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Abstract 

This paper is a continuation of [G. Heinig, A. Bojanczyk, Linear Algebra Appl. 254 
(1997) 193-2261 where transformations mapping Toeplitz and Toeplitz-plus-Hankel 
matrices into generalized Cauchy matrices were studied. In the present paper fast algo- 
rithms for LU-factorization and inversion of generalized Cauchy matrices are discussed. 
It is shown that the combination of transformation pivoting techniques leads to algo- 
rithms for indefinite Toeplitz and Toeplitz-plus-Hankel matrices that are more stable 
than the classical ones. Special attention is paid to the symmetric and hermitian 
cases. 0 1998 Published by Elsevier Science Inc. All rights reserved. 

K~~~ortl.~: Toeplitz matrix; Cauchy matrix: Fast algorithm 

1. Introduction 

It is well known that the classical fast algorithms for the solutions of linear 
systems with a Toeplitz or Toeplitz-plus-Hankel coefficient matrix are unstable 
if the matrix has ill-conditioned principal submatrices. The first idea to over- 
come this difficulty was to apply look-ahead strategies similar to look-ahead 
Lanczos methods (see, for example, [6,11]). One drawback of the look-ahead 
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methods are that they are not always fast. A simple example for such a situa- 
tion is a matrix of the form 

0 I 
T= 

[ 1 I 0 +E, 
where I is the identity and E is a Toeplitz matrix with a small norm. Further- 
more, a reliable step size estimator is rather expensive. 

As an alternative, during the last years transformation based algorithms 
have been proposed in [13,9,21] and other papers. These algorithms are always 
fast and provide good numerical results if they are combined with pivoting. In 
[16] and the present paper several transformation based algorithms are discus- 
sed and compared. All algorithm are based on the transformation into gener- 
alized Cauchy matrices. The paper [16] 2 is dedicated to the transformation, 
whereas the present paper describes mainly the solution of the resulting systems 
with a generalized Cauchy coefficient matrix. Note that there are other possi- 
bilities for transformation. The transformation into Vandermonde-like matri- 
ces (after extension) is discussed in [14,15]. 

To begin with let us recall the definition of a (generalized) Cauchy matrix. 
Let c = (cl)1 and d = (d,); be fixed n-tuples of complex numbers and 
A = [aij]l a given matrix. Then the Cauchy rank of A with respect to c and d 
is, by definition, the rank r of the matrix 

o,,&) = [(G - d,)aijl;. 

If r is small compared with the order of the matrix A, then A will be called (gen- 
eralized) Cuuchy matrix. Cauchy matrices in the classical sense are matrices 
with (c, - d,)a, = 1 for all i and j and have, therefore, Cauchy rank one. 

Cauchy matrices appear directly in many applications, for example in ratio- 
nal interpolation (see [12,2]). The motivation for the present paper is, however, 
the observation that they appear indirectly as the result of transformations of 
the form A + ‘iIAV2 of Toeplitz and Toeplitz-plus-Hankel matrices and their 
generalizations where G?, , +T2 are related to discrete Fourier or real trigonomet- 
ric transformations. This was first observed in [ 12,131 for complex Fourier 
transformations and in [9] and [21] for some real trigonometric transforma- 
tions. In our paper [16] we presented an account of different transformations 
transforming Toeplitz and Toeplitz-plus-Hankel matrices into Cauchy matri- 
ces. All these transformations can be carried out in an efficient and stable way. ’ 

* We refer to this paper as Part I. 
3 Actually the efficiency of the FFT depends on n. The common algorithms assume that n is a 

product of small primes. In [14] an approach is presented with more freedom in the choice of the 
length of the FFT. 
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One of the pleasant properties of Cauchy matrices is that permutations of 
columns and rows preserve the Cauchy structure, which fails to be true for 
Toeplitz and Toeplitz-plus-Hankel matrices. This property of Cauchy matrices 
provides additional freedom in how matrix decomposition algorithms based on 
Gaussian elimination can be applied. It turns out that instead of dealing with 
Toeplitz and Toeplitz-plus-Hankel matrices. it is worthwhile, from the numer- 
ical point of view, to deal with the corresponding Cauchy matrices. This is the 
subject of this paper. 

