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Abstract

This paper deals with the summation problem of power series of the formSba (f ; x) =∑
a�k�b f (k)x

k, where
0�a <b�∞, and{f (k)} is a given sequence of numbers withk ∈ [a, b) orf (t) is a differentiable function defined
on [a, b). We present a symbolic summation operator with its various expansions, and construct several summation
formulas with estimable remainders forSba (f ; x), by the aid of some classical interpolation series due to Newton,
Gauss and Everett, respectively.
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1. Introduction

It is known that the symbolic operations� (difference),E (displacement) andD (derivative) play an
important role in the calculus of finite differences as well as in certain topics of computational methods.
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For various classical results, see, e.g.,[7,8], etc. Certainly, the theoretical basis of the symbolic methods
could be found within the theory of formal power series, in as much as all the symbolic expressions
treated are expressible as power series in�, E or D, and all the operations employed are just the same
as those applied to formal power series. For some easily accessible references on formal series, we may
recommend[2,3,11].
Recall that the operators�, E andDmay be defined via the following relations:

�f (t)= f (t + 1)− f (t), Ef (t)= f (t + 1), Df (t)= d

dt
f (t).

Using the number 1 as an identity operator, viz. 1f (t)=f (t), one can observe that these operators satisfy
the formal relations

E = 1+ � = eD, � = E − 1= eD − 1, D = log(1+ �).

Powers of these operators are defined in the usual way. In particular, one may define for any real number
x , Exf (t)= f (t + x).
Note thatEkf (0)= [

Ekf (t)
]
t=0 = f (k), so that any power series of the form

∑∞
k=0 f (k)x

k could be
written symbolically as∑

k�0

f (k)xk =
∑
k�0

xkEkf (0)=
∑
k�0

(xE)kf (0)= (1− xE)−1f (0).

This shows that the symbolic operator(1− xE)−1 with parameterx can be applied tof (t) (at t = 0) to
yield a power series or a generating function for{f (k)}.
We shall show in Section 3 that(1− xE)−1 could be expanded into series in various ways to derive

various symbolic operational formulas as well as summation formulas for
∑
k�0 f (k)x

k. Note that the
closed form representation of series has been studied extensively. See, for example,[9] which presents
a unified treatment of summation of series using function theoretic method. Some consequences of the
summation formulas as well as the examples will be shown in Section 4, can be useful for computational
purpose, accelerating the series convergence. In Section 5, we shall give the remainders of the summation
formulas.

2. Preliminaries

We shall need several definitions as follows.

Definition 2.1. The expressionf (t) ∈ Cm[a,b) (m�1) means thatf (t) is a real function continuous
together with itsmth derivative on[a, b).
Definition 2.2. 〈x, x0, x1, . . . , xn〉 represents a least interval containingx and the numbersx0, x2,
. . . , xn.

Definition 2.3. �k(x) is called an Eulerian fraction and may be expressed in the form (cf.[3])

�k(x)= Ak(x)

(1− x)k+1 , (x 
= 1),



T.X. He et al. / Journal of Computational and Applied Mathematics 177 (2005) 17–33 19

whereAk(x) is thekth degree Eulerian polynomial having the expression

Ak(x)=
k∑
j=1

A(k, j)xj , A0(x) ≡ 1

with theA(k, j) being known as Eulerian numbers, expressible as

A(k, j)=
j∑
i=0

(−1)i
(
k + 1

i

)
(j − i)k, (1�j�k).

Definition 2.4. � is Sheppard central difference operator defined by the relation�f (t) = f (t + 1
2

) −
f
(
t − 1

2

)
, so that (cf.[7])

� = �E−1/2 = �/E1/2, �2k = �2kE−k.

Moreover, in Sections 3 and 4, we will make use of several simple and well-known propositions which
may be stated as lemmas as follows.

Lemma 2.5. There is a simple binomial identity

∞∑
m=k

(m
k

)
xm = xk

(1− x)k+1 , (|x|<1).

Lemma 2.6. Newton’s symbolic expression forEx is given by

Ex = (1+ �)x =
∞∑
k=0

(x
k

)
�k.

