
LINEAR ALGEBRA
AND ITS

APPLICATIONS

ELSMER Linear Algebra and its Applications 27X (1998) 11 -36

Transformation techniques for Toeplitz and
Toeplitz-plus-Hankel matrices II. Algorithms

Georg Heinig ‘,**‘, Adam Bojanczyk b

Submitted by P. Van Dooren

Abstract

This paper is a continuation of [G. Heinig, A. Bojanczyk, Linear Algebra Appl. 254
(1997) 193-2261 where transformations mapping Toeplitz and Toeplitz-plus-Hankel
matrices into generalized Cauchy matrices were studied. In the present paper fast algo-
rithms for LU-factorization and inversion of generalized Cauchy matrices are discussed.
It is shown that the combination of transformation pivoting techniques leads to algo-
rithms for indefinite Toeplitz and Toeplitz-plus-Hankel matrices that are more stable
than the classical ones. Special attention is paid to the symmetric and hermitian
cases. 0 1998 Published by Elsevier Science Inc. All rights reserved.

K~~~ortl.~: Toeplitz matrix; Cauchy matrix: Fast algorithm

1. Introduction

It is well known that the classical fast algorithms for the solutions of linear
systems with a Toeplitz or Toeplitz-plus-Hankel coefficient matrix are unstable
if the matrix has ill-conditioned principal submatrices. The first idea to over-
come this difficulty was to apply look-ahead strategies similar to look-ahead
Lanczos methods (see, for example, [6,11]). One drawback of the look-ahead

* Corresponding author.

’ Supported by research project SM-100 of Kuwait University

0024-3795/98/$19.00 0 1998 Published by Elsevier Science Inc. All rights reserved
PrI:soo24-3795(97)loo43-X

12 G. Heinig, A. Bojunczyk I Lineur Algrbru and its Applications 278 (1998) II-36

methods are that they are not always fast. A simple example for such a situa-
tion is a matrix of the form

0 I
T=

[1 I 0 +E,
where I is the identity and E is a Toeplitz matrix with a small norm. Further-
more, a reliable step size estimator is rather expensive.

As an alternative, during the last years transformation based algorithms
have been proposed in [13,9,21] and other papers. These algorithms are always
fast and provide good numerical results if they are combined with pivoting. In
[16] and the present paper several transformation based algorithms are discus-
sed and compared. All algorithm are based on the transformation into gener-
alized Cauchy matrices. The paper [16] 2 is dedicated to the transformation,
whereas the present paper describes mainly the solution of the resulting systems
with a generalized Cauchy coefficient matrix. Note that there are other possi-
bilities for transformation. The transformation into Vandermonde-like matri-
ces (after extension) is discussed in [14,15].

To begin with let us recall the definition of a (generalized) Cauchy matrix.
Let c = (cl)1 and d = (d,); be fixed n-tuples of complex numbers and
A = [aij]l a given matrix. Then the Cauchy rank of A with respect to c and d
is, by definition, the rank r of the matrix

o,,&) = [(G - d,)aijl;.

If r is small compared with the order of the matrix A, then A will be called (gen-
eralized) Cuuchy matrix. Cauchy matrices in the classical sense are matrices
with (c, - d,)a, = 1 for all i and j and have, therefore, Cauchy rank one.

Cauchy matrices appear directly in many applications, for example in ratio-
nal interpolation (see [12,2]). The motivation for the present paper is, however,
the observation that they appear indirectly as the result of transformations of
the form A + ‘iIAV2 of Toeplitz and Toeplitz-plus-Hankel matrices and their
generalizations where G?, , +T2 are related to discrete Fourier or real trigonomet-
ric transformations. This was first observed in [12,131 for complex Fourier
transformations and in [9] and [21] for some real trigonometric transforma-
tions. In our paper [16] we presented an account of different transformations
transforming Toeplitz and Toeplitz-plus-Hankel matrices into Cauchy matri-
ces. All these transformations can be carried out in an efficient and stable way. ’

* We refer to this paper as Part I.
3 Actually the efficiency of the FFT depends on n. The common algorithms assume that n is a

product of small primes. In [14] an approach is presented with more freedom in the choice of the
length of the FFT.

G. Heinig, A. Bojunc:yk I Limwr Al&m cud its Apphtions 278 f 1998) I l-36 I?

One of the pleasant properties of Cauchy matrices is that permutations of
columns and rows preserve the Cauchy structure, which fails to be true for
Toeplitz and Toeplitz-plus-Hankel matrices. This property of Cauchy matrices
provides additional freedom in how matrix decomposition algorithms based on
Gaussian elimination can be applied. It turns out that instead of dealing with
Toeplitz and Toeplitz-plus-Hankel matrices. it is worthwhile, from the numer-
ical point of view, to deal with the corresponding Cauchy matrices. This is the
subject of this paper.

Fast inversion algorithms for Cauchy matrices were proposed for the first
time in [17]. The algorithms there are of Levinson type and are based on the
“bordering method”. In [7,8] algorithms of Schur type for matrices with “re-
cursive structure” were presented that also include fast algorithms for Cauchy
matrices. The Schur type algorithms are in particular convenient for parallel
processing. Concerning more references in this development we refer to the
survey paper [20]. In [12] both Levinson and Schur type (called type-l and
type-II, respectively) algorithms were derived from the interpolation interpr-
etation of Cauchy systems of equations. Based on the observation that the Ca-
uchy rank is inherited by Schur complementation it was observed in [l&19]
independently that Gaussian elimination can be carried out in an efficient
way considering only the generators, which are the vectors with the help of
which the matrix V,.,,,(A) is “generated”. This result is implicitly also contained
in [12] (compare Theorem 5.1 and Proposition 5.1). The corresponding Gauss
Schur algorithms was presented in [12.9]. The difference between the Algo-
rithm GKO in [9] and the type-II algorithm in [12] is that the type-II algorithm
in [12] computes the LU-factorization of the Cauchy matrix and its inverse in
parallel. while the Algorithm GKO in [9] computes only the LU-factorization
of the original matrix (by the same formulas as the type-11 algorithm) and uses
backward substitution for the solution of the corresponding systems of equa-
tions.

Gaussian elimination can be combined with partial pivoting which leads, as
numerical experiments show, in practice to fairly stable algorithms. However.
as it was observed in [23], if one applies the fast algorithm then it can happen,
at least theoretically, that there is a growth in the generators during the com-
putation. According to [22] in all examples in [23] the growth can be avoided by
a proper choice of the generators. Moreover, in [21] an orthogonalization tech-
nique for the generators combined with some approximately complete, fast piv-
oting is proposed, and it is shown that by applying this technique the growth
becomes moderate.

In the first part of this paper attention was paid to transformations preserv-
ing properties like realness and symmetry. Once the Cauchy matrix is real
and symmetric, the question is how to carry out pivoting while preserving

14 G. He&g, A. Bojancqk I Linear Algehru and its Applicarions 278 (199Sj II-36

the structure of the matrix. This question is one of the main topics of this
paper. 4

Let us sketch the contents of the paper. In Section 2 we consider algorithms
for general Cauchy matrices. First we present the Gauss-Schur type algorithm
LU-CA UCHY for the LU-factorization of a Cauchy matrix in the form how it
was designed in [9] and in other form derived in [12]. We also present a type-1
(Levinson-type) algorithm UL-INVCAUCHY for the UDL-factorization of
the inverse matrix with a pure matrix derivation (and correcting a mistake in

WI).
The magnitude of the residual error produced by the algorithm UL-INV-

CAUCHY indicates that the algorithm may not be backward stable. However,
the relative error in the solution vector x is of the same order of magnitude as
that produced by Algorithm LU-CAUCH Y and proportional to the condition
number of the matrix A. This situation is similar to that in the case of Levinson
and Schur methods applied to a linear system with positive definite Toeplitz co-
efficient matrix. For more discussion on stability of Levinson and Schur-type
algorithms we refer to [l].