Fast inversion algorithms for Cauchy matrices were proposed for the first 
time in [17]. The algorithms there are of Levinson type and are based on the 
“bordering method”. In [7,8] algorithms of Schur type for matrices with “re- 
cursive structure” were presented that also include fast algorithms for Cauchy 
matrices. The Schur type algorithms are in particular convenient for parallel 
processing. Concerning more references in this development we refer to the 
survey paper [20]. In [12] both Levinson and Schur type (called type-l and 
type-II, respectively) algorithms were derived from the interpolation interpr- 
etation of Cauchy systems of equations. Based on the observation that the Ca- 
uchy rank is inherited by Schur complementation it was observed in [l&19] 
independently that Gaussian elimination can be carried out in an efficient 
way considering only the generators, which are the vectors with the help of 
which the matrix V,.,,,(A) is “generated”. This result is implicitly also contained 
in [12] (compare Theorem 5.1 and Proposition 5.1). The corresponding Gauss 
Schur algorithms was presented in [12.9]. The difference between the Algo- 
rithm GKO in [9] and the type-II algorithm in [12] is that the type-II algorithm 
in [12] computes the LU-factorization of the Cauchy matrix and its inverse in 
parallel. while the Algorithm GKO in [9] computes only the LU-factorization 
of the original matrix (by the same formulas as the type-11 algorithm) and uses 
backward substitution for the solution of the corresponding systems of equa- 
tions. 

Gaussian elimination can be combined with partial pivoting which leads, as 
numerical experiments show, in practice to fairly stable algorithms. However. 
as it was observed in [23], if one applies the fast algorithm then it can happen, 
at least theoretically, that there is a growth in the generators during the com- 
putation. According to [22] in all examples in [23] the growth can be avoided by 
a proper choice of the generators. Moreover, in [21] an orthogonalization tech- 
nique for the generators combined with some approximately complete, fast piv- 
oting is proposed, and it is shown that by applying this technique the growth 
becomes moderate. 

In the first part of this paper attention was paid to transformations preserv- 
ing properties like realness and symmetry. Once the Cauchy matrix is real 
and symmetric, the question is how to carry out pivoting while preserving 
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the structure of the matrix. This question is one of the main topics of this 
paper. 4 

Let us sketch the contents of the paper. In Section 2 we consider algorithms 
for general Cauchy matrices. First we present the Gauss-Schur type algorithm 
LU-CA UCHY for the LU-factorization of a Cauchy matrix in the form how it 
was designed in [9] and in other form derived in [12]. We also present a type-1 
(Levinson-type) algorithm UL-INVCAUCHY for the UDL-factorization of 
the inverse matrix with a pure matrix derivation (and correcting a mistake in 

WI). 
The magnitude of the residual error produced by the algorithm UL-INV- 

CAUCHY indicates that the algorithm may not be backward stable. However, 
the relative error in the solution vector x is of the same order of magnitude as 
that produced by Algorithm LU-CAUCH Y and proportional to the condition 
number of the matrix A. This situation is similar to that in the case of Levinson 
and Schur methods applied to a linear system with positive definite Toeplitz co- 
efficient matrix. For more discussion on stability of Levinson and Schur-type 
algorithms we refer to [l]. 

In Section 3 we discuss first the specifics of symmetric and hermitian Cauchy 
matrices and after that we adopt the Bunch-Kaufman-Parlett method for sym- 
metric pivoting to the case of symmetric and hermitian Cauchy matrices. In 
Section 4 we discuss the application of this to matrices appearing as the result 
of transformations of Toeplitz and Toeplitz-plus-Hankel presented in [ 161. This 
concerns all types of complex transformations discussed in [16] and the sine-1 
transformation as an example of a real trigonometric transformation. The im- 
plementation for the other real transformations would be similar, but it is 
slightly more complicated. 

The results of [21] suggest that the mixed sine-I/cosine-I transformation 
should not be used for transformation since a substantial growth of the ele- 
ments during the computation could be expected. A better mixed transforma- 
tion is the combination of cosine-II and sine-IV which is the transformation 
proposed in [21]. 