For f ∈ Cn+1
[0,∞) we have Newton’s interpolation formula

f (x)= Exf (0)=
n∑
k=0

(x
k

)
�kf (0)+

(
x

n+ 1

)
f (n+1)(�),

wherex ∈ (0,∞) and� ∈ 〈x,0,1, . . . , n〉.
Lemma 2.7. Euler’s summation formula for the arithmetic–geometric series is given by

∞∑
j=0

jkxj = Ak(x)

(1− x)k+1 = �k(x), (|x|<1),

where k is a positive integer, and�k(x) is the Eulerian fraction.
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Lemma 2.8. For n�1we have Everett’s symbolic expression(cf. [7, Section129]).

Ex =
∞∑
k=0

((
x + k
2k + 1

)
�2k

Ek−1 −
(
x + k − 1

2k + 1

)
�2k

Ek

)
.

For f ∈ C2m
(−∞,∞) we have Everett’s interpolation formula

f (x)=
m−1∑
k=0

((
x + k
2k + 1

)
�2kf (1)−

(
x + k − 1

2k + 1

)
�2kf (0)

)

+
(
x +m− 1

2m

)
f (2m)(�),

wherex ∈ (−∞,∞) and� ∈ 〈x,0,±1, . . . ,±m,m+ 1〉.
Lemma 2.9. Gauss’s symbolic expression forEx is given by

Ex =
∞∑
k=0

((
x + k
2k

)
�2k

Ek
+
(
x + k
2k + 1

)
�2k+1

Ek+1

)
.

For f ∈ C2m
(−∞,∞) we have Gauss interpolation formula(cf. [7, Section129]).

f (x)=
m−1∑
k=0

((
x + k
2k

)
�2kf (−k)+

(
x + k
2k + 1

)
�2k+1f (−k − 1)

)

+
(
x +m
2m

)
f (2m)(�),

wherex ∈ (−∞,∞) and� ∈ (−m,m− 1).

Lemma 2.10(Mean value theorem). Let
∑∞
n=0 anx

n with an�0 be a convergent series forx ∈ (0,1).
Suppose that�(t) is a bounded continuous function of t on(−∞,∞), and {tn} is a sequence of real
numbers. Then there is a number� ∈ (−∞,∞) such that

∞∑
n=0

an�(tn)x
n = �(�)

∞∑
n=0

anx
n.
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3. Main results

We now state and prove the following proposition of various expansions of(1− xE)−1.

Proposition 3.1. The operator(1− xE)−1 has four symbolic expansions, as follows.

(1− xE)−1 =
∞∑
k=0

xk

(1− x)k+1�k, (3.1)

(1− xE)−1 =
∞∑
k=0

�k(x)

k! Dk, (3.2)

(1− xE)−1 = 1+
∞∑
k=0

(
x

(1− x)2
)k+1( �2k

Ek−1 − x�2k

Ek

)
, (3.3)

(1− xE)−1 = 1+
∞∑
k=0

(
x

(1− x)2
)k+1(

x−1�2k

Ek
− �2k

Ek+1

)
, (3.4)

where the conditionx 
= 1 is assumed, and moreover, x 
= 0 for (3.4).

Proof. Herewepresent aproof in thesenseof symbolic calculus, viz., every seriesexpansion is considered
as a formal series.
Clearly (3.1) may be derived as follows:

(1− xE)−1 = (1− x(1+ �))−1 = (1− x − x�)−1

= (1− x)−1(1− x�/(1− x))−1 =
∞∑
k=0

xk�k

(1− x)k+1 .

For proving (3.2) it suffices to make use ofE = eD and Lemma 2.7. Indeed we have

(1− xE)−1 = (1− xeD)−1 =
∞∑
k=0

xkekD

=
∞∑
k=0

xk
∞∑
j=0

(kD)j

j ! =
∞∑
j=0

( ∞∑
k=0

xkkj

)
Dj

j ! =
∞∑
j=0

�j (x)
Dj

j ! .
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Eqs. (3.3) and (3.4) can be justified in an entirely similar manner by using Lemma 2.5, Lemma 2.8 and
Lemma 2.9, respectively. Indeed, (3.4) may be derived as follows.

