

as given ir[5] are just particular cases of (3.5) in whigltr) = (t +- 1/0) , and f (1) = D (t, ) are known
as the generalized falling factorial and the Dickson polynomial, respectively, or more precisely

p—1
t+40),=[[e+4i=j0), (p=D), «+i0o=1
j=0

and

[p/2] .
Dpltoy= Y —— (” . ’) (=2/t772 Dot o) = 2.
e A AN

Moreover,S(p, k, /|0) denotes Howard’s degenerate weighted Stirling numbers. (For more in details, cf.
[5] loc. cit.)

Another important consequence of Proposition 3.2 is that (3.7), (3.9) and (3.10y with 1 yield
three series transforms, respectively,

o] o] _1k

St =3 S Ao, 4.3)
k=0 k=0

- k-1 — (=D 5 2%

P VT =) 5T 0 M) + 0% (0D, (4.4)
k=1 k=0

o k o (_1)k 2k 2k

DR =) 5T 6O + 0% (1) (4.5)
k=1 k=0

Note that (4.3) is the well-known Euler series transform that can be used to convert a slowly convergent
alternating seriei,fozo(—l)kf(k) with f(k) | 0 (ask — o0) into rapidly convergent series. For
instance, the series

In2=1-3+3-3+%—- (4.6)
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can be converted using (4.3) with(k) = ﬁll (k=0,1,2,...) into a quickly convergent series of
the form
1 1 1

1
Ih2== 4.7
st ottt 4.7)

Actually, the above expression can be derived by substituting
Kook .
FrO=Y (J) (~DFIG+ (4.8)

j=0

into (4.3). Thus,

1k
2= 3D f0) = 2(2,{31 Z( )( DI 4+ 1)

k=0
= 1 k+1
- ;W v (1))
o0 o0 1
- Z (k + 1)2k+1 Z K2k (4.9)
k=0 =1

Remark 4.1. Obviously, the convergence of the series shown in (4.7) with a rategbf2D) is much

faster than the convergence of the series in (4.6), which has the raté& of)OFor instance, to arrive the
accuracy of the five digits of In 2 0.69315, we only need to sum the first 15 terms of the series in (4.7),
while the partial sum of the first 40,000 terms of the series in (4.6)69313. Egs. (4.4)—(4.5) appear

to be novel, and they could also be used to convert slowly convergent alternatin@ﬁigs—l)kf(k)

into quickly convergent ones if a definition fgitk) =0 (k =0, —1, —2, .. .) is introduced. A later work

will give the comparison on the rate of the convergence of series (4.3)—(4.5) for the positive decreasing
functions.

We now give some examples of the summations shown in Proposition 3.2. Our first example is for
function f(x) = 1/(x + 1)°. Similar to expression (4.8) we obtain

k
IOEDY (’;) DG+

Jj=0

Substituting the above expression into (4.3) and noting the well-known identif@[xf.
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(see[6]), we use the process similar to that in (4.9) and have

00 00 1 k k (_1)]
D) =) o ()
]; f k:O 2k+1j2:(:) i) G112
= 1 k k+1> -1 &1 (k) (—1)i-1
_];(k-l—l)Zka ;(]4—1 j+1_];k2 ; j j
00 k oo 00 00
1 1 1
= —_— - = + o,
NI EDIIIY T T =2 2

where summation 3@0) in [6] gives the first sum aé — %InZZ and

o X0 l
- ;; 0 + 0)2i+t

easily seen to equal

1
_ZZJEZH’E E 25

j=le=1
yielding
o0 _1k 2
Z (-1 _ (4.10)

2
S (k+172 12

Remark 4.2. Although formula (4.10) can be easily derived by using Fourier cosine expansidh of
we give a different approach here by using formula (4.3) because it converts the series in (4.10) into the
following quickly convergent series:

2 o0

n k&1 A1
1_2:};)(/;)1)2 =2
Hence, we can use the last series shown above to evdl2atas
[ele) k 1
(2= Z:: 2:: 7

The sum of the first 13 terms of the last series givést49, the first 5 digits 0f?/6, while the sum of
the first 5000 terms of the series in (4.10) is onl§447. This example shows that formula (4.3) can be
used to convert an alternating series into quickly convergent ones.
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We now consider another example generated by funcfion = (g(¢))*, whereg : R — R andfis
defined on\ U {0}. Obviously, we have

k

k . .
OB (J) @) (1" =(e(r) - 1* (4.11)

j=0
and fori =0, 1
0% f(i) = AFET (i) = 4% (g(0))"*

2k 2k . . .
=2 ( ; ) @) (=D = (g(t) - D (g~ (4.12)
j=0

Hence, substituting (4.11) into (3.7) yields
00 00 Xk
e)fxt =Y ———— (e - D
I;) kg(:) (1 _ X)k+1
1 1 1

1—x1_ 280D =1—xg(t)'
1—x

(4.13)

Similarly, substituting (4.12) into (3.9), we obtain the following summation formula:

o

X e 2k 1k k
(0 = DN = x(g()”
;((1_x)2) () — DH{(g( (g™
_ 00— 0 5 (4600 17 -
(e) -1 g \e)@—x)?
_ 80(g) —x) x(g(1) = 1)