In Section 4 we present the results of numerical experiments. Experiments 
were carried out for complex hermitian Toeplitz-plus-Hankel and for real sym- 
metric Toeplitz systems of linear equations. The results are compared with 
those obtained with the fast look-ahead solver of Ghan/Hansen [6]. The com- 
parison indicates that the transformation based algorithms provide more accu- 
rate results in the case of several subsequent ill-conditioned principal 
submatrices. 

’ After the the first draft of the paper was completed we learned that Kailath and Olshevsky 
developed independently similar ideas in connection with symmetric pivoting for Cauchy matrices 
(see [IS]). 
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2. Fast factorization algorithms for general Cauchy matrices 

15 

In this section we consider general Cauchy matrices C = [u;,]:. If the Cauchy 
rank of C with respect to c = (c,); and d = (d,); equals r then there exist vec- 
tors z, and y, E C=’ satisfying 

((.i - dj)a,, = ~~l;j (2.1) 

The relation (2.1) can be written as a displacement (Sylvester) equation 

D(c)C - CD(d) = ZYT> (2.2) 

where Z = col(zT); and Y = col(yT);, D(c) = diag(c,);, D(d) = diag(d,)l. Fol- 
lowing [20] we call the matrices Y and Z generators of C. 

We restrict ourselves to the following two cases: 
Cusr A: c, # di for all i and j. 
Cusr B: c, = d, for all i and the Ci are pairwise different. 
This covers all cases appearing in part I. Clearly, in the case A the generators 

define C uniquely; in the case B the generators define C only for the off-diag- 
onal entries. 

It is obvious that the inverse of a Cauchy matrix is a Cauchy matrix again 
and has the same Cauchy rank. In fact, (2.2) implies 

D(d)C? - C%(c) = -XWT. 

where X and W are the solutions of the “fundamental” equations CX = Z and 
WTC = YT. In case A the solutions X and W define the matrix C’ completely. In 
case B one has still to find the diagonal of C’ . This can be done by solving also the 
equation Cu = 1 with 1 = [l 1 llT. Then the diagonal of C-’ is given by 

diagC_’ = u _ 

( ) 

C ‘TN7 
,i 

,+ cl - ci /=I 

A basic observation which leads to the construction of fast inversion and 
factorization algorithms is that the Cauchy structure is inherited under Schur 
complementation. To show this one has to apply the “magic wand” Schur 
complement formula for a partitioned matrix 

A= 

with nonsingular Al, which reads as follows 

(2.3) 
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where A$ denotes the Schur complement A$ = Al2 - Az1A;,‘A12. If A,, is 1 x 1 
then (2.3) just illustrates one step of Gaussian elimination. Repeating these 
steps one gets an LU-factorization of the matrix A. A block LU-factorization 
of A is obtained in an analogous way by choosing pivots A,, as square subma- 
trices of size k 3 2. 

Lemma 1 (cf. (10,191). Let 

c= 
Cl1 Cl2 

[ I c21 c22 

he a partitioned Cauchy matrix corresponding to (c, d), c = (cl, cz), d = (d, , d2) 
is the partition of the tuples c and d according to that of C, and let the generators 
of C be given bJ) 

z= [y. Y = [ ;I. 
Then the Schur complement Ct is Cauchy matrix corresponding to (cl, d2) with 
generators 

z(‘) = z, - c&z, > Y[‘jT = Y; - I;Tc,‘c,2. 

This lemma leads to the following algorithm of LU-factorization of strongly 
nonsingular Cauchy matrices which, for the case A, is a part of the type-II al- 
gorithm described in [12] and coincides, also for case A, with the GKO-algo- 
rithm in [9]. 

Algorithm LU-CAUCHY 

1. Initialization. . Z(O) = Z = [$)I. Y(O)=Y= [$I. 

In case B: d(O) = diagC. 

2.Fork=O ,..., n-l, 
(a) Compute &), I@) = (ly’)lP”, u@) = ($))yek by 

(Jk) - =I (k)TYlk) 
Cl+k - d+k 

(case A), & = d,(T) (case B) 

z(k) = L =ik’TYik’ (n-1 = i =:k)TYlk) 
I dk) c,+k - d,+n- ’ UI dk) Cl+k - d,+k . 