In Section 3 we discuss first the specifics of symmetric and hermitian Cauchy
matrices and after that we adopt the Bunch-Kaufman-Parlett method for sym-
metric pivoting to the case of symmetric and hermitian Cauchy matrices. In
Section 4 we discuss the application of this to matrices appearing as the result
of transformations of Toeplitz and Toeplitz-plus-Hankel presented in [161. This
concerns all types of complex transformations discussed in [16] and the sine-1
transformation as an example of a real trigonometric transformation. The im-
plementation for the other real transformations would be similar, but it is
slightly more complicated.

The results of [21] suggest that the mixed sine-I/cosine-I transformation
should not be used for transformation since a substantial growth of the ele-
ments during the computation could be expected. A better mixed transforma-
tion is the combination of cosine-II and sine-IV which is the transformation
proposed in [21].

In Section 4 we present the results of numerical experiments. Experiments
were carried out for complex hermitian Toeplitz-plus-Hankel and for real sym-
metric Toeplitz systems of linear equations. The results are compared with
those obtained with the fast look-ahead solver of Ghan/Hansen [6]. The com-
parison indicates that the transformation based algorithms provide more accu-
rate results in the case of several subsequent ill-conditioned principal
submatrices.

’ After the the first draft of the paper was completed we learned that Kailath and Olshevsky
developed independently similar ideas in connection with symmetric pivoting for Cauchy matrices
(see [IS]).

G. Heinig, A. Bojanc:yyk I Linear Algebra and its Applicatiom 278 (1998) 1 I-36

2. Fast factorization algorithms for general Cauchy matrices

15

In this section we consider general Cauchy matrices C = [u;,]:. If the Cauchy
rank of C with respect to c = (c,); and d = (d,); equals r then there exist vec-
tors z, and y, E C=’ satisfying

((.i - dj)a,, = ~~l;j (2.1)

The relation (2.1) can be written as a displacement (Sylvester) equation

D(c)C - CD(d) = ZYT> (2.2)

where Z = col(zT); and Y = col(yT);, D(c) = diag(c,);, D(d) = diag(d,)l. Fol-
lowing [20] we call the matrices Y and Z generators of C.

We restrict ourselves to the following two cases:
Cusr A: c, # di for all i and j.
Cusr B: c, = d, for all i and the Ci are pairwise different.
This covers all cases appearing in part I. Clearly, in the case A the generators

define C uniquely; in the case B the generators define C only for the off-diag-
onal entries.

It is obvious that the inverse of a Cauchy matrix is a Cauchy matrix again
and has the same Cauchy rank. In fact, (2.2) implies

D(d)C? - C%(c) = -XWT.

where X and W are the solutions of the “fundamental” equations CX = Z and
WTC = YT. In case A the solutions X and W define the matrix C’ completely. In
case B one has still to find the diagonal of C’ . This can be done by solving also the
equation Cu = 1 with 1 = [l 1 llT. Then the diagonal of C-’ is given by

diagC_’ = u _

()

C ‘TN7
,i

,+ cl - ci /=I

A basic observation which leads to the construction of fast inversion and
factorization algorithms is that the Cauchy structure is inherited under Schur
complementation. To show this one has to apply the “magic wand” Schur
complement formula for a partitioned matrix

A=

with nonsingular Al, which reads as follows

(2.3)

16 G. Heinig, A. Bojmcyk I Linear Algehru and its .4ppliccrtions 278 (1998J II-36

where A$ denotes the Schur complement A$ = Al2 - Az1A;,‘A12. If A,, is 1 x 1
then (2.3) just illustrates one step of Gaussian elimination. Repeating these
steps one gets an LU-factorization of the matrix A. A block LU-factorization
of A is obtained in an analogous way by choosing pivots A,, as square subma-
trices of size k 3 2.

Lemma 1 (cf. (10,191). Let

c=
Cl1 Cl2

[I c21 c22

he a partitioned Cauchy matrix corresponding to (c, d), c = (cl, cz), d = (d, , d2)
is the partition of the tuples c and d according to that of C, and let the generators
of C be given bJ)

z= [y. Y = [;I.
Then the Schur complement Ct is Cauchy matrix corresponding to (cl, d2) with
generators

z(‘) = z, - c&z, > Y[‘jT = Y; - I;Tc,‘c,2.

This lemma leads to the following algorithm of LU-factorization of strongly
nonsingular Cauchy matrices which, for the case A, is a part of the type-II al-
gorithm described in [12] and coincides, also for case A, with the GKO-algo-
rithm in [9].

Algorithm LU-CAUCHY

1. Initialization. . Z(O) = Z = [$)I. Y(O)=Y= [$I.

In case B: d(O) = diagC.

2.Fork=O ,..., n-l,
(a) Compute &), I@) = (ly’)lP”, u@) = ($))yek by

(Jk) - =I (k)TYlk)
Cl+k - d+k

(case A), & = d,(T) (case B)

z(k) = L =ik’TYik’ (n-1 = i =:k)TYlk)
I dk) c,+k - d,+n- ’ UI dk) Cl+k - d,+k .

(b) Compute

(k+ I)T
z(k+l) = ‘1

[I Z(k+‘)
= Z(k) _ zVdZ(k)T

2 I :

2

G. HcJinig. A. Bojanqyk I Linear Algebru and its Applictrtum 278 , 1998) II-36 17

(k+l)T
ytktll _ Yl -

[1 Y(k+l)
= yK _ ,(oyW

2 1

2

(c) In case B compute &+” = (d:‘+“)yP”-’ by,

d’k-1) = d,‘:‘I _ a(k)ljk)u<“‘, / I

The vectors Pi;) and u@) form the nonzero sections of rows and columns of
the lower and the upper triangular factors of C, respectively.

If one wants to solve a Cauchy linear system then one can use this factoriza-
tion algorithm followed by backward substitution. Another possibility consists
in the recursive computation of the solution of the equations CX = Z and
WTC = YT and the application of the formula for the inverse matrix. This leads
to the type-1 algorithm described in [121 which computes C’. This way can be
preferable if one has to solve several equation with one and the same matrix
and different right-hand sides. Multiplication by C ’ can be carried out with
0 (n log’n) operations in general and 0 (nlog n) for Cauchy matrices obtained
from Toeplitz-plus-Hankel matrices after transformation.

The algorithm LU-CAUCHY can be combined with usual partial pivoting.
Thus the condition concerning the strong nonsingularity of C is not essential.

Let us show how to get a factorization for the inverse matrix A-‘. This leads
to a Levinson-type algorithm for computing the generators of C’ which is
similar to that presented in [17] and coincides with that in [12] for the case A. ’

The Levinson-type recursions are based on the“bordering” formula for the
inverse matrix

(2.4)

where

U = A;;A,2> L = AllA;;, R = (AT,)-’

We apply this formula to Cauchy matrices C = [a;,]4 satisfying (2.1). Let C,
(k = l(. . , rz) be the principal submatrices which are assumed to be nonsingu-
lar. Furthermore we represent Ck+r as

C
ck qk

k+l =
[I. PZ s

’ Let us note that the corresponding recursion formula in [12] is not correct in case some of the
d,s coincide.

18 G. Heinig, A. Bojanczyk I Linear Algebra and its Applications 278 (1998) 11-36

The upper and lower factors of the UDL-factorization of C’ are obtained
from the solutions of the equations

CkUk = qk, &k = PT. (2.5)

In order to find a fast algorithm for the factorization of C-’ we have to describe
the recursion for the vectors qk and pk and for the generators & and wk of C;' ,
i.e. for the solutions of the equations Ck&. = zk and wkTCk = Yz, and in the
case B also for the diagonals of CL’.