(1− xE)−1 − 1=
∞∑
j=1

(xE)j

=
∞∑
k=0




 ∞∑
j=1

(
j + k
2k

)
xj


 �2k

Ek
+

 ∞∑
j=1

(
j + k
2k + 1

)
xj


 �2k+1

Ek+1




=
∞∑
k=0

{
xk

(1− x)2k+1

�2k

Ek
+ xk+1

(1− x)2k+2

�2k+1

Ek+1

}

=
∞∑
k=0

(
x

(1− x)2
)k+1(1− x

x

�2k

Ek
+ �2k+1

Ek+1

)

=
∞∑
k=0

(
x

(1− x)2
)k+1(

x−1�2k

Ek
− �2k

Ek+1

)
.

Once (3.3) is derived by the aid of Lemmas 2.5 and 2.8, it can also be verified by symbolic computations.
In fact we have

RHS of (3.3)= 1+ x

(1− x)2
∞∑
k=0

(
x

(1− x)2
)k(�2

E

)k
(E − x)

= 1+ x

(1− x)2
E − x

1− x

(1−x)2
�2

E

= 1+ x(E − x)
(1− x)2 − x �2

E

= 1+ Ex(E − x)
(1− x)2E − x(E − 1)2

= 1+ Ex

1− xE
= (1− xE)−1 = LHS of (3.3).

Certainly (3.4) could also be verified in the like manner as above.�

Remark 3.1. Note that all the operators displayed on the right-hand sides of (3.1)–(3.4) involve� or
D, so that they will yield finite expressions when they are applied to any polynomialf (t) at t = 0. In
particular, we see that for thepth degree polynomialf (t), (3.1) gives a generating function (GF) in
the form

∞∑
k=0

f (k)xk =
p∑
k=0

xk

(1− x)k+1�kf (0). (3.5)

Actually, this is a well-known formula and was mentioned in[7, Section 11]. Moreover, an exact formula
parallel to (3.5) may be obtained from (3.2), namely

∞∑
k=0

f (k)xk =
p∑
k=0

�k(x)

k! Dkf (0). (3.6)
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Certainly, both (3.5)and (3.6)maybeusedeitherassummation formulas for thepowerseries
∑∞
k=0 f (k)x

k

with |x|<1, or as a tool for getting GFs for the sequence{f (k)}.
Remark 3.2. Observe that Euler’s formula as given by Lemma 2.7 is a particular case of (3.6) with
f (t)= tp (p�1). Obviously, Euler’s formula may also be deduced from (3.5) by recalling the fact that
(cf. [5])

�k(x)=
k∑
j=0

j !S(k, j) xj

(1− x)j+1 ,

whereS(k, j) are Stirling numbers of the second kind.

Proposition 3.2. Let {f (k)} be a given sequence of numbers(real or complex), and leth(t) be infinitely
differentiable att = 0.Then we have formally

∞∑
k=0

f (k)xk =
∞∑
k=0

xk

(1− x)k+1�kf (0), (3.7)

∞∑
k=0

h(k)xk =
∞∑
k=0

�k(x)

k! Dkh(0), (3.8)

∞∑
k=1

f (k)xk =
∞∑
k=0

(
x

(1− x)2
)k+1

(�2kf (1)− x�2kf (0)), (3.9)

∞∑
k=1

f (k)xk =
∞∑
k=0

(
x

(1− x)2
)k+1

(x−1�2kf (0)− �2kf (−1)), (3.10)

where we always assume thatx 
= 0 andx 
= 1.

Proof. Clearly (3.7)–(3.10) are merely consequences of (3.1)–(3.4) by applying the operators tof (t) or
h(t) at t = 0. �

As in the case of (3.5)–(3.6), we have a corollary form (3.9)–(3.10), namely

Corollary 3.3. If f (t) is a polynomial in t of degree p, then

∞∑
k=1

f (k)xk =
[p/2]∑
k=0

(
x

(1− x)2
)k+1

(�2kf (1)− x�2kf (0)), (3.11)

∞∑
k=1

f (k)xk =
[p/2]∑
k=0

(
x

(1− x)2
)k+1

(x−1�2kf (0)− �2kf (−1)). (3.12)

Certainly, (3.11)–(3.12) may also be used as a rule for obtaining GFs of{f (k)}.
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4. Consequences of Proposition 3.2 and examples

As observed in Section 3, any of formulas (3.5), (3.6), (3.11) and (3.12) solves generally the summation
problemofpower series

∑∞
k=0 f (k)x

k in thecasef (t) is apolynomial.Thus for instance, a fewsummation
formulas of the forms