(b) Compute 

(k+ I )T 
z(k+l) = ‘1 

[ I Z(k+‘) 
= Z(k) _ zVdZ(k)T 

2 I : 

2 
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(k+l)T 
ytktll _ Yl - 

[ 1 Y(k+l) 
= yK _ ,(oyW 

2 1 

2 

(c) In case B compute &+” = (d:‘+“)yP”-’ by, 

d’k-1) = d,‘:‘I _ a(k)ljk)u<“‘, / I 

The vectors Pi;) and u@) form the nonzero sections of rows and columns of 
the lower and the upper triangular factors of C, respectively. 

If one wants to solve a Cauchy linear system then one can use this factoriza- 
tion algorithm followed by backward substitution. Another possibility consists 
in the recursive computation of the solution of the equations CX = Z and 
WTC = YT and the application of the formula for the inverse matrix. This leads 
to the type-1 algorithm described in [ 121 which computes C’. This way can be 
preferable if one has to solve several equation with one and the same matrix 
and different right-hand sides. Multiplication by C ’ can be carried out with 
0 (n log’n) operations in general and 0 (nlog n) for Cauchy matrices obtained 
from Toeplitz-plus-Hankel matrices after transformation. 

The algorithm LU-CAUCHY can be combined with usual partial pivoting. 
Thus the condition concerning the strong nonsingularity of C is not essential. 

Let us show how to get a factorization for the inverse matrix A-‘. This leads 
to a Levinson-type algorithm for computing the generators of C’ which is 
similar to that presented in [17] and coincides with that in [12] for the case A. ’ 

The Levinson-type recursions are based on the“bordering” formula for the 
inverse matrix 

(2.4) 

where 

U = A;;A,2> L = AllA;;, R = (AT,)-’ 

We apply this formula to Cauchy matrices C = [a;,]4 satisfying (2.1). Let C, 
(k = l( . . , rz) be the principal submatrices which are assumed to be nonsingu- 
lar. Furthermore we represent Ck+r as 

C 
ck qk 

k+l = 
[ I. PZ s 

’ Let us note that the corresponding recursion formula in [12] is not correct in case some of the 
d,s coincide. 
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The upper and lower factors of the UDL-factorization of C’ are obtained 
from the solutions of the equations 

CkUk = qk, &k = PT. (2.5) 

In order to find a fast algorithm for the factorization of C-’ we have to describe 
the recursion for the vectors qk and pk and for the generators & and wk of C;' , 
i.e. for the solutions of the equations Ck&. = zk and wkTCk = Yz, and in the 
case B also for the diagonals of CL’. 

We introduce the notations 

z, = col(,#, r, = colt&):, 

Dk(c) = diag(ci):, Dk(d) = diag(u”)f. 

Furthermore, let {e;} stand for the standard basis in ck 

Lemma 2. (1) The solutions uk = (ukj): of the equations (2.5) can be computed 
from the generators &, wk via 

{ 

(dj - dk+l)-‘$&bk+l - q%k): d, # dk+l, 

ukj = (2.6) 

where 

$xkwkT(Dk(c) - dk+‘b-‘qk: dj = dk+l 

qk = @k(C) - dk+lh-‘ZkYk+‘. (2.7) 

Analogous equalities hold for the solution lk. 
(2) The generators xk+’ for C&’ can be computedfrom the generators of Ck via 

(2.8) 
where 

p,’ =zT+’ yk(ck+lIk -D,(d))-‘, xk = ak+l.k+l -PkTldk. (2.9) 

An analogous equality holds for the generator wk+’ . 
(3) The diagonal of Ck;l, can be computedfrom the diagonal of C;’ via 

diagC;i, = diagC;’ - ai’ diag(ukilki);=,, oli’ . 
> 

Proof. From the displacement equality 

(2.10) 

D,(d)C,-’ - C,-‘&(C) = -&w; 

we conclude that 

@k(d) - dk+‘lk)C;‘(Dk(C) - dk+dk)-‘zkJ’k+l 

= (c,-’ - &&T(&(C) - dk+‘h-‘)zkyk+l = xkdyk+l - q’qk). 
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Taking (2.7) into account we obtain 

(&Cd) -A+1)& =&(Yk,l - W,7qd. (2.11) 

In case when d, # dk rJ this leads to the first equality in Lemma 2. In case when 
d, = dk _, we obtain 

0 = +A ‘qk - e;X@(&(c) - dL .,I~)-‘yi. 