We introduce the notations

z, = col(,#, r, = colt&):,

Dk(c) = diag(ci):, Dk(d) = diag(u”)f.

Furthermore, let {e;} stand for the standard basis in ck

Lemma 2. (1) The solutions uk = (ukj): of the equations (2.5) can be computed
from the generators &, wk via

{

(dj - dk+l)-‘$&bk+l - q%k): d, # dk+l,

ukj = (2.6)

where

$xkwkT(Dk(c) - dk+‘b-‘qk: dj = dk+l

qk = @k(C) - dk+lh-‘ZkYk+‘. (2.7)

Analogous equalities hold for the solution lk.
(2) The generators xk+’ for C&’ can be computedfrom the generators of Ck via

(2.8)
where

p,’ =zT+’ yk(ck+lIk -D,(d))-‘, xk = ak+l.k+l -PkTldk. (2.9)

An analogous equality holds for the generator wk+’ .
(3) The diagonal of Ck;l, can be computedfrom the diagonal of C;’ via

diagC;i, = diagC;’ - ai’ diag(ukilki);=,, oli’ .
>

Proof. From the displacement equality

(2.10)

D,(d)C,-’ - C,-‘&(C) = -&w;

we conclude that

@k(d) - dk+‘lk)C;‘(Dk(C) - dk+dk)-‘zkJ’k+l

= (c,-’ - &&T(&(C) - dk+‘h-‘)zkyk+l = xkdyk+l - q’qk).

G. Hchig. A. Bojmcryk I Lineur Algrhru md its .4pplic,trtions 278 (19981 1 l-36 I ‘I

Taking (2.7) into account we obtain

(&Cd) -A+1)& =&(Yk,l - W,7qd. (2.11)

In case when d, # dk rJ this leads to the first equality in Lemma 2. In case when
d, = dk _, we obtain

0 = +A ‘qk - e;X@(&(c) - dL .,I~)-‘yi.

This leads to the second equality in Lemma 2.
The recursion in (2) can be checked immediately and the recursion in (3)

follows from (2.4). 0

This lemma leads to the following algorithm for the factorization of Cm’ for
a strongly nonsingular Cauchy matrix C = [a,,];.

Algorithm UL-INVCAUCHY
1. Initialization: X, = &Zi, Wi = k Ui, in the case B: diag C, ’ = k.
2. Fork= l,...,n- 1,

(a) Compute qk by (2.7) and pk by (2.9).
(b) Compute uh by (2.6) and analogously Ik.
(c) Compute CQ by (2.9) and ,J&+, by (2.8), and analogously K., ,.
(d) In case B compute diagC,?, by (2.10).

Now the vectors [-uf llT form the nonzero sections of columns of the up-
per triangular factor and the vectors [-lk l] the lower triangular factor of the
UDL-factorization of C-‘. The numbers uI, correspond to the diagonal factor.
In order to get the inverse matrix one has only to store the generators X = X,,
and W = @! and, in case B, also the diagonal diag C;‘. This leads also to a Le-
vinson-type algorithm for solving Cauchy systems. From the numerical view
point it may be less accurate when the nodes are close to each other (part of
the reason for this is the formula presence of the division by (d, - d,,,) in
the formula (2.6). Furthermore, pivoting is more expensive and the algorithm
is not very suitable for parallelization due to inner product calculations. But
the Levinson-type algorithm is important because it provides a simple updating
formula for the inverse matrix or for the solution of systems of equations.

3. Symmetric pivoting

In this section we describe certain features of fast Cauchy solvers that can be
exploited to lower the number of operations when the matrices under consid-
eration are symmetric or hermitian. This will lead us to symmetric (or hermit-
ian) fast Cauchy solvers. We next describe how these symmetric solvers can be
applied to the special Cauchy matrices obtained from Toeplitz and Toeplitz-
plus-Hankel matrices. We start with some general observations.

20 G. Heinig, A. Bojanczyk I Linear Algebra and its Applications 278 (1998) 11-36

3.1. Dependent generators

If the generators Z and Y of the Cauchy matrix depend via a relation

Y =ZK or Y” =Z*K, (3.12)

where K is an r x r matrix, then it is sufficient to compute in the algorithm LU-
CAUCHY only one of the generators. This follows immediately from the fact
that the relation (3.12) is inherited by Schur complementation. This also ap-
plies to the algorithm UL-INVCAUCHY. The following is easily checked.

Proposition 3. (1) If ci = di (i = 1, . . . , r) and C is symmetric then r is even and
theJirst relation of (3.12) holds for certain Z and

K= [-k, Iz2].
(2) If c, = -2, (i = 1,. . . , r) and C is hermitian then the second relation oj

(3.12) holds for certain Z and

K=

The first assertion follows from the fact that in this case O,,d(C) is skew sym-
metric. Using symmetric Gaussian elimination, it can be easily shown that a
skew-symmetric matrix S has even rank and admits the representation
S = ZKZT, where K has the form as in Proposition 3, case (1). The second as-
sertion follows from the fact that in this case O,,(C) is hermitian.

For some Cauchy matrices obtained as the result of transformations of
Toeplitz-plus-Hankel matrices the generators of the Stein displacement are
connected rather then those of the Sylvester displacement. 6 That means we
have a relation

C - D(c)CD(d) = ZKZT or C - D(c)CD(d) = ZKZ* (3.13)

for a certain r x r matrix K and a iz x Y matrix Z. Matrices satisfying a relation
(3.13) are sometimes called (generalized) Pick matrices. Clearly, they are also
(generalized) Cauchy matrices.

If C satisfies (3.13) then it is not immediately clear how the relation between
the generators are inherited in the Schur complement. Our suggestion is to
transform the Stein displacement equation (3.13) into a Sylvester displacement

6 The Stein displacement is often called discrete time and the Sylvester displacement continuous
time Lyapunov displacement (cf. [18]).

G. Heinig A. Bojunczyk I Linear Algebra and its Applicminn.s 278 (19981 11-36 ‘1

equation using linear fractional transformations of the nodes c, and d,. The fol-
lowing is easily checked.

Proposition 4. Let 4 he a linear ,fi-actional tran.~~)mzation.

$0) = W - PI/W + BL and let ci = 4(x;), dj = $(y,). Then the Steirl
displacement equation C - D(c)CD(d) = R is equiz~alent to the S~.lre.rtcr
displucenwrzt equation

D(x)C + CD(y) = $D(rx + fll)RD(xy + /?l‘).

3.2. Bunch~K~ufmmn~Purlett pivoting algorithm

Now we discuss the problem of pivoting for the symmetric and hermitian
cases. In the symmetric (or hermitian) case by working with one generator only
we hope to decrease the number of arithmetic operation required in the unsym-
metric case. However, if proper care is not taken, pivoting will destroy the sym-
metry. In order to keep the symmetry throughout the computation partial
pivoting can be replaced by diagonal pivoting. However, simple diagonal piv-
oting, in general, does not bound the rate of growth in the data. The rate of
growth can be bounded if some sort of block diagonal pivoting is used. Several
block diagonal pivoting techniques were discussed in the literature for comput-
ing factor of (indefinite) symmetric matrices (see [3~-51). The most widely used is
the technique presented in [5]. We will refer to this technique as Bunch Kuufl
man-Parlett pivoting algorithm, or the BKP algorithm for short. This algo-
rithm uses block diagonal pivoting with blocks of order 1 or 2. In what
follows we will outline the BKP algorithm for factorization of a general indef-
inite symmetric matrix, and next we will show how it can be incorporated into
fast symmetric Cauchy solvers.