(g() —1? g)(1—x)%—x(g(t) — 1)?
xg(1)(g(1) — x) o xg(®)

T e+ D) —x(g1)2+ D 1—xg()
As examples, we take(r) = €', with i = +/—1, andg(s) = ¢. Thus, from (4.13) we have, respectively,

(4.14)

S . 0 [ | 4.15
,; ! ,;(1—x)k+1( T (4.15)
and
o0 o xk 1
()l =) ——q (@) - D = ———. (4.16)
kz:; kz:(:) (1— x)kt? 1— xt
By applying (4.14) forg () = € andt we obtain
00 X k+1 ’ _ _ xei’
-1 2k fa—i(k—1)t —ikty _ _ 417
Z((1—x)2> (€ —v7ie e =g (4.17)

k=0
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and

o0

X o 2%k 1k —k 1x
;((1_@2) (= )P = (4.18)

respectively.
We now illustrate (3.8) witht (x) = (g(¢))* with g : R — Randg(¢) > 0. Hence D¥h(0) = (In g(r))*
and from (3.8) and Definition 2.3

Z(g(r))k k= Z el )(In g0
Z o Arlx ;Hl(ln gk (4.19)

Replacing Ing(¢) by t ands (1 — x), respectively, in Eq. (4.19) yields GFs ({3, Section 6.5][10])

> ik 1

> w0~ = (4.20)

= k! 1—x¢€
and

> tk 1—x

Some other GFs such &) — (5k) shown in[3, Section 6.5tan be derived from Eq. (4.19). In addition,
from Eg. (4.20), we can establish the recurrence relationfar) by multiplying both sides of the
equation by(1 — x€). The details can be found [@&0]. _ _

Finally, we consider a special case of (4.19) by letitrig) = €'*, i.e., g(t) = €’ with r € R, and
x =-1in(4.19), we obtain

1 _ t 2\ Ar(-1)

ikt _ _ k

Ze (— 1+e'f_§{1_l tanﬁ}_gk!ZkH(”)'
Therefore, direct verification of the rightmost equality would be effected by the identity
o0
Ar(=1)z*

) ACEDT e, (4.22)
= k!

implying A, (—1) is the negative of the respective tangent coefficjéhtNote that

k k
A(=D) =Y Ak, N1 == jISk, (=2, (4.23)

j=1 j=1
with S(k, j) denoting the Stirling number of the second kind [8f Formula [51 ]in 6.5][2,5]). Therefore,
implementing exponential GFs, inon both sides of (4.23), (4.22) follows froymz,f‘;j S(k, j)zk/k! =
(& — 1)/ (cf. [1]).
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The numerical resultsin Remarks 4.1 and 4.2 are obtained by using mathematical package Mathematica.
All of the sums, except for the few discussed in the examples, can also be done with any mathematical
package, for examples Mathematica and Maple.

5. Summation formulas with remainders

In this section we will establish four summation formulas with remainders whose forms are suggested
by Lemmas 2.6, 2.8 and 2.9.

Theorem5.1. Letf (1) € C[§ ., (m>1),withbounded derivativg ™ (r)in [0, co),and lety 72 f (k)x*
be convergent forx| < 1. Then forx € (0, 1) we have

N-1 ok

Z flox* = Z(xMAkﬂM) x4k f(N))W + P> (5.1)
where the remaindes,, has a form with € [0, co) as follows

m

=M M 4 &) — XN (N £ &) (5.2)

Proof. Let ¢(t) = ¢(t, x) =x™ f(t + M) — xV f(t + N), so thatp(r) Cf’g)’oo). Then by Lemma 2.6
and using the mean-value theorem (Lemma 2.10) wjtk: (" ), we obtain

N-1 o0
flyxk =" pn)x"
k=M n=0
- Z{ZA d>(0)< )}x"+2¢<m>(gn)(:1)x" (p€n0.1,2 .. .m—1)
n=0 Lk=0 n=0

= Z 4 (0) (Z (2) x") +om O ()"
n=0
= Z A (0) )k+1 + ¢(m)(f)w
= RHS of (5.1)
with p,, being given by (5.2). O

Note that the RHS of (5.1) without,, may be regarded as a rational approximation to the series on
the LHS. In particular, ifc¥ 48 f(N) — 0 (N — oo, 0<k<m — 1), then (5.1)—(5.2) reduce to

o0 k xm
> floxt = ZxMA f(M)ﬁ +xM (M + DTy (5:3)

k=M
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Theorem 5.2. Under the same condition of Theorénd,we have

N-1

Zf(k)x —Z<x FOmn - f<k>(N>>“"(x) + s (5.4)

where the remainder is given by

m()

=M 4y — N p (N )2 (5.5)

Proof. Denote¢(r) = x™ f(r + M) — x" f (1 + N) so that$(1) € Cf; ., Clearly, by using Taylor's
expansion with Lagrange’s remainder, we have

RN

N—

fUx* =" m)x"

=M n=0

oo /m—1
= Z(Z 0o’ )x +Z <i>(’")(é n"x", (0< &, <n)
n=0 \k=0

m— 1

Z k,¢<")<0> (Z" ) +S2.