This leads to the second equality in Lemma 2. 
The recursion in (2) can be checked immediately and the recursion in (3) 

follows from (2.4). 0 

This lemma leads to the following algorithm for the factorization of Cm’ for 
a strongly nonsingular Cauchy matrix C = [a,,];. 

Algorithm UL-INVCAUCHY 
1. Initialization: X, = &Zi, Wi = k Ui, in the case B: diag C, ’ = k. 
2. Fork= l,...,n- 1, 

(a) Compute qk by (2.7) and pk by (2.9). 
(b) Compute uh by (2.6) and analogously Ik. 
(c) Compute CQ by (2.9) and ,J&+, by (2.8), and analogously K., ,. 
(d) In case B compute diagC,?, by (2.10). 

Now the vectors [-uf llT form the nonzero sections of columns of the up- 
per triangular factor and the vectors [-lk l] the lower triangular factor of the 
UDL-factorization of C-‘. The numbers uI, correspond to the diagonal factor. 
In order to get the inverse matrix one has only to store the generators X = X,, 
and W = @! and, in case B, also the diagonal diag C;‘. This leads also to a Le- 
vinson-type algorithm for solving Cauchy systems. From the numerical view 
point it may be less accurate when the nodes are close to each other (part of 
the reason for this is the formula presence of the division by (d, - d,,,) in 
the formula (2.6). Furthermore, pivoting is more expensive and the algorithm 
is not very suitable for parallelization due to inner product calculations. But 
the Levinson-type algorithm is important because it provides a simple updating 
formula for the inverse matrix or for the solution of systems of equations. 

3. Symmetric pivoting 

In this section we describe certain features of fast Cauchy solvers that can be 
exploited to lower the number of operations when the matrices under consid- 
eration are symmetric or hermitian. This will lead us to symmetric (or hermit- 
ian) fast Cauchy solvers. We next describe how these symmetric solvers can be 
applied to the special Cauchy matrices obtained from Toeplitz and Toeplitz- 
plus-Hankel matrices. We start with some general observations. 
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3.1. Dependent generators 

If the generators Z and Y of the Cauchy matrix depend via a relation 

Y =ZK or Y” =Z*K, (3.12) 

where K is an r x r matrix, then it is sufficient to compute in the algorithm LU- 
CAUCHY only one of the generators. This follows immediately from the fact 
that the relation (3.12) is inherited by Schur complementation. This also ap- 
plies to the algorithm UL-INVCAUCHY. The following is easily checked. 

Proposition 3. (1) If ci = di (i = 1, . . . , r) and C is symmetric then r is even and 
theJirst relation of (3.12) holds for certain Z and 

K= [-k, Iz2]. 
(2) If c, = -2, (i = 1,. . . , r) and C is hermitian then the second relation oj 

(3.12) holds for certain Z and 

K= 

The first assertion follows from the fact that in this case O,,d(C) is skew sym- 
metric. Using symmetric Gaussian elimination, it can be easily shown that a 
skew-symmetric matrix S has even rank and admits the representation 
S = ZKZT, where K has the form as in Proposition 3, case (1). The second as- 
sertion follows from the fact that in this case O,,(C) is hermitian. 

For some Cauchy matrices obtained as the result of transformations of 
Toeplitz-plus-Hankel matrices the generators of the Stein displacement are 
connected rather then those of the Sylvester displacement. 6 That means we 
have a relation 

C - D(c)CD(d) = ZKZT or C - D(c)CD(d) = ZKZ* (3.13) 

for a certain r x r matrix K and a iz x Y matrix Z. Matrices satisfying a relation 
(3.13) are sometimes called (generalized) Pick matrices. Clearly, they are also 
(generalized) Cauchy matrices. 

If C satisfies (3.13) then it is not immediately clear how the relation between 
the generators are inherited in the Schur complement. Our suggestion is to 
transform the Stein displacement equation (3.13) into a Sylvester displacement 

6 The Stein displacement is often called discrete time and the Sylvester displacement continuous 
time Lyapunov displacement (cf. [18]). 
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equation using linear fractional transformations of the nodes c, and d,. The fol- 
lowing is easily checked. 

