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of Mullin–Rota’s substitution rule in [R. Mullin, G.-C. Rota, On the foundations of
combinatorial theory: III. Theory of binomial enumeration, in: B. Harris (Ed.), Graph Theory
and its Applications, Academic Press, New York, London, 1970, pp. 167–213], and several
applications involving various special formulas and identities are presented as illustrative
examples.
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1. Introduction

The recent paper [1] by He, Hsu, and Shiue has shown that, as an application of the substitution rule based on
Mullin–Rota theory of binomial enumeration (see [2]), the symbolization of generating functions may yield more than a
dozen symbolic summation formulas involving the delta operators1 and D. Here let us recall that1 (difference operator)
and D (differentiation operator) together with E (shift operator) are usually defined for all f (t) ∈ C∞ (the class of infinitely
differentiable real functions in R = (−∞,∞)) via the relations

1f (t) = f (t + 1)− f (t), Df (t) =
d
dt
f (t) = f ′(t), Ef (t) = f (t + 1).

Consequently they satisfy some simple symbolic relations such as

E = 1+1, E = eD, 1 = eD − 1, D = log E = log(1+1),

where the unity, 1, serves as an identity operator such that 1f (t) = f (t). Also, for any real or complex number α, we may
define Eα f (t) = f (t + α) with E0 = D0 = 10 = 1. In addition, an operator T is called a shift-invariant operator (see, for
example, [2]) if it commutes with the shift operator E, i.e.,

TEα = EαT ,

where Eα f (t) = f (t+α) and E1 ≡ E. Clearly, the differentiation operator D and the difference operator1 are shift-invariant
operators. An operator Q is called a delta operator if it is shift invariant and Qt is a non-zero constant. Obviously, both D and
1 are delta operators.
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What we wish to show is that the two types of symbolic summation formulas expanded in [1] may be reformulated
using an extension of Mullin–Rota’s substitution rule so that they could apply to more cases than those given previously.
Accordingly we will consider some new applications, and present several examples and identities involving some special
number sequences such as Bernoulli, Catalan, Stirling, harmonic numbers and the generalized harmonic numbers. In
addition,we shall show that the formal power series can be recovered from the corresponding symbolic summation formulas
by substituting a certain chosen function.

2. Two basic theorems

LetQ be a delta operator, and let F be the ring of formal power series in the variable t , over the same field; then [2] proved
that there exists an isomorphism from F onto the ring

∑
of shift-invariant operators, which carries

g(x) =
∑
k≥0

ak
k!
xk into g(Q ) ≡ G(x,Q ) :=

∑
k≥0

ak
k!
Q k.

The above rule is called Mullin–Rota’s substitution rule.
Denote by G(x, y, z) a rational function in three variables x, y, and z. In particular, G(x, y, 1) and G(x, 1, 1) denote rational

functions in two variables and one variable, respectively. In what follows we always assume that F(x) ≡
∑
∞

k=0 fkx
k is a

formal power series. Then we shall use Mullin–Rota’s substitution rule to establish the following results.

Theorem 2.1. Suppose that for given power series F(x) there is an expression or a sum formula of the form∑
k≥0

fkxk = G(x, ex, eαx), (2.1)

where the parameter α 6= 0 is a real or complex number. Then the substitution x 7→ D yields a symbolic summation formula for
every f ∈ C∞ evaluated at t = 0, namely∑

k≥0

fkDkf (0) = G(D, E, Eα)f (0). (2.2)

Moreover, (2.2) implies (2.1) as a particular case with f (t) = ext .

Theorem 2.2. Suppose that for given power series F(x) there is an expression or a sum formula of the form∑
k≥0

fkxk = G(x, log(1+ αx), (1+ αx)β), (2.3)

where α and β are real parameters with αβ 6= 0. Then the substitution x 7→ 1
α
1 yields a symbolic summation formula of the

form

∑
k≥0

fk

(
1
α

)k
1kf (0) = G

(
1

α
,D, Eβ

)
f (0). (2.4)

Moreover, (2.4) implies (2.3) as a particular case with f (t) = (1+ αx)t .