For a given symmetric matrix A, the BKP-algorithm computes a permuta-
tion P, a unit lower triangular matrix A4 and a block diagonal matrix D with
block of order 1 or 2 such that

PTAP = MDMT. (3.14)

The permutation matrix P depends on a parameter 0 < x < 1 which controls
the rate of growth of pivots. The rate is minimized for CY = (1 + 0)/S.

The factorization proceeds in stages. In stage k + 1 (k = 0. , n - 1) one
operates on the matrix A@), with A(O) = A. Given A’“), a symmetric permutation
of rows and columns is applied to Acki so a satisfactory diagonal pivot block of
order 1 or 2 can be determined. If P”! is such a permutation, and

(3.15)

22 G. H&zig, A. Bojanczyk I Linear Algebra and its Applications 278 (1998) 11-36

with Dck) and G symmetric, then the pivot block is Dck), and A@+‘) is computed
as the Schur complement of Dck), i.e.

A@+‘) = G _ E(D(k))-‘ET.

The significant elements of the new columns of A4 are computed as E(D(“))-‘.
The whole process is iterated until all columns of M are determined.

The most important aspect of the method is a procedure for finding the per-
mutation matrix pck) and determining the order of the pivot block DIk). In [5]
this is done in two steps. First, one checks whether a suitable diagonal permu-
tation that would bound pivot element growth exists. If such a pivot cannot be
found satisfactory a 2 x 2 pivot is calculated instead.

A single iteration, that is the transitions from A(“) to Ack+‘) is summarized in
Algorithm BKP. There, in order to simplify notation, superscripts were
dropped. Also, following [5], Zij is used to denote a permutation which inter-
changes row i with row j.

Algorithm BKP
Let A = Ack) = [aii] be the current (n - k) x (n - k) matrix. One iteration of

the algorithms computes a permutation P, pivot block D of orders (s = 1 or 2)
s columns of the lower triangular factor M, and the Schur complement ,4(k+‘)
corresponding to D.

1. Initialization: Set cI = (1 + &7)/8.
2. (a) Search for a 1 x 1 diagonal pivot, i.e. set s = 1,

(al) compute /1 = \a,~ / = max2~i~n-kluii 1,
(a2) if (at 11 3 ai the element cl 1 is a good pivot element, set P = I and

go to (c),
(a3) compute 0 = max+&;t 1,
(a4) if Iat 1 (r~ 3 cd2 the element at 1 is still a good pivot element, set

P = I and go to (c),
(a5) if lam,,] 3 ao the element a,,,,,, is a good pivot element, set P = 11~

and go to (c).
(b) There is not any satisfactory 1 x 1 diagonal pivot, set s = 2 and

P = Izm.
(c) Compute

(cl) set PAPT =
D ET

[1 E G
, where D is s x s,

(~2) compute the Schur complement A@+‘) of D,
(~3) compute the significant elements of the new columns in M as

ED-‘.

The algorithm easily extends to the case of a hermitian A. A repeated appli-
cation of Algorithm BKP will produce the desired decomposition (3.14).

G. Heinig. A. Bojuncyk I Linear Algebra and its Applications 278 i 1998) I I -36 73

The decomposition can be used to solve a linear system of equations Ax = h.
Given the symmetric decomposition FCPT = MDMT this can be accomplished in
MS,.(n) = r? multiplications and AS,(n) = 12~ additions for a real A. For a complex
matrix most operations has to be performed in complex arithmetic. A complex
multiplication is equivalent to four real multiplications and two real additions.
A complex addition is equivalent to two real additions. Thus in the complex case.
given the symmetric (or hermitian) decomposition of A, the cost of solving the lin-
ear system Ax = h is MS, (H) = 4n’ multiplications and AS, (n) = 4n’ additions.

3.3. S_vmmetric pivoting on generators

Recall that the possibility to speed up the factorization procedure for gener-
alized Cauchy matrices from O(n3) to O(n’) complexity is based on the fact
that it is sufficient to carry out all operations on the generators. Concerning
pivoting the following obvious observation is in order.

If C is a Cauchy matrix with generators 2 and Y and P is a permutation ma-
trix then c = PCPT has the generators E and PY and the nodes of ? are the
corresponding permutations of the original nodes.

The above observation when combined with Algorithm LU-Cauchy and Al-
gorithm BKP leads to Algorithm BKP-Cauchy which is described below.

Let A,:, denote a matrix composed of rows i through j of the matrix A. Sim-
ilarly, if J c { 1~ 2, . , n} then A,, will denote a matrix composed of all rows of
A which indices are taken from J (in the increasing order).

Algorithm BKP-Cauchy
Let C be an n x n Cauchy matrix defined by the generators Y and Z = YK,

the nodes (c. d) where c, # c, for i # j, and the diagonal diag(C) if c = d. The
algorithms computes the permutation P, the pivot block D of order .s
(s = 1 or 2) s columns of the lower triangular factor M, and the generators
Y and Z, such that Z = PK.

1. Initialization: Set a = (1 + fl)/8, and s = 1.
2. (a) Look for a 1 x 1 diagonal pivot,

(al) compute the off diagonal entries of the first column of C.
C’t = (air); = (diag (CZ n) - dlZ)-’ YT,K~I, and set i, = Ian,, / =
max2~k~nlal,

(a2) if Ia, 11 3 cd set P = I, D = all, E = Cl, and go to (c),
(a3) compute the off diagonal entries of the mth column of C.

C,=(~~,)~=(diag(c,,)-d,l)-‘Y~Ky,,,whereJ={l.....m-l.
m+ 1. . , n}, and set r = maxj+jui,,I,

(a4) if jutt Irr 3 ajb2 set P = I, D = all. E == Cl, and go to (c),
(a5) if (umm(3 ~0 set P = II,, D = u,,,,,~. E = C,,, and go to (c)

24 G. Heinig, A. Bojanczyk / Linear Algebra and its Applications 278 (1998) II-36

(b) Set s = 2,
(bl) P = 12m,

(b2)D= [;A; I:], andE=[C’,,C,].

(c) Compute other relevant quantities
(~2) permute Y, E, b, c, d and diag(C) according to P,
(~3) compute the generator Y = Ys+irn - _!k’Yi:,, where _8 equals E

with its first s rows dropped,
(~4) compute entries in rows s + 1 through n in the first s columns of

the lower triangular factor M as ED-‘,
(~5) compute diag(?) = diag(C) - diag(ED-‘ET).

A repeated application of Algorithm BKP-Cauchy will produce the desired
decomposition (3.14). The cost of the algorithm will depend on the order n x Y
of generators, and on how often the step (a3) followed by (c) are executed. If
(a3) is always performed and is always followed by (c), then, for a real matrix,
it is maximal and is 1 n2y multiplications and i n2r additions. On the other hand
if (a2) is always followed by (b) or (c) then the cost is only n2r multiplications
and n2r additions. The cost of Algorithm BKP for a complex matrix is roughly
four times that for a real matrix.

Estimates of the cost (measured by the number of real multiplications) of
computing the solution of a symmetric n x n linear system
generators of C are given in Table 1.

Cx = b given the

3.4. Computation of generators based on DFT

In this section we provide some more detailed description of generators for
Cauchy matrices appearing in Section 2, [161 as the result of transformed Toep-
litz matrices.

For a complex number 5, let 9(r) denote the matrix

$ [d-‘];

where ci are the nth roots of 4 (in certain unspecified order). We set .9(1) = p.
9 is the matrix of the DFT and 9”(t) = Fdiag(1, cl,. . , c;-‘).