∞∑
k=0

(k + �|�)pxk =
p∑
k=0

k!S(p, k, �|�)xk
(1− x)k+1 , (4.1)

∞∑
k=0

Dp(k, �)x
k =

p∑
k=0

x�k!S(p, k, �|�)xk
(1− x)k+1 (4.2)

as given in[5] are just particular cases of (3.5) in whichf (t)= (t + �|�)p andf (t)=Dp(t, �) are known
as the generalized falling factorial and the Dickson polynomial, respectively, or more precisely

(t + �|�)p =
p−1∏
j=0

(t + � − j�), (p�1), (t + �|�)0 = 1,

and

Dp(t, �)=
[p/2]∑
j=0

p

p − j
(
p − j
j

)
(−�)j tp−2j , D0(t, �)= 2.

Moreover,S(p, k, �|�) denotes Howard’s degenerate weighted Stirling numbers. (For more in details, cf.
[5] loc. cit.)
Another important consequence of Proposition 3.2 is that (3.7), (3.9) and (3.10) withx = −1 yield

three series transforms, respectively,

∞∑
k=0

(−1)kf (k)=
∞∑
k=0

(−1)k

2k+1 �kf (0), (4.3)

∞∑
k=1

(−1)k−1f (k)=
∞∑
k=0

(−1)k

4k+1 (�
2kf (1)+ �2kf (0)), (4.4)

∞∑
k=1

(−1)kf (k)=
∞∑
k=0

(−1)k

4k+1 (�
2kf (0)+ �2kf (−1)). (4.5)

Note that (4.3) is the well-known Euler series transform that can be used to convert a slowly convergent
alternating series

∑∞
k=0(−1)kf (k) with f (k) ↓ 0 (ask → ∞) into rapidly convergent series. For

instance, the series

ln 2= 1− 1
2 + 1

3 − 1
4 + 1

5 − · · · (4.6)
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can be converted using (4.3) withf (k) = 1
k+1 (k = 0,1,2, . . .) into a quickly convergent series of

the form

ln 2= 1

2
+ 1

22 · 2 + 1

23 · 3 + 1

24 · 4 + · · · (4.7)

Actually, the above expression can be derived by substituting

�kf (0)=
k∑
j=0

(
k

j

)
(−1)k−j (j + 1)−1 (4.8)

into (4.3). Thus,

ln 2=
∞∑
k=0

(−1)kf (k)=
∞∑
k=0

(−1)k

2k+1

k∑
j=0

(
k

j

)
(−1)k−j (j + 1)−1

=
∞∑
k=0

1

(k + 1)2k+1

k∑
j=0

(−1)j
(
k + 1

j + 1

)

=
∞∑
k=0

1

(k + 1)2k+1 =
∞∑
k=1

1

k2k
. (4.9)

Remark 4.1. Obviously, the convergence of the series shown in (4.7) with a rate of O(1/2n) is much
faster than the convergence of the series in (4.6), which has the rate of O(1/n). For instance, to arrive the
accuracy of the five digits of ln 2= 0.69315, we only need to sum the first 15 terms of the series in (4.7),
while the partial sum of the first 40,000 terms of the series in (4.6) is 0.69313. Eqs. (4.4)–(4.5) appear
to be novel, and they could also be used to convert slowly convergent alternating series

∑∞
k=1(−1)kf (k)

into quickly convergent ones if a definition forf (k)= 0 (k= 0,−1,−2, . . .) is introduced. A later work
will give the comparison on the rate of the convergence of series (4.3)–(4.5) for the positive decreasing
functions.

We now give some examples of the summations shown in Proposition 3.2. Our first example is for
functionf (x)= 1/(x + 1)2. Similar to expression (4.8) we obtain

�kf (0)=
k∑
j=0

(
k

j

)
(−1)k−j (j + 1)−2.