Proof. Theorems 2.1 and 2.2 can be proved similarly. Since both D and 1 are delta operators, (2.2) and (2.4) as
symbolizations of (2.1) and (2.3), respectively, can be justified by a similar argument of Mullin–Rota’s substitution rule
(see [2] or [1]). More precisely, both (2.1) and (2.3) are identities in the variable x, and there is an isomorphism between the
ring of shift-invariant operators and the ring of formal power series in x. Hence, (2.2) and (2.4) are obtained accordingly. It
remains to show that the choices f (t) ≡ f (t; x) = ext and f (t) ≡ f (t; x) = (1 + αx)t will respectively lead (2.2) and (2.4)
to recover (2.1) and (2.3). For the particular choice f (t) = ext we see that the right-hand side (RHS) of (2.2) can be written
as follows:

RHS of (2.2) = G(D, eD, eαD)f (0)

=

∑
k≥0

fkDkf (0) =
∑
k≥0

fkDkext t=0

=

∑
k≥0

fkxk = G(x, ex, eαx).

Also, the left-hand side (LHS) of (2.2) with f (t) = ext gives
∑
k≥0 fkx

k. Hence, (2.1) is implied by (2.2).
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The implication (2.4)⇒ (2.3) with f (t) = (1 + αx)t can be verified in a similar manner, in which it suffices to observe
that the LHS of (2.4) with f (t) = (1+ αx)t gives

∑
k≥0 fkx

k, and that the RHS of (2.4) gives

G
(
1

α
, log(1+1), (1+1)β

)
f (0) =

∑
k≥0

fk

(
1

α

)k
f (0) =

∑
k≥0

fk

[(
1

α

)k
(1+ αx)t

]
t=0

=

∑
k≥0

fkxk = G
(
x, log(1+ αx), (1+ αx)β

)
,

which completes the proof. �

The following two examplesmay further illustrate the second halves of the theorems. First, using (2.2) with F(x) = eax =∑
k≥0(ax)

k/k! with x 7→ D yields the summation formula
∑
k≥0 a

kDkf (0)/k! = f (a), which implies eax =
∑
k≥0(ax)

k/k! as
a special case with f (t) = ext . Similarly, if (2.3) is given with F(x) = − log(1 − x) =

∑
k≥1 x

k/k!, then the corresponding
summation formula (2.4) with the mapping x 7→ (−1) is

∑
k≥1(−1)

k+11kf (0)/k = f ′(0), which implies
∑
k≥1 x

k/k! =
− log(1− x) as a special case with f (t) = (1− x)t .
The technique presented in the above theorems can be considered as extensions of (Mullin–Rota’s) substitution rule. For

brevity, formulas (2.2) and (2.4) may be simply called D-type formula and 1-type formula, respectively. These formulas
obviously provide generalizations of the sum formulas for single power series. As may be observed, substantially all the
operational formulas (O2)− (O12), as displayed in [1], together with the symbolic formulas expressing Dm (or1m) in terms
of1k’s (or Dk’s), are particular consequences of (2.2) and (2.4), respectively.
It may be noted that the operational formula given in Example 5.14 of [1] of the form

(O13) :
∞∑
k=0

km1m+1f (k) = (−1)m+1Am(E)f (0)

is incorrect, where Am(x) denotes themth degree Eulerian polynomial given by the expression

A0(x) = 1 and Am(x) =
m∑
k=1

A(m, k)xk (m ≥ 1),

with A(m, 0) = 0 and

A(m, k) =
k∑
j=0

(−1)j
(
m+ 1
j

)
(k− j)m (1 ≤ k ≤ m).