Table 1
Cost of solving Cn = b

Matrix RHS Cost (real multiplications)

C b Max Min

Complex
Real
Real

Complex
Complex
Real

4($ II% + rl?)
2 n’r + 2n’
tn’r + n2

4(n% + n2)
n2r + 2n’
n2v + n2

G. Heinig, A. Bojanczyk I Linear Algebra and its Applications 278 11998) 11-36 25

The matrix-vector multiplication S(<)a can be accomplished via FFT in
Snlog n and 2Snlog n real arithmetic operations for a complex and real vector
a, respectively (assuming that n = 2’ for some positive integer t). These kind of
matrix-vector multiplications compute generators of the Cauchy matrices con-
sidered in Section 2, part I. As only a small number of operations of the type
.S(jr)u are performed in transforming Toeplitz into Cauchy matrices, we will
not include the cost of these matrix-vector operations in the overall estimation
of the amount of solving the resulting Cauchy linear systems.

Let T = [aim,] and H = [s,,] be n x n Toeplitz and Hankel matrices, respec-
tively. We will now list generators corresponding to the transformations con-
sidered in Sections 2.1-2.4, part I.

(a) HT f f tHC ~ Hermitian Toeplitz to complex hermitian Cauchy: Suppose
that a-k = & and c, = d, = wj = exp(2ni,j/n) (i = J-1) According to Theo-
rem 4, Part I,

is a hermitian Cauchy matrix. More important for our purposes is the fact that
the matrix C = ni/2diag(w)C is a symmetric Cauchy matrix with c = d. The
quantities defining C can be derived from the vectors

T
a’ = L a0

-.Ul,...,U,-1 :
2 1

a” = [nao, (n - l)a,, .a,-l]‘. 13.16)

The generator Y and the diagonal of C are given by

diag(C) = tdiag(w)f. (3.17j

(3.18)

where

e = Im8a’ and f = Re4a”

Finally,Z=IXwithK=

(3.19)

Since C is symmetric and c = d Algorithm BKP-Cauchy can be readily ap-
plied to C.

(b) HTf f t SC - Hermjtian Toeplitz to real symmetric Cauchy: Let CO,
e, f, dtag(C), Y, K and C be as in (a). The fractional transformation

i+Oj
c, = __ 1

[- Wj

(3.20)

maps the complex node vector w into a real node vector c = (c,). The matrix

26 G. Heinig, A. Bojanczyk / Linear Algebra and its Applications 278 (1998) II-36

C = diag(c, + i)Cdiag(cj - i)

is a real symmetric Cauchy matrix. The relevant quantities defining C are the
same as in the case (a) except for the nodes and the diagonal elements, which
are now c and d = c, and diag(C) = diag(cj + 1)f.

(c) STf f t SC - Symmetric Toeplitz to symmetric Cauchy: Let 5 = i and
p = (p,); with pj = exp((4j + l)ni/2n). Then, according to Theorem 7, Part I,

C = ,F(i)T9(i)T

is a symmetric Cauchy matrix. The fractional transformation (3.20) transforms
p into a real vector c. Now, the matrix

C = Adiag(1 - c,)C diag(l - cj)

is a symmetric Cauchy matrix with the entries

ei + ej
cij = __

Cl + Cj
,

where

e = 9(i)a’ + F(-i)a’ (3.21)

and a’ is defined by (3.16). Thus the matrix C is defined by the nodes c and
d = -c, and the generators Y and Z = YK where

0 1
and K =

[1 1 0.

Algorithm BKP-Cauchy can be now applied to C. The cost of solving TX = b is
analogous to that in (a) for a complex T, and that in (b) for a real T.

Remark 5. Note from (3.21) that if T is real then e is also real. Thus we have an
alternative (to that one in (b)) transformation that takes a real symmetric
Toeplitz matrix into a real symmetric Cauchy matrix. We will refer to this
transformation in the section on numerical experiments as RT f f t SC.

(d) HTpHf f tHC - Hermitian Toeplitz-plus-Hankel to hermitian Cauchy:
We now consider the case when the Toeplitz-plus-Hankel A = T + H matrix
is hermitian. As remarked in Section 3, Part I, if 5 = -v] = i then

c = 9+$4R(~)T

is hermitian. The transformation from A to C is based on the vectors

G. Hrinig, A. Bojuncryk I Lineur A&bra and if.y Applicutions 278 i 1998) II- 36 21

T
t cd = [

T

5 t1.. .) &_I , t;,, =
2: 1 [

+- l)t,. . ..(t,_,
I

,

L

T

t TOM’ = $I- I,..., f&l : t&\\= 1 [.;.,n- T

1)t .I..... t-,,, 1
to transform T, and on the vectors

h
S,,+l

1

T s,, I 1
TOW = T’S”. . >S?,,_? . hco, = =,s,,_? ._... s0

2
,

to transform H. These vectors are transformed via .8(t) or R(v). The trans-
formed vectors are combined according to Theorem 9. Part I to give y1 x 4 gen-
erators Z and Y of C. The generators satisfy Z = Ix for

K=

The hermitian version of Algorithm BKP-Cauchy can then be applied

3.5. Computation of’ generators based on trigonometric trunsfbrmations

As was pointed out in Section 3, the trigonometric transformations have the
advantage over the DFT that they are real and hence allow to stay in reals
when applied to real data. There are numerous fast algorithms for applying
trigonometric transformations, see [24-261. However, as they are all of order
O(n log n) for vectors of length n, a simple implementation based on the com-
plex FFT can be used (in all cases when n is large) as it will only effect lower
terms in the cost of solving the resulting Cauchy linear system.

The sine-1 transformation in Theorem 9, part I is straightforward to imple-
ment and was used in numerical tests. For a Toeplitz-plus-Hankel matrix A this
transformation operates on vectors

tcoi =
[
to T T
- \ fl) .

2 . . 1 n-l t 1 , t ImH == [$I_,% t_,,_, 1
tCOI-~Ow = [to,t1 + t-1,. . > t,,.-I + t-,+l]T.

tLl- row = [nto. (n - l)(tr + t-r). .&-I + r-,+I)]
T

to transform T, and on the vectors

h,,, = s,. . , sznp2jT,
I-

h,,, = y. s,,-2. . ..sg
I

.

Scol-row = [h-l > s,-2 + s,: . . S(I + S?, _2]T.
LroM. =[ns,-~,(n-l)(~~~2+~,,),.....~~~+~~~ 2 I'

28 G. Heinig, A. Bojanczyk I Linear Algebra and its Applications 278 (1998) II-36

to transform H. The transformed vectors are combined according to Theorem
9, Part I to give n x 4 generators 2 and Y of C. The generators satisfy 2 = Ix for

I 0 -1 0 0

I 0 0 0
K= I . 0 0 0 -1

0 0 1 0

The hermitian version of Algorithm BKP-Cauchy can then be applied. We will
refer to this transformation as HTpHsineHC.

As stated in Theorem 9, Part I, for a real symmetric Toeplitz matrix, the
transformed matrix is a 2 x 2 block diagonal with blocks that are symmetric
and each having Cauchy rank 2. The symmetric version of Algorithm BKP-Ca-
uchy can be applied to each of the two blocks. This leads to a potential saving
of 50% in the cost of solving a real symmetric Toeplitz system of linear equa-
tions. We will refer to this transformation as STsineSC.

4. Numerical experiments

Numerical tests for all transformation based algorithms were conducted on
a Macintosh PowerBook 180 computer using MATLAB 4.1. The relative
machine precision was eps = 2.2e - 16.