Substituting the above expression into (4.3) and noting the well-known identity (cf.[4])

k∑
j=1

(−1)j−1
(
k

j

)
1

j
=

k∑
�=1

1

�
,
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(see[6]), we use the process similar to that in (4.9) and have

∞∑
k=0

(−1)kf (k)=
∞∑
k=0

1

2k+1

k∑
j=0

(
k

j

)
(−1)j

(j + 1)2

=
∞∑
k=0

1

(k + 1)2k+1

k∑
j=0

(
k + 1

j + 1

)
(−1)j

j + 1
=

∞∑
k=1

1

k2k

k∑
j=1

(
k

j

)
(−1)j−1

j

=
∞∑
k=1

1

k2k

k∑
�=1

1

�
=

∞∑
j=0

∞∑
�=1

1

�(j + �)2j+� =
∞∑
�=1

1

�22�
+ �,

where summation 360(c) in [6] gives the first sum as	
2

12 − 1
2ln

22 and

� =
∞∑
j=1

∞∑
�=1

1

�(j + �)2j+�

easily seen to equal

1

2

∞∑
j=1

∞∑
�=1

1

j�2j+�
= 1

2
ln2

1

2

yielding

∞∑
k=0

(−1)k

(k + 1)2
= 	2

12
. (4.10)

Remark 4.2. Although formula (4.10) can be easily derived by using Fourier cosine expansion ofx2,
we give a different approach here by using formula (4.3) because it converts the series in (4.10) into the
following quickly convergent series:

	2

12
=

∞∑
k=0

(−1)k

(k + 1)2
=

∞∑
k=1

1

k2k

k∑
�=1

1

�
.

Hence, we can use the last series shown above to evaluate
(2) as


(2)= 	2

6
=

∞∑
k=1

1

k2k−1

k∑
�=1

1

�
.

The sum of the first 13 terms of the last series gives 1.6449, the first 5 digits of	2/6, while the sum of
the first 5000 terms of the series in (4.10) is only 1.6447. This example shows that formula (4.3) can be
used to convert an alternating series into quickly convergent ones.
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We now consider another example generated by functionf (x) = (g(t))x , whereg : R �→ R andf is
defined onN ∪ {0}. Obviously, we have

�kf (0)=
k∑
j=0

(
k

j

)
(g(t))j (−1)k−j = (g(t)− 1)k (4.11)

and fori = 0,1

�2kf (i)= �2kE−kf (i)= �2k(g(t))i−k

=
2k∑
j=0

(
2k

j

)
(g(t))i−k+j (−1)2k−j = (g(t)− 1)2k(g(t))i−k. (4.12)

Hence, substituting (4.11) into (3.7) yields
∞∑
k=0

(g(t))kxk =
∞∑
k=0

xk

(1− x)k+1(g(t)− 1)k

= 1

1− x
1

1− x(g(t)−1)
1−x

= 1

1− xg(t) . (4.13)

Similarly, substituting (4.12) into (3.9), we obtain the following summation formula:
∞∑
k=0

(
x

(1− x)2
)k+1

(g(t)− 1)2k{(g(t))1−k − x(g(t))−k}

= g(t)(g(t)− x)
(g(t)− 1)2

∞∑
k=0

(
x(g(t)− 1)2

g(t)(1− x)2
)k+1

= g(t)(g(t)− x)
(g(t)− 1)2

x(g(t)− 1)2

g(t)(1− x)2 − x(g(t)− 1)2

= xg(t)(g(t)− x)
g(t)(1+ x2)− x((g(t))2 + 1)

= xg(t)

1− xg(t) . (4.14)

As examples, we takeg(t)= eit , with i = √−1, andg(t)= t . Thus, from (4.13) we have, respectively,
∞∑
k=0

eitkxk =
∞∑
k=0

xk

(1− x)k+1(e
it − 1)k = 1

1− xeit (4.15)

and
∞∑
k=0

(tx)k =
∞∑
k=0

xk

(1− x)k+1(g(t)− 1)k = 1

1− xt . (4.16)

By applying (4.14) forg(t)= eit andt we obtain
∞∑
k=0

(
x

(1− x)2
)k+1

(eit − 1)2k{e−i(k−1)t − xe−ikt } = xeit

1− xeit (4.17)
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and
∞∑
k=0

(
x

(1− x)2
)k+1

(t − 1)2k{t1−k − xt−k} = tx

1− tx , (4.18)

respectively.
We now illustrate (3.8) withh(x)= (g(t))x with g : R �→ R andg(t)>0. Hence,Dkh(0)= (ln g(t))k

and from (3.8) and Definition 2.3
∞∑
k=0

(g(t))kxk = 1

1− xg(t) =
∞∑
k=0

�k(x)

k! (ln g(t))k

=
∞∑
k=0

Ak(x)

k!(1− x)k+1(ln g(t))
k. (4.19)