A(m, k) are known to be the Eulerian numbers (see Comtet [3, p. 243–5]). In fact, taking f (t) to be a polynomial of degree
≤ m with m ≥ 1, we see that the LHS of (O13) gives zero, while the RHS differs from zero. Actually (O13) is obtained from
the symbolization of Euler’s formula

∞∑
k=0

kmxk = αm(x) =
Am(x)

(1− x)m+1
(|x| < 1),

by the substitution x 7→ E, where E = 1+1 is not a delta operator inasmuch as Et = t + 1 is not a non-zero constant.
A valid symbolization should be made by the substitution x 7→ (−1), so that Euler’s formula yields a special 1- type

formula of the form

(O14) :
∑
k≥0

(−1)kkm1kf (m+ 1) = Am(−1)f (0) =
m∑
k=1

A(m, k)(−1)k1kf (0).

Taking f (t) = 1/(1+ t) into (O14), we find (see (5.17) of [1])

1
m+ 2

∞∑
k=0

km
(
m+ k+ 2
m+ 2

)−1
=

m∑
k=1

A(m, k)/(k+ 1) (m ≥ 1).

Curiously enough, this correct summation is also obtainable from the incorrect formula (O13). This might suggest that (O13)
could still be valid under certain restrictive conditions.
Onemay recover Euler’s formula from (O14) by substituting f (t) = (1−x)t . Indeed, for the function f (t), we have1kf (m+

1) = (1− x)m+1(−x)k and1kf (0) = (−x)k. Thus [Am(−1)(1− x)t ]t=0 =
∑m
k=1 A(m, k)(−1)

k1kf (0) =
∑m
k=1 A(m, k)x

k
=

Am(x), and (O14) becomes
∑
k≥0 k

m(1−x)m+1xk = Am(x), which is Euler’s formula
∑
k≥0 k

mxk = Am(x)/(1−x)m+1 for x 6= 1.
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3. Application of (2.2) and (2.4)

In addition to those generating functions already investigated in [1], let us now consider some other generating functions
or power series expansions with closed sums as follows (see Wilf [4]).

(i)
∑
k≥0

4kB2k
(2k)! x

2k
= x coth x, where B2k are Bernoulli numbers.

(ii)
∑
k≥0

φr (k)xk

k! = e
x∑r

k=0
1kφr (0)
k! xk, where φr(x) is an rth degree polynomial (see Jolley [5, p. 218]).

(iii)
∑
k≥0 Ckx

k
=

1
2x

(
1−
√
1− 4x

)
, where Ck = 1

k+1

(
2k
k

)
are Catalan numbers.

(iv)
∑
k≥1 Hkx

k
=

1
1−x log

1
1−x , where Hk are harmonic numbers defined by Hk =

∑k
j=1 1/j for k ≥ 1 with H0 = 0.

(v)
∑
k≥2

1
kHk−1x

k
=
1
2

(
log 1

1−x

)2
.

(vi)
∑
k≥0

(
2k+r
k

)
xk = 1

√
1−4x

(
1−
√
1−4x
2x

)r
(r ≥ 0).

(vii)
∑
k≥1 H(k, r)x

k
=

1
1−x

(
log 1

1−x

)r+1
, where H(k, r) are generalized harmonic numbers (see [6]) defined by H(k, r) =∑

1≤n0+n1+···+nr≤k
1/(n0n1 · · · nr) for k ≥ 1 and r ≥ 0 with H(0, r) = 0. It is obvious that H(k, 0) = Hk.

(viii)
∑
k≥0

r(2k+r−1)!
k!(k+r)! x

k
=

(
1−
√
1−4x
2x

)r
, which includes (iii) as a special case when r = 1.

Evidently, (i) and (ii) are of the form (2.1), and (iii)–(viii) of the form (2.3). Consequently, (i) and (ii) should lead to special
D-type formulas, and (iii)–(viii) to1-type formulas. Indeed, making use of (2.2) we easily find∑

k≥0

4kB2k
(2k)!

D2kf (0) = D
E + E−1

E − E−1
f (0).