In the tests we generated indefinite Toeplitz or Toeplitz-plus-Hankel matri-
ces as follows. A matrix 2 was first generated randomly. Next 2 was modified
to obtain another matrix A according to the formula

A = A - (IL + epsa)l,,

where J. was an eigenvalue of A, eps the machine relative precision, and
0 < a < 1. Such modification does not change the underlying structure of the
original Toeplitz or Toeplitz-plus-Hankel matrix. By varying CI we could influ-
ence the magnitude of the condition number of A. We also varied the dimen-
sion n of A.

The right-hand side vector b in the linear system Ax = b was chosen in such a
way so the true solution x was a vector of ones. This was because such a vector
does not reflect potential ill-conditioning of the matrix and hence may expose
numerical deficiencies of the solvers.

In the tests we measured the residual error resx in the computed solution X
as follows

ItA? - bll
reSx = ItAll . 1141 + Ilbll ’

We also measured the relative error res C in the symmetric (or hermitian) de-
composition of C as

G. Heinig, A. Bojanczyk I Linear Algebra and its Applications 27X (1998) 11-36 29

and the relative error resA in the decomposition of .4 as

resA = IIA - EJffLTGII
II4 ’

where F and G were the transformations that related the matrix A with the ma-
trix C. The ratio of resA and res C measures the degradation of accuracy caused
by the transformation from A to C and back to A. For the algorithm LU-CA-
UCHY, res C and resA are defined in an analogous way. For the algorithm
UL-INVCAUCHY, resC and resA would have to be computed for C’, hence
only resx was recorded.

4.1. Hermitian Toeplitz-plus-Hankel

Solving systems of equations with a complex hermitian Toeplitz-plus-Hank-
el coefficient matrix we compared the following algorithms.

ALG 1.1. Use HTpHf f tHC to transform the matrix into a hermitian Cauchy
matrix. Then apply algorithm LU-CAUCHY in combination with algorithm
BKP-Cauchy for pivoting.

ALG 1.2. Instead of HTpHf f tHC use the real transformation HTpHs ineHC.
(The advantage is that the resulting Cauchy matrix is real if the original matrix
is real). Then apply LU-CAUCHY in combination with BKP-Cauchy as in
ALG 1.1.

ALG 1.3. Apply the transformation HTpHf f tHC and algorithm LU-CA-
UCHY but instead of BKP-Cauchy pivoting as in ALG 1.1, use the standard
partial pivoting.

ALG 1.4. Use HTpHf f tHC. Instead of algorithm LU-CAUCHY apply algo-
rithm UL-INVCAUCHY combined with BKP-Cauchy pivoting.

ALG 1.3 was included in order to check whether symmetric pivoting may
cause less accurate results than standard partial pivoting. ALG 1.4 was includ-
ed in order to check whether the algorithm UL-INVCAUCHY may produce
less accurate results than LU-CAUCHY. Representative results are given in
Table 2.

The table suggests that accuracy of the symmetric pivoting on the Cauchy
matrix C is comparable to that of unsymmetric pivoting. The accuracy of
the decomposition of A is slightly lower than that of C. This is caused by the
transformation of A into C, and possibly could be improved by a more careful
implementation of FFT-like transformations. The residual error of the solution
is comparable to that one of the decomposition of A.

30 G. Heinig, A. Bojanczyk I Linear Algebra and its Applications 278 (1998) II-36

Table 2
Complex Hermitian Toeplitz-plus-Hankel A

Size Cond ALG 1.1 ALG 1.2 ALG 1.3 ALG 1.4

80 3.8526 x lo4 res x
res A
res C

1.6275 x 10’ res x
res A
res C

2.6182 x lOI resx
res A
res C

120 2.9335 x 10’ resx
res A
res C

2.9691 x IO6 res x
res A
res C

2.0951 x lOIs res x
res A
res C

150 3.6807 x lo3 res x
res A
res C

3.5337 x lo6 ress
res A
res C

2.8970 x 1O’5 res x
res A
res T

3.1655 x lo-l5
6.9822 x lO-‘j
5.3745 X lo-‘6
2.7303 x 10-15
6.9938 x lo-”
4.7229 x IO-l6
3.2986 x 1O-‘5
3.9141 x 10-16
7.8609 x IO-l6

7.3268 x IO-”
1.8614 x lo-“’
2.0574 x lo-l5
6.9222 x lO_”
1.8270 x lo-l4
1.4279 x lo-l5
5.5690 x IO-l5
1.7484 x 10-14
2.0453 x IO-l5

1.1590 x lo-l4
2.8423 x 10-l”
1.0333 x 10-14
1.0409 x lo-l4
2.6824 x lo-l4
8.5036 x lo-l4
8.1843 x lo-‘5
2.6317 x lo-l4
2.9684 x lo-l5

9.3151 x lo-‘4
5.0378 x lO-‘5
5.0378 x 10-15
1.1814 x lo-”
1.3900 x IO-l4
1.3900 x lo-l4
1.2818 x lo-l3
9.2986 x lo-l4
1.6000 x lo-l4

2.8937 x IO-l3
5.5601 x IO-”
4.0819 x lo-l4
2.9267 x IO-”
5.4112 x lo-l3
4.0414 x lo-l4
3.2705 x lo-”
5.1699 x lo-‘)
3.9838 x lo-‘4

2.4397 x 10-l’
5.5647 x lo-l3
3.8046 x IO-l5
2.3590 x IO-l3
3.5981 x lOm’1
4.7821 x lo-l5
2.0285 x IO-”
3.6961 x lo-”
3.9237 x IO-l5

9.5612 x lO-‘5 5.5622 x lo-l4
7.1205 x lo-l4
6.4230 x lOm’5
1.0432 x lo-l4 2.3952 x 1Om’3
8.3806 x IO-l4
1.4163 x lo-l4
7.8452 x lo-l5 3.3623 x lo-l3
7.1720 x lo-l4
7.0866 x lo-l5

5.1263 x lOI 3.1281 x lo-l3
1.6654 x lOI
1.2077 x lOI
5.1182 x 10-l” 3.8811 x lo-l3
1.7444 x 10-13
1.4117 x IO-l4
5.4942 x IO-l4 4.8662 x lo-l3
1.7495 x lo-”
1.4298 x IO-l4

2.8876 x lo-l4 2.1523 x lo-‘)
3.0573 x 10-13
2.8126 x IO-l4
2.2918 x lo-l4 5.7461 x lo-”
2.6781 x IO-l3
1.4756 x lo-l4
1.4991 x IO-14 6.1183 x IO-l3
2.4262 x IO-l3
3.0188 x 10-14

Table 3
Cost of solving Ax = b

Multiplications

Max Min

ALG 1.1 28n2 20nZ
ALG 1.2 28n2 20n2
ALG 1.3 36n2 36n2
ALG 1.4 52n2 52n2

G. Heir@, A. Bojanczyk I Linrar Algebra (2nd its Applicutions 278 (19%) 1 l-36 31

The cost of the three methods (excluding the cost of the transformations) can
be derived from Table 1 with r = 4. These costs (measured by the number of
real multiplications) are summarized in Table 3.

4.2. Real symmetric Toeplitz

Solving systems of equations with a real symmetric Toeplitz coefficient
matrix we compared the following algorithms.

ALG 2.1. Use RTf f t SC 7 to transform the matrix into a real symmetric
Cauchy matrix. Then apply algorithm LU-CAUCHY in combination with
algorithm BKP-Cauchy for pivoting.

ALG 2.2. Use HTfftSC for the transformation into a real symmetric
Cauchy matrix. Then proceed as in ALG 2.1. Apply BKP-Cauchy as in
ALG 1.1.

ALG 2.3. Apply the transformation HTf f tHC to transform the matrix into a
complex hermitian matrix. Then proceed as in ALG 2.1.