Replacing lng(t) by t andt (1− x), respectively, in Eq. (4.19) yields GFs (cf.[3, Section 6.5], [10])

∞∑
k=0

�k(x)
tk

k! = 1

1− xet (4.20)

and
∞∑
k=0

Ak(x)
tk

k! = 1− x
1− xet (1−x) . (4.21)

Some other GFs such as(5i)− (5k) shown in[3, Section 6.5]can be derived from Eq. (4.19). In addition,
from Eq. (4.20), we can establish the recurrence relation for�k(x) by multiplying both sides of the
equation by(1− xet ). The details can be found in[10].
Finally, we consider a special case of (4.19) by lettingh(x) = eitx , i.e., g(t) = eit with t ∈ R, and

x = −1 in (4.19), we obtain
∞∑
k=0

eikt (−1)k = 1

1+ eit
= 1

2

{
1− i tan

t

2

}
=

∞∑
k=0

Ak(−1)

k!2k+1 (it)
k.

Therefore, direct verification of the rightmost equality would be effected by the identity

∞∑
k=1

Ak(−1)zk

k! = − tanhz, (4.22)

implyingAk(−1) is the negative of the respective tangent coefficient[7]. Note that

Ak(−1)=
k∑
j=1

A(k, j)(−1)j = −
k∑
j=1

j !S(k, j)(−2)k−j , (4.23)

with S(k, j) denoting theStirling number of the second kind (cf.[3, Formula [5l ]in 6.5], [2,5]). Therefore,
implementing exponential GFs, inz, on both sides of (4.23), (4.22) follows fromj !∑∞

k=j S(k, j)zk/k!=
(ez − 1)j (cf. [1]).



T.X. He et al. / Journal of Computational and Applied Mathematics 177 (2005) 17–33 29

Thenumerical results inRemarks4.1and4.2areobtainedbyusingmathematical packageMathematica.
All of the sums, except for the few discussed in the examples, can also be done with any mathematical
package, for examples Mathematica and Maple.

5. Summation formulas with remainders

In this section we will establish four summation formulas with remainders whose forms are suggested
by Lemmas 2.6, 2.8 and 2.9.

Theorem5.1. Letf (t) ∈ Cm[0,∞), (m�1),withboundedderivativef (m)(t) in [0,∞),and let∑∞
k=0 f (k)x

k

be convergent for|x|<1.Then forx ∈ (0,1) we have
N−1∑
k=M

f (k)xk =
m−1∑
k=0

(xM�kf (M)− xN�kf (N))
xk

(1− x)k+1 + �m, (5.1)

where the remainder�m has a form with� ∈ [0,∞) as follows:

�m = (xMf (m)(M + �)− xNf (m)(N + �))
xm

(1− x)m+1 . (5.2)

Proof. Let �(t) = �(t, x) = xMf (t +M) − xNf (t + N), so that�(t) ∈ Cm[0,∞). Then by Lemma 2.6

and using the mean-value theorem (Lemma 2.10) withan = (
n
m

)
, we obtain

N−1∑
k=M

f (k)xk =
∞∑
n=0

�(n)xn

=
∞∑
n=0

{
m−1∑
k=0

�k�(0)
(n
k

)}
xn +

∞∑
n=0

�(m)(�n)
( n
m

)
xn (�n ∈ 〈n,0,1,2, . . . , m− 1〉)

=
m−1∑
k=0

�k�(0)

( ∞∑
n=0

(n
k

)
xn

)
+ �(m)(�)

∞∑
n=0

( n
m

)
xn

=
m−1∑
k=0

�k�(0)
xk

(1− x)k+1 + �(m)(�)
xm

(1− x)m+1

=RHS of (5.1)

with �m being given by (5.2). �

Note that the RHS of (5.1) without�m may be regarded as a rational approximation to the series on
the LHS. In particular, ifxN�kf (N)→ 0 (N → ∞,0�k�m− 1), then (5.1)–(5.2) reduce to

∞∑
k=M

f (k)xk =
m−1∑
k=0

xM�kf (M)
xk

(1− x)k+1 + xMf (m)(M + �)
xm

(1− x)m+1 . (5.3)
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Theorem 5.2. Under the same condition of Theorem5.1,we have