Notice that (E − E−1)D2kf (0) = f (2k)(1)− f (2k)(−1). Thus we can obtain a symbolic summation formula of the form∑
k≥0

4kB2k
(2k)!
[f (2k)(1)− f (2k)(−1)] = f ′(1)+ f ′(−1). (3.1)

Similarly, utilizing formulas (2.2) and (2.4), onemay find that (ii)–(viii) yield seven special symbolic summation formulas
as follows:∑

k≥0

φr(k)
k!
f (k)(0) =

r∑
k=0

1kφr(0)
k!

f (k)(1) (3.2)

∑
k≥0

(
−1
4

)k
Ck1k+1f (0) = 2

[
f
(
1
2

)
− f (0)

]
(3.3)

∑
k≥1

(−1)kHk1kf (0) = −f ′(−1) (3.4)

∑
k≥2

(−1)k

k
Hk−11kf (0) =

1
2
f ′′(0) (3.5)

∑
k≥0

(−1)k

22k+r

(
2k+ r
k

)
1k+r f (0) = (E1/2 − 1)r f

(
−
1
2

)
, (3.6)

∑
k≥1

(−1)kH(k, r)1kf (0) = (−1)r+1f (r+1)(−1), (3.7)

∑
k≥0

(−1)kr(2k+ r − 1)!
4kk!(k+ r)!

1k+r f (0) = 2
r∑
j=0

(−1)r−j
(
r
j

)
f
(
j
2

)
, (3.8)

where the RHS of (3.6) may be written in the explicit form

(E1/2 − 1)r f
(
−
1
2

)
=

r∑
j=0

(−1)r−j
(
r
j

)
f
(
j− 1
2

)
. (3.9)

More precisely, (3.2)–(3.8) are obtained from (ii)–(vi) by the substitutions x 7→ D, x 7→
(
−
1
41
)
, x 7→ (−1), x 7→

(
−
1
41
)
,

x 7→ (−1), and x 7→
(
−
1
41
)
, respectively.
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4. Some convergence conditions

Here we provide a list of conditions for the absolute convergence of the series expansions in (3.1)–(3.8).

Formula Convergence condition

(3.1) limk→∞
∣∣f (2k)(±1)∣∣1/k < π2

(3.2) limk→∞
∣∣f (k)(0)/k!∣∣1/k < 1

(3.3) 1kf (0) = O
(
k
1
2−ε
)
(ε > 0)

(3.4) 1kf (0) = O
(
(1/k)1+ε

)
(ε > 0)

(3.5) 1kf (0) = O ((1/k)ε) (ε > 0)

(3.6) limk→∞
∣∣1kf (0)∣∣1/k < 1

(3.7) 1kf (0) = O
(
(1/k)1+ε

)
(ε > 0)

(3.8) 1kf (0) = O
(
k
1
2−ε
)
(ε > 0)

The convergence conditions shown above can be justified by the aid of Cauchy’s root test and the comparison test. Notice
that there is an estimate for Bernoulli numbers, namely (see Jordan [7, Section 82])∣∣∣∣ B2k(2k)!

∣∣∣∣ < 1
12(2π)2k−2

(k ≥ 0).

It follows that the upper limit

limk→∞

∣∣∣∣ B2k(2k)!

∣∣∣∣1/k ≤ 1
4π2

.

Actually, Euler’s famous formula for Bernoulli numbers, (−1)k+1B2k/(2k)! = 2ζ (2k)/(2π)2k, implies that the limit of
(B2k/(2k)!)1/k is equal to 1/(4π2), so the convergence condition for (3.1) implies that

limk→∞

∣∣∣∣4kB2k(2k)!
f (2k)(±1)

∣∣∣∣1/k < 1.
Hence the absolute convergence of the series in (3.1) follows from the root test.
Moreover, notice that limk→∞ |φr(k)|1/k = 1, and that

lim
k→∞

∣∣∣∣ 122k+r
(
2k+ r
k

)∣∣∣∣1/k = 1,
where the limit follows from an application of Stirling’s asymptotic formula n! ∼ (n/e)n

√
2πn as n → ∞. Thus the

convergence conditions for (3.2) and (3.6) also follow from the root test.
Evidently the convergence conditions for (3.3) and (3.4), (3.5) and (3.7), and (3.8) are justified by the following asymptotic

relations, respectively:

Ck =
1
k+ 1

(
2k
k

)
∼ 4k/(k

√
kπ),

H(k, r) ∼ log k (r = 0, 1, . . .),
r(2k+ r − 1)!
k!(k+ r)!