ALG 2.4. Apply the transformation of the nonsymmetric standard choice in
Section 2.1 of Part I. (This is the type-11 algorithm proposed in [121 where a
general Toeplitz matrix is transformed into a complex matrix with the Cauchy
rank 2). Then proceed as in ALG 2.1.

ALG 2.5. Use RTsineSC to transform the matrix into a direct sum of two
real symmetric Cauchy matrices of about half the size. Then proceed as in
ALG 2.1 for the two matrices.

ALG 2.6. A look-ahead Levinson algorithm dsytep s for solving symmetric
(possibly not positive definite) Toeplitz systems of linear equations from [6].

The algorithms ALG 2.1-2.5 are all based on the transformation approach
described earlier in this paper. Algorithm ALG 2.6 on the other hand repre-
sents another approach known as a look-ahead technique developed in [6] for
stabilizing the Levinson method when some intermediate submatrices of a sym-
metric Toeplitz matrix are ill-conditioned, see also [l l] and references therein.
In the look-ahead approach the user selects the length k of the look-ahead step.
Ideally this length should equal the maximal number of consecutive ill-condi-
tioned leading submatrices. The extent of the look-ahead step determines the
cost of the method. For the extreme cases k = 0 and k = II - 1 the look-ahead
method becomes the classical Levinson method and the classical Gaussian
elimination with partial pivoting, respectively.

It is not difficult to construct well-conditioned symmetric Toeplitz matrices
with a prescribed number 1 of consecutive ill-conditioned leading submatrices.
An obvious example is a matrix of the form

7 See Section 3.4.
’ This FORTRAN code was run on am IBM RS6000 workstation

Ta
bl

e
4

R
ea

l
Sy

m
m

et
ric

To

ep
lit

z
T

Si
ze

C

on
d

Q

2
A

LG

2.
1

A
LG

2.

2
A

LG

2.
3

A
LG

2.

4
A

LG

2.
5

A
LG

2.

6
3:

$Z

’

80

2.
1

x
10

’

2.
4

x
lo

*

8.
2

x
lO

I

12
0

6.
6

x
10

2

2.
2

x
10

’

1.
1

x
10

’4

re
s

x
5.

4
x

1o
-‘5

2.

8
x

lo
-l6

2.

2
x

lo
-‘

6
9.

3
x

1o
m

5
1.

7
x

IO
-1

4
er

r
x

1.
1

x
10

-1
4

5.
6

x
1o

m
’6

4.

5
x

lo
-‘

6
1.

8
x

lo
-l4

3.

5
x

lo
-‘

4
re

s
C

5.

5
x

lo
-‘

6
1.

1
x

10
-1

6
2.

2
x

10
-1

6
2.

1
x

lo
-‘

5
2.

2
x

10
-I

’
re

s
T

1.
2

x
IO

-l4

4.
3

x
10

-1
5

1.
4

x
10

-1
5

1.
7

x
lo

-l4

3.
9

x
10

-1
4

re
s

x
1.

5
x

10
-e

1.

5
x

lo
-‘

6
1.

6
x

lo
-l6

2.

0
x

10
-1

6
1.

9
x

lo
-‘

5
er

r
x

1.
8

x
10

-l
8.

4
x

1O
-9

3.

5
x

10
-9

1.

4
x

10
-X

8.

5
x

10
m

8
re

s
C

1.

4
x

1o
m

9
3.

5
x

10
-1

6
6.

7
x

lo
-l6

1.

2
x

lo
-l4

1.

0
x

10
-I

’
re

s
T

8.
1

x
lo

-’

4.
1

x
lo

-‘
5

1.
3

x
lo

-‘
5

1.
4

x
lo

-l4

3.
3

x
10

-1
4

re
s

x
2.

2
x

10
-X

1.

8
x

lo
-l6

1.

4
x

lo
-‘

6
2.

8
x

lo
-l6

2.

0
x

lo
-‘

5
er

r
x

1.
2

x
10

0
1.

5
x

10
-2

1.

4
x

10
-Z

3.

2
x

1O
-2

7.

0
x

10
-2

re

s
C

7.

0
x

10
-y

3.

6
x

lo
-l6

6.

5
x

lo
-l6

1.

3
x

lo
-l4

8.

8
x

lo
-‘

*
re

s
T

9.
7

x
10

-X

4.
0

x
10

m
’5

1.

3
x

lo
-‘

5
1.

7
x

10
-1

4
3.

4
x

10
-1

4
re

s
n

2.
2

x
10

-l
1.

8
x

1O
-‘5

7.

3
x

10
-1

5
2.

3
x

lo
-‘

”
4.

2
x

lo
-l4

er

r
x

2.
1

x
lo

-‘
0

8.
8

x
lo

-‘
4

9.
3

x
10

-1
4

8.
0

x
lo

-l3

1.
2

x
lo

-‘
3

re
s

C

8.
5

x
10

-l’

4.
8

x
IO

-l6

2.
8

x
lo

-l4

4.
4

x
10

-1
5

1.
0

x
IO

-”

re
s

T
2.

2
x

lo
m

’o

6.
4

x
lo

-l4

3.
2

x
lo

-l4

3.
5

x
10

-1
3

1.
2

x
10

-1
3

re
s

x
1.

8
x

lo
-”

2.

2
x

10
-1

5
2.

4
x

1O
-‘5

3.

2
x

IO
-l3

6.

5
x

lo
-l4

er

r
x

4.
0

x
10

-5

4.
1

x
10

-g

4.
1

x
10

-9

4.
8

x
1O

-9

1.
6

x
1O

-9

re
s

C

1.
2

x
10

-7

2.
7

x
lo

-l6

4.
1

x
10

-1
5

1.
9

x
lo

-l4

1.
5

x
10

-I
’

re
s

T
5.

1
x

10
-g

3.

3
x

lo
-l4

3.

0
x

10
-1

4
6.

5
x

lo
-l3

1.

7
x

10
-Q

re

s
x

9.
4

x
10

-X

2.
1

x
10

-1
5

2.
3

x
lo

-l5

3.
2

x
lo

-l3

6.
4

x
lo

-l4

er
r

x
3.

8
x

lo
-*

5.

5
x

10
-3

6.

0
x

lo
-)

2.

0
x

10
-Z

1.

7
x

10
-j

re
s

C

1.
9

x
1o

-4

3.
3

x
10

-1
6

4.
0

x
lo

-‘
5

9.
6

x
lo

-l5

2.
1

x
10

m
’”

re

s
T

1.
0

x
10

5
3.

3
x

10
-1

4
3.

0
x

10
-1

4
6.

5
x

10
-1

3
1.

7
x

lo
-‘

3

1.
5

x
lo

-?

a

3.
1

x
10

-Z

B

8.
 !Z

2 k
6.

21

x
lo

-‘
*

??

.
2.

22

x
1o

-6

!F

3 4 b
3.

7
x

lo
m

lo

s
1.

0
x

10
0

%

2 4 F&

5.
9

x
lo

-”

1.
8

x
10

m
”

s %
 2 B

2.

8.
1

x
lo

-”

8
2.

6
x

1O
-8

kl

2 L-

2.
5

x
10

-l’

s 2
1.

7
x

lo
-’

? G

07

G. Heir@. ‘4. Bojanczyk I Linear Algebra and its Applications 278 (1998) 11-36 3i

34 G. Heinig, A. Bojanczyk I Linear Algebra and its Applications 278 (1998) 11-36

(4.1)

or its small perturbations, for which 1 = n/2. Now, if the maximal length k of
the look-ahead step is smaller than 1 the look-ahead Levinson algorithm will
either break down or produce inaccurate results. On the other hand, in appli-
cations where it is unlikely to encounter many consecutive ill-conditioned lead-
ing submatrices the computed solution will often have sufficient accuracy. This
was confirmed in our numerical experiments where we tested the behavior of
the algorithms on matrices with only few consecutive ill-conditioned submatri-
ces.