Here we can apply Lemma 2.10 to the sef§gsthus obtaining

= _¢<'">(§) (Zn ) (0< ¢ <00)

n=0

bl

= —,¢<’"><¢>cxm () = P
m.
Hence, in accordance with Lemma 2.7, we have (5.4) and (50).

Remark 5.1. Theorem 5.2 with expressions (5.4)—(5.5) is of similar nature as tHa0pfTheorems 1

and 2] However, our present result appears to be a little more restrictive since we have assumed here
the condition O< x < 1 and the convergence 32, f(k)xk for |x| < 1. In what follows we shall give
formulas using the central difference operatéfs = 4% /EX which appear to be more available for
numerical computations.

Theorem 5.3. Let f(¢) € CZ’" ») With bounded derivative ™ (1) in (—oo, 0o0) and let> 2 o f (k)xk
be convergent fopx| < 1. Then forx € (0, 1), we have

X k+1
4, 5.6
x>2) , (5.6)

N-1 m—1
D floxt =" 0% e - xa%(on( .

k=M k=0
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wheres® ¢ (1) = xM 5% f(t + M) — xN 6% f(t + N) andp,, is given by the following witti € [—m, c0)

m+1
m= MM 4 &) — xN fC(N 4 g))m_ (5.7)
Proof. Denote¢(t) = xM f(t + M) — xV f(t + N), so thatp(r) C(ZTOO o)+ LEL US NOW make use of
Everett’s formula (Lemma 2.8) fap(¢) atr = n, ’
m—1
_ n+ky\ o (ntk=1\ o
$(n) = kg [(2k+ 1) 0% p(1) ( ok 11 )5 ¢(0)}
i (” e 1) P,
2m
where¢, € (n,0,+1, 42, ..., +m, m + 1). Clearly we have
N-1 00
flxk=>"¢mx", 0<x<1)
k=M n=0
oo m—1
B n—+k 2% _(n +k—=1\ .
=22 [(2k+1>5 (L) < 2% +1 )5 ¢(0)]x
n=0 k=0
X n+m—1 2m) "
+ 2:(3)( o ) ¢ (&,)x
m—1 o0
k
_ Z52k¢(1) (Z(n+ )xn>
P o 2k +1
m—1 00
;)5 $(0) (;( ok 11 )x )+pm

+2

= 252k (1) )2k+2 Z de’() — %2 + Pm

LS 1 2k 2k X o
= 0 1) —xo 0 .
D 6% P@) — x6% >>((1_x)2) + P

k=0

Here an application of Lemma 2.10 to the series representatiof pields

o -1 xm+l
=@ () (Z (” o ) ) ¢><2’"><¢>W,

n=0

whereé € [—m, 00). Hence the theorem is proved(]
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Theorem 5.4. Under the same condition of Theorén3we have

Zf(k)x —Z(x—152k¢<0> 0% (— 1))(

k+1
) o (5.8)
k=M

(1—x)2

wherex # 0ando®¢(r) = xMo% f(r + M) — xN5% f(+ + N), and

m

pm = M FCIM 4 &) — XN N 4 &) (5.9)

X
(1 _ x)2m+1 :

Proof. As before, denote(r)=xM f(t+M)—x" f(t+N)andletx € (0, 1). Using Gauss interpolation
formula with remainder (Lemma 2.9) fgn(¢) att = n, we get as in the case of proving Theorem 5.3 the
following expressions

N—

=

o0

fx =" pn)x"

=M nO

:ZAZk (— k)(Z(”+k)x">
241, g —(ntk\
+;A $(—k 1)(§<%+1)x)
+ i (" +m) RIE N
2m "
k+1

m—1
_ Z A2k¢( )2k+1 + ,;, 42k+1¢(_k — 1)m + o

>~

m— 1
= <1;—XA2"¢<—1<> + [4% (—k) — 4% §(—k — 1)])

k=0

x k+1
) ((1 — X)Z) m

i 1 (2% 2k B e
= 4 —k)y— 4 —k—-1 .
YA G(—k) — 4% g >>((1_x)2) + P

k=0

Finally, an application of Lemma 2.10 to the series expressior), @ives

m

=0 (”2+mm> = ¢(2’“)(6)W,
n=0

whereé € (—o0, 00). Hence Theorem 5.4 is proved]
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Remark 5.2. The uniform boundedness conditions f6f") (¢) in [0, co) as well as forf @™ (z) in
(—00, 00) imply thatx f((N + &) — 0 andx™ f@(N + ¢) — 0asN — oo and O< x < 1. Thus,
if in addition, x™ f®O(N) = o(N), (N — oo, 0<k<m — 1), then (5.4)—(5.5) yield

00 m—1
D floxt =" fo<"><M>ﬁ,x) +xM (M + é)“’"—(f). (5.10)
= P k! m!

Similar consequences from Theorems 5.3 and 5.4 may also be deduced by providing additional conditions
such ascV 9% f(N) — 0 (N — o0, 0<x <1).
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