∼ 4kk−3/2,

as k→∞. Here, the second estimation for r ≥ 1 comes from [6, (3.2)].

5. Examples — Various identities and series sums

Certainly, each of the formulas (3.1)–(3.8)may be used to yield a variety of particular identities or series sums via suitable
choices of f (t). Here we will present a number of selective examples to illustrate the applications of (3.1)–(3.8).

Example 1. Let n be an odd positive integer, and take f (t) = tn, (n ≥ 1). Then we have

f ′(1) = f ′(−1) = n, f (2k)(±1) = ±n2k,
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where we use the following falling factorial notation, xr (sometimes also denoted (x)r ), i.e., xr = x(x − 1)r−1 (r ≥ 1) with
x0 = 1. Thus, using (3.1), we get

[n/2]∑
k=0

4kB2k
( n
2k

)
= n. (5.1)

Example 2. Let λ be a real number with λ 6= 0. Then a much more general identity of the form

m∑
k=0

42kB2k

(
λ+ 2k− 1

2k

)(
2λ+ 2m+ 2k
2m− 2k+ 1

)
= 2λ

(
2λ+ 2m+ 1

2m

)
(5.2)

can be obtained from (3.1) by taking f (t) = Cλn (t)with n = 2m+ 1, where C
λ
n (t) is the nth degree Gegenbauer polynomial

given by the generating function

(1− 2tx+ x2)−λ =
∞∑
k=0

Cλk (t)x
k (λ 6= 0). (5.3)

Indeed, a few simple properties of Cλn (t)may be deduced from (5.3), namely (seeMagnus–Oberhettinger–Soni [8, Section
5.3])

Cλn (1) =
(2λ)n̄

n!
, Cλn (−t) = (−1)

nCλn (t),
(
d
dt

)m
Cλn (t) = 2

mλm̄Cλ+mn−m (t),

where we have used the raising factorial notation xr̄ (sometimes also denoted (x)r or 〈x〉r ), i.e., xr̄ = x(x + 1)r−1 (r ≥ 1)
with x0̄ = 1.

Consequently, the fact that (3.1) implies (5.2) is confirmed by easy computations with the aid of the above-mentioned
properties.
For the particular choices λ = 1 and λ = 1/2, we see that (5.2) gives the following identities, respectively:

m∑
k=0

42kB2k

(
2m+ 2k+ 2
4k+ 1

)
= 2

(
2m+ 3
3

)
, (5.4)

m∑
k=0

B2k

(
4k
2k

)(
2m+ 2k+ 1

4k

)
=

(
2m+ 2
2

)
. (5.5)

Example 3. Recall that Stirling numbers of the first and second kindmay be defined by the following equations, respectively.

(−1)n−k
[
n
k

]
:=
1
k!

[
Dktn

]
t=0 ,

{
n
k

}
:=
1
k!

[
1ktn

]
t=0 . (5.6)

Here we have adapted the notations due to Knuth (see [4] and [9]), where
[
n
k

]
denotes the signless Stirling numbers of the

first kind, i.e., the number of permutations of n objects having k cycles. Now, taking φr(t) = t r , we have1kφr(0) = k!
{
r
k

}
,

and we see that (3.2) yields the formula∑
k≥0

kr

k!
f (k)(0) =

r∑
j=0

{
r
j

}
f (j)(1). (5.7)

This formula implies several interesting special identities.
(1) Taking f (t) = et , we get

1
e

∑
k≥0

kr

k!
=

r∑
j=0

{
r
j

}
= ω(r). (5.8)

This is the well-known formula of Dobinski for the Bell number ω(r).
(2) Choosing f (t) = 1+ t + · · · + tm (m ≥ 1), we find f (k)(0) = k! for k ≤ m, and f (k)(0) = 0 for k > m, and moreover,(

d
dt

)j
(1+ t + · · · + tm)

∣∣
t=1 = j!