N−1∑
k=M

f (k)xk =
m−1∑
k=0

(xMf (k)(M)− xNf (k)(N))�k(x)
k! + �m, (5.4)

where the remainder is given by

�m = (xMf (m)(M + �)− xNf (m)(N + �))
�m(x)

m! . (5.5)

Proof. Denote�(t) = xMf (t +M) − xNf (t + N) so that�(t) ∈ Cm[0,∞). Clearly, by using Taylor’s
expansion with Lagrange’s remainder, we have

N−1∑
k=M

f (k)xk =
∞∑
n=0

�(n)xn

=
∞∑
n=0

(
m−1∑
k=0

1

k!�
(k)(0)nk

)
xn +

∞∑
n=0

1

m!�
(m)(�n)n

mxn, (0< �n <n)

=
m−1∑
k=0

1

k!�
(k)(0)

( ∞∑
n=0

nkxn

)
+ S2.

Here we can apply Lemma 2.10 to the seriesS2, thus obtaining

S2 = 1

m!�
(m)(�)

( ∞∑
n=0

nmxn

)
(0< �<∞)

= 1

m!�
(m)(�)�m(x)= �m.

Hence, in accordance with Lemma 2.7, we have (5.4) and (5.5).�

Remark 5.1. Theorem 5.2 with expressions (5.4)–(5.5) is of similar nature as that of[10, Theorems 1
and 2]. However, our present result appears to be a little more restrictive since we have assumed here
the condition 0<x <1 and the convergence of

∑∞
k=0 f (k)x

k for |x|<1. In what follows we shall give
formulas using the central difference operators�2k = �2k/Ek which appear to be more available for
numerical computations.

Theorem 5.3. Letf (t) ∈ C2m
(−∞,∞) with bounded derivativef (2m)(t) in (−∞,∞) and let∑∞

k=0 f (k)x
k

be convergent for|x|<1.Then forx ∈ (0,1), we have
N−1∑
k=M

f (k)xk =
m−1∑
k=0

(�2k�(1)− x�2k�(0))
(

x

(1− x)2
)k+1

+ �m, (5.6)
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where�2k�(t)= xM�2kf (t +M)− xN�2kf (t +N) and�m is given by the following with� ∈ [−m,∞)

�m = (xMf (2m)(M + �)− xNf (2m)(N + �))
xm+1

(1− x)2m+1 . (5.7)

Proof. Denote�(t) = xMf (t +M) − xNf (t + N), so that�(t) ∈ C2m
(−∞,∞). Let us now make use of

Everett’s formula (Lemma 2.8) for�(t) at t = n,

�(n)=
m−1∑
k=0

[(
n+ k
2k + 1

)
�2k�(1)−

(
n+ k − 1

2k + 1

)
�2k�(0)

]

+
(
n+m− 1

2m

)
�(2m)(�n),

where�n ∈ 〈n,0,±1,±2, . . . ,±m,m+ 1〉. Clearly we have

N−1∑
k=M

f (k)xk =
∞∑
n=0

�(n)xn, (0<x <1)

=
∞∑
n=0

m−1∑
k=0

[(
n+ k
2k + 1

)
�2k�(1)−

(
n+ k − 1

2k + 1

)
�2k�(0)

]
xn

+
∞∑
n=0

(
n+m− 1

2m

)
�(2m)(�n)x

n

=
m−1∑
k=0

�2k�(1)

( ∞∑
n=0

(
n+ k
2k + 1

)
xn

)

−
m−1∑
k=0

�2k�(0)

( ∞∑
n=0

(
n+ k − 1

2k + 1

)
xn

)
+ �m

=
m−1∑
k=0

�2k�(1)
xk+1

(1− x)2k+2 −
m−1∑
k=0

�2k�(0)
xk+2

(1− x)2k+2 + �m

=
m−1∑
k=0

(�2k�(1)− x�2k�(0))
(

x

(1− x)2
)k+1

+ �m.