Results of numerical tests are given in Table 4. The table suggests that accu-
racy of the symmetric pivoting on the Cauchy matrix C in all but one case is
comparable to that of unsymmetric pivoting. The single exception is the meth-
od ALG 2.1 which often looses about half of the number of accurate digits.
This loss of accuracy is most probably connected with the linear fractional
function which maps a unit circle onto a unit interval. However, the related
method ALG 2.2 produces an accurate decomposition of C. Reasons for loss
of accuracy in ALG 2.1 will have to be investigated further.

The accuracy of the decomposition of T as measured by res T is slightly low-
er than that of the decomposition of C. This is caused by the transformation of
T into C, and possibly could be improved by a more careful implementation of
FFT-like transformations. The residual error resx in the solution vector is
comparable to that in the decomposition of T. The relative error errx in the
solution is proportional to the condition number of T.

On the examples presented, transformation based algorithms ALG 2.2-2.5
compare favorably with the look-ahead algorithm ALG 2.6. In the examples
included in Table 4, the matrices had several ill-conditioned intermediate sub-
matrices. For that reason the length of the look-ahead step was chosen to be
16. With this choice of the look-ahead step, the algorithm produced the relative
error errx comparable to that produced by the transformation methods, in

Table 5
Cost of solving TX = b

Real multiplications

Max Min

ALG 2.1 5n? 4nz
ALG 2.1 5d 4n?
ALG 2.3 1 6n2 12nZ
ALG 2.4 20n* 20n2
ALG 2.5 2n” ;n’
ALG 2.6 $3 2nZ

G. Heinig. A. Bojanczyk I Linrur Algehrtr and its Applicutions 278 f 1998) I1 36 35

most of the cases. The exception was the case represented by the first row in the
table when the matrix was a slightly perturbed version of the matrix in (4.1).
While the transformation based methods produced accurate solutions, the
length of the look-ahead step was too small for ALG 2.6 to find a well condi-
tioned leading submatrix to stabilize the Levinson recursion.

The cost of the five transformation methods (excluding the cost of the trans-
formations) can be derived from Table 1 where I- = 2 and are summarized in
Table 5. Note that except for ALG 2.5 all other transformations transform a
real right hand side vector to a complex vector. Thus ALG 2.5 is the least costly
among all five transformation algorithms discussed in this paper.

References

[I] A.W. Bojanczyk, R.P. Brent, F.R. de Hoog. D.R. Sweet, On the stability of the Bareiss and
related Toeplitz factorization algorithms, SIAM J. Matrix Anal. Appl. I (1995) 40-57.

[2] T. Boros, A. Sayed, T. Kailath. Structured matrices and unconstrained rational interpolation
problems, Linear Algebra Appl. (to appear).

[3] J.R. Bunch, Analysis of the diagonal pivoting method. SIAM .I. Numer. Anal. 8 (1971) 656
680.

[4] J.K. Bunch. L. Kaufman, Some stable methods for calculating inertia and solving symmetric
linear systems, Math. Comp. 31 (1977) 162 -179.

[S] J. Bunch. L. Kaufman, B. Parlett, Decomposition of a symmetric matrix, Numerische
Mathematik 27 (1976) 95-109.

[6] T. Chan, P. Hansen, A look-ahead Levinson algorithm for indefinite Toeplitz systems. SIAM
J. Matrix Analysis Appl. 13 (2) (1992) 1079-1090.

[7] I. Gohberg. I. KoItracht, P. Lancaster, Efficient solution of linear systems of equations wlith
recursive structure, Linear Algebra Appl. 80 (1986) 8 Ill 13.

[S] I. Gohberg. T. Kailath, 1. Koltracht, P. Lancaster, Linear complexity parallel algorithms for
linear systems of equations with recursive structure. Linear Algebra Appl. 88/Y9 (1987) 271
316.

[9] 1. Gohberg, T. Kailath, V. Olshevsky, Fast Gaussian elimination with partial pivoting l’ot
matrices with displacement structure, Math. Comp. 64 (1995) 1557 1576.

[IO] I. Gohberg. V. Olshevsky, Fast state space algorithms for matrix Nehari and Nehari-Takagi
interpolation problems, Integral Equations and Operator Theory 20 (1) (1994) 44483.

[I I] M. Gutknecht, Stable row recurrences for the PadC table and generically superfast look-ahead
solvers for non-Hermitian Toeplitz systems, Linear Algebra Appl. 188/l 89 (1993) 35 I 422.

[I21 G. Heinig. Inversion of generalized Cauchy matrices and other classes of structured matrices.
in: A. Bojanczyk, G. Cybenko (Eds.), The IMA Volumes in Mathematics and Its Applications,
vol. 69. Springer, Berlin, 1992. pp. 63-82.

[13] G. Heinig, Inversion of Toeplitz-like matrices via generalized Cauchy matrices and rational
interpolation, Systems and Network: Mathematical Theory and Applications. Akademie
Verlag, Berlin, vol. 2, 1994, pp. 707-711.

[14] G. Heinig, Transformation approaches for fast and stable solution of Toeplitz systems and
polynomial equations, Proceedings of the workshop on Recent Advances in Applied
Mathematics, Kuwait University, 1996, pp. 2233238.

[I51 G. Heinig. Solving Toeplitz systems after extension and transformation. Calcolo 33 (1996)
115~129.

36 G. Heinig, A. Bojanczyk I Linear Algebra and its Applications 278 (1998) II-36

[16] G. Heinig, A. Bojanczyk, Transformation techniques for Toeplitz and Toeplitz-plus-Hankel
matrices, I: Transformations, Linear Algebra Appl. 254 (1997) 1933226.

[17] G. Heinig, K. Rost, Algebraic Methods for Toeplitz-Like Matrices and Operators, Birkhauser
Verlag, Basel, 1984.

[18] T. Kailath, V. Olshevsky, Diagonal pivoting for partially reconstructable Cauchy-like
matrices, with applications to Toeplitz-like linear equations and to boundary rational matrix
interpolation problems, Linear Algebra Appl. 254 (1997) 251-302.

[19] T. Kailath, A. Sayed, Fast algorithms for generalized displacement structures, in: H. Kimura,
S. Kodama (Eds.), Recent Advances in Mathematical Theory of Systems, Control, Network,
and Signal Processing II, Proceedings of the MTNS-91, Mita Press, Japan, 1992, pp. 27-32.

[20] T. Kailath, A. Sayed, Displacement structure: Theory and applications, SIAM Review 37 (3)
(1995) 297-386.

[21] Ming Gu, Stable and efficient algorithms for structured systems of linear equations, SIAM J.
Matrix Analysis (submitted)

1221 V. Olshevsky (personal communication).
[23] D. Sweet, R. Brent, Error analysis of a fast partial pivoting method for structured matrices, in:

T. Luk (Ed.), Advanced Signal Processing Algorithms, Proceedings of SPIE, vol. 2363, 1995,
pp. 266-280.

[24] M. Tasche, Fast algorithms for discrete Chebyshev-Vandermonde transforms and applica-
tions, Numerical Algorithms 5 (1993) 453464.

[25] C. Van Loan, Computational Framework for the Fast Fourier Transform, SIAM, Philadel-
phia, 1992.

[26] M. Vetterli, H.J. Nussbaumer, Simple FFT and DCT algorithms with reduced number of
operations, Signal Processing 6 (1984) 267-278.