[(
j
j

)
+

(
j+ 1
j

)
+ · · · +

(
m
j

)]
= j!

(
m+ 1
j+ 1

)
.
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Thus (5.7) gives

m∑
k=0

kr =
r∑
j=0

j!
(
m+ 1
j+ 1

){
r
j

}
. (5.9)

This is the classical formula for arithmetic progression of higher order.
(3) Taking f (t) =

∑
k≥0(tx)

k
= (1− tx)−1 with |tx| < 1, we find f (k)(0) = k!xk and f (k)(1) = k!xk(1− x)−k−1. Thus (5.7)

yields∑
k≥0

krxk =
r∑
j=0

j!
{
r
j

}
xj(1− x)−j−1 (|x| < 1). (5.10)

This is Euler’s formula for the arithmetic–geometric series.
(4) Take f (t) = tm so that f (k)(0) = (−1)m−kk!

[
m
k

]
. We have to compute f (k)(1). By (5.6), it is easily found that[

Dktm
]
t=1 =

[
Dk(t + 1)m

]
t=0

= (t + 1)t=0
[
Dktm−1

]
t=0 +

(
k
1

) [
Dk−1tm−1

]
t=0

= (−1)m−k−1k!
[
m− 1
k

]
+ (−1)m−kk(k− 1)!

[
m− 1
k− 1

]
= k!

(
(−1)m−k−1

[
m− 1
k

]
+ (−1)m−k

[
m− 1
k− 1

])
.

Thus (5.7) gives

m∑
k=1

(−1)m−kkr
[
m
k

]
=

r∑
j=1

j!
{
r
j

}(
(−1)m−j−1

[
m− 1
j

]
+ (−1)m−j

[
m− 1
j− 1

])
. (5.11)

This may be compared with the known identity

m∑
k=1

kr
(m
k

)
=

r∑
j=1

j!
{
r
j

}(
m
j

)
2m−j (5.12)

which is also obtained from (5.7) by taking f (t) = (1+ t)m.
(5) Choosing f (t) = tm̄ := t(t + 1) · · · (t +m− 1) (m ≥ 1 is arbitrarily fixed), we have

f (t) =
∑
k≥1

∣∣∣∣[mk
]∣∣∣∣ tk =∑

k≥1

m!
k!

(
m− 1
k− 1

)
tk.

Hence, f (k)(0) = k!
∣∣∣[mk ]∣∣∣, and from (4)

f (j)(1) =
∑
k≥1

m!
k!

(
m− 1
k− 1

) [
Djtk

]
t=1

=

∑
k≥1

j!
m!
k!

(
m− 1
k− 1

)(
(−1)k−j−1

[
k− 1
j

]
+ (−1)k−j

[
k− 1
j− 1

])
.

Therefore, (5.7) gives∑
k≥1

kr
∣∣∣∣[mk

]∣∣∣∣ = r∑
j=1

∑
k≥1

j!
m!
k!

(
m− 1
k− 1

){
r
j

}(
(−1)k−j−1

[
k− 1
j

]
+ (−1)k−j

[
k− 1
j− 1

])
.

(6) Take f (t) = t(t − an)n−1, the Abel polynomial with n ≥ 1, so that f (k)(0) = k(n− 1)k−1 (−an)n−k and

f (j)(1) = Dj
[
t(t − an)n−1

]
t=1

=
[
t(n− 1)j(t − an)n−j−1

]
t=1 +

[
j(n− 1)j−1(t − an)n−j

]
t=1

= (n− 1)j−1(1− an)n−j−1 [(n− j)+ j(1− an)]
= nj(1− aj)(1− an)n−j−1.
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Thus (5.7) yields∑
k≥1

kr

(k− 1)!
(n− 1)k−1 (−an)n−k =

r∑
j=0

nj(1− aj)
{
r
j

}
(1− an)n−j−1.

Example 4. Let α ∈ R. We have

1k
(
t + α
n

)
=

(
t + α
n− k

)
(n ≥ k ≥ 0).