Here an application of Lemma 2.10 to the series representation of�m yields

�m = �(2m)(�)

( ∞∑
n=0

(
n+m− 1

2m

)
xn

)
= �(2m)(�)

xm+1

(1− x)2m+1 ,

where� ∈ [−m,∞). Hence the theorem is proved.�
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Theorem 5.4. Under the same condition of Theorem5.3we have

N−1∑
k=M

f (k)xk =
m−1∑
k=0

(x−1�2k�(0)− �2k�(−1))

(
x

(1− x)2
)k+1

+ �m, (5.8)

wherex 
= 0 and�2k�(t)= xM�2kf (t +M)− xN�2kf (t +N), and

�m = (xMf (2m)(M + �)− xNf (2m)(N + �))
xm

(1− x)2m+1 . (5.9)

Proof. As before, denote�(t)=xMf (t+M)−xNf (t+N) and letx ∈ (0,1). UsingGauss interpolation
formula with remainder (Lemma 2.9) for�(t) at t = n, we get as in the case of proving Theorem 5.3 the
following expressions

N−1∑
k=M

f (k)xk =
∞∑
n=0

�(n)xn

=
m−1∑
k=0

�2k�(−k)
( ∞∑
n=0

(
n+ k
2k

)
xn

)

+
m−1∑
k=0

�2k+1�(−k − 1)

( ∞∑
n=0

(
n+ k
2k + 1

)
xn

)

+
∞∑
n=0

(
n+m
2m

)
�(2m)(�n)x

n

=
m−1∑
k=0

�2k�(−k) xk

(1− x)2k+1 +
m−1∑
k=0

�2k+1�(−k − 1)
xk+1

(1− x)2k+2 + �m

=
m−1∑
k=0

(
1− x
x

�2k�(−k)+ [�2k�(−k)− �2k�(−k − 1)]
)

×
(

x

(1− x)2
)k+1

+ �m

=
m−1∑
k=0

(x−1�2k�(−k)− �2k�(−k − 1))

(
x

(1− x)2
)k+1

+ �m.

Finally, an application of Lemma 2.10 to the series expression of�m gives

�m = �(2m)(�)
∞∑
n=0

(
n+m
2m

)
xn = �(2m)(�)

xm

(1− x)2m+1 ,

where� ∈ (−∞,∞). Hence Theorem 5.4 is proved.�
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Remark 5.2. The uniform boundedness conditions forf (m)(t) in [0,∞) as well as forf (2m)(t) in
(−∞,∞) imply thatxNf (m)(N + �)→ 0 andxNf (2m)(N + �)→ 0 asN → ∞ and 0<x <1. Thus,
if in addition,xNf (k)(N)= o(N), (N → ∞, 0�k�m− 1), then (5.4)–(5.5) yield

∞∑
k=M

f (k)xk =
m−1∑
k=0

xMf (k)(M)
�k(x)

k! + xMf (m)(M + �)
�m(x)

m! . (5.10)

Similar consequences fromTheorems 5.3 and 5.4may also be deduced by providing additional conditions
such asxN�2kf (N)→ 0 (N → ∞, 0<x <1).

Acknowledgements

The authors would like to thank the referees and the editor for their suggestions and help.

References

[1] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, U.S. Government
Printing Office, 1964 (21.1.4 B).

[2] N. Bourbaki, Algèbre, Hermann, 1959 (Chapter 4.5).
[3] L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, 1974 (Chapters 1,3).
[4] H.W. Gould, Combinatorial Identities, revised ed., Morgantown, W. Va., 1972.
[5] L.C.Hsu, P.J.-S. Shiue,On certain summation problemsandgeneralizations of Eulerian polynomials andnumbers,Discrete

Math. 204 (1999) 237–247.
[6] L.B.W. Jolley, Summation of series, 2nd revised ed., Dover Publications, NewYork, 1961.
[7] Ch. Jordan, Calculus of Finite Differences, Chelsea, NewYork, 1965.
[8] L.M. Milne-Thomson, The Calculus of Finite Differences, London, 1933.
[9] A. Sofo, Computational Techniques for the Summation of Series, Kluwer Academic Publishers, NewYork, 2003.
[10] X.-H. Wang, L.C. Hsu, A summation formula for power series using Eulerian fractions, Fibonacci Quart. 41 (1) (2003)

23–30.
[11] H.S. Wilf, Generatingfunctionology, Academic Press, NewYork, 1990.


	A symbolic operator approach to several summationformulas for power series
	Introduction
	Preliminaries
	Main results
	Consequences of Proposition 3.2 and examples
	Summation formulas with remainders
	Acknowledgements
	References