Thus, taking f (t) =
( t+α
n

)
, we have1kf (0) =

(
α

n−k

)
. Consequently, (3.3) yields the identity

n−1∑
k=0

(−1)k

4k(k+ 1)

(
2k
k

)(
α

n− k− 1

)
= 2

[(
α + 1/2
n

)
−

(α
n

)]
. (5.13)

Example 5. For f (t) = tn (n ≥ 1) we have 1kf (0) = k!
{
n
k

}
, so that formulas (3.3)–(3.5) and (3.7) give four identities as

follows:

n−1∑
k=0

(−1)kk!
22k

(
2k
k

){
n
k+ 1

}
=

(
1
2

)n−1
, (5.14)

n∑
k=1

(−1)kk!Hk

{
n
k

}
= (−1)nn, (5.15)

n∑
k=2

(−1)k(k− 1)!Hk−1

{
n
k

}
=

{
1 if n = 2
0 if n > 2. (5.16)

n∑
k=1

(−1)kk!H(k, r)
{
n
k

}
= (−1)nnr+1 (r ≥ 1). (5.17)

Example 6. Taking f (t) =
(m+t
n

)
(m > n ≥ 1), we find

d
dt

(
m+ t
n

)
=
(m+ t)n

n!

(
1

m+ t
+

1
m− 1+ t

+ · · · +
1

m− n+ 1+ t

)
.

Consequently, we have

f ′(−1) =
(m− 1)n

n!

(
1

m− 1
+

1
m− 2

+ · · · +
1

m− n

)
=

(
m− 1
n

)
(Hm−1 − Hm−n−1) (H0 = 0).

Thus, using (3.4), we get

n∑
k=1

(−1)k−1Hk

(
m
n− k

)
=

(
m− 1
n

)
(Hm−1 − Hm−n−1) (H0 = 0). (5.18)

Example 7. Take f (t) = 1/(t +m)withm ≥ 2. We have

1kf (0) =
(−1)kk!(m− 1)!

(m+ k)!
=
(−1)k

m

(
m+ k
m

)−1
.

Consequently, formulas (3.4), (3.5), (3.7), and (3.3) can be used to obtain four convergent series sums as follows:

∑
k≥1

(
m+ k
m

)−1
Hk =

m
(m− 1)2

, (5.19)



1348 T.-X. He et al. / Computers and Mathematics with Applications 58 (2009) 1340–1348

∑
k≥1

(
m+ k+ 1
m

)−1 Hk
k+ 1

=
1
m2
, (5.20)

∑
k≥1

(
m+ k
m

)−1
H(k, r) =

m
(m− 1)r+2

(r ≥ 1) (5.21)

∑
k≥1

(
m+ k+ 1
m

)−1 Ck
4k
=

2
2m+ 1

. (5.22)

In particular, form = 2 we see that (5.20), (5.21), and (5.22) yield the sums∑
k≥1

Hk
(k+ 1)(k+ 2)(k+ 3)

=
1
8
, (5.23)

∑
k≥1

H(k, r)
(k+ 1)(k+ 2)

= 1 (r ≥ 0) (5.24)

∑
k≥1

(
2k
k

)
4k(k+ 1)(k+ 2)(k+ 3)

=
1
5
. (5.25)

Example 8. As may be observed, the case r = 0 of (3.6) gives the following pair of identities for f (t) = tn and f (t) =
(
α+t
n

)
(α ∈ R), respectively.

n∑
k=0

(−1)k
(2k)!
22kk!

{
n
k

}
=

(
−1
2

)n
, (5.26)

n∑
k=0

(
2k
k

)(
−1
4

)k (
α

n− k

)
=

(
α − 1

2

n

)
. (5.27)

In particular, (5.27) with α = n implies

n∑
k=0

(
2k
k

)(
−1
4

)k (n
k

)
=

(
n− 1

2

n

)
= 2−2n

(
2n
n

)
. (5.28)

This identity appears in Sofo [10, p. 22]. Surely, other identities of similar types may be obtained from (3.6) for smaller r ’s.
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