Proposition 4. Let 4 he a linear ,fi-actional tran.~~)mzation. 

$0) = W - PI/W + BL and let ci = 4(x;), dj = $(y,). Then the Steirl 
displacement equation C - D(c)CD(d) = R is equiz~alent to the S~.lre.rtcr 
displucenwrzt equation 

D(x)C + CD(y) = $D(rx + fll)RD(xy + /?l‘). 

3.2. Bunch~K~ufmmn~Purlett pivoting algorithm 

Now we discuss the problem of pivoting for the symmetric and hermitian 
cases. In the symmetric (or hermitian) case by working with one generator only 
we hope to decrease the number of arithmetic operation required in the unsym- 
metric case. However, if proper care is not taken, pivoting will destroy the sym- 
metry. In order to keep the symmetry throughout the computation partial 
pivoting can be replaced by diagonal pivoting. However, simple diagonal piv- 
oting, in general, does not bound the rate of growth in the data. The rate of 
growth can be bounded if some sort of block diagonal pivoting is used. Several 
block diagonal pivoting techniques were discussed in the literature for comput- 
ing factor of (indefinite) symmetric matrices (see [3~-51). The most widely used is 
the technique presented in [5]. We will refer to this technique as Bunch Kuufl 
man-Parlett pivoting algorithm, or the BKP algorithm for short. This algo- 
rithm uses block diagonal pivoting with blocks of order 1 or 2. In what 
follows we will outline the BKP algorithm for factorization of a general indef- 
inite symmetric matrix, and next we will show how it can be incorporated into 
fast symmetric Cauchy solvers. 

For a given symmetric matrix A, the BKP-algorithm computes a permuta- 
tion P, a unit lower triangular matrix A4 and a block diagonal matrix D with 
block of order 1 or 2 such that 

PTAP = MDMT. (3.14) 

The permutation matrix P depends on a parameter 0 < x < 1 which controls 
the rate of growth of pivots. The rate is minimized for CY = (1 + 0)/S. 

The factorization proceeds in stages. In stage k + 1 (k = 0. , n - 1) one 
operates on the matrix A@), with A(O) = A. Given A’“), a symmetric permutation 
of rows and columns is applied to Acki so a satisfactory diagonal pivot block of 
order 1 or 2 can be determined. If P”! is such a permutation, and 

(3.15) 
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with Dck) and G symmetric, then the pivot block is Dck), and A@+‘) is computed 
as the Schur complement of Dck), i.e. 

A@+‘) = G _ E(D(k))-‘ET. 

The significant elements of the new columns of A4 are computed as E(D(“))-‘. 
The whole process is iterated until all columns of M are determined. 

The most important aspect of the method is a procedure for finding the per- 
mutation matrix pck) and determining the order of the pivot block DIk). In [5] 
this is done in two steps. First, one checks whether a suitable diagonal permu- 
tation that would bound pivot element growth exists. If such a pivot cannot be 
found satisfactory a 2 x 2 pivot is calculated instead. 

A single iteration, that is the transitions from A(“) to Ack+‘) is summarized in 
Algorithm BKP. There, in order to simplify notation, superscripts were 
dropped. Also, following [5], Zij is used to denote a permutation which inter- 
changes row i with row j. 

Algorithm BKP 
Let A = Ack) = [aii] be the current (n - k) x (n - k) matrix. One iteration of 

the algorithms computes a permutation P, pivot block D of orders (s = 1 or 2) 
s columns of the lower triangular factor M, and the Schur complement ,4(k+‘) 
corresponding to D. 

1. Initialization: Set cI = (1 + &7)/8. 
2. (a) Search for a 1 x 1 diagonal pivot, i.e. set s = 1, 

(al) compute /1 = \a,~ / = max2~i~n-kluii 1, 
(a2) if (at 11 3 ai the element cl 1 is a good pivot element, set P = I and 

go to (c), 
(a3) compute 0 = max+&;t 1, 
(a4) if Iat 1 (r~ 3 cd2 the element at 1 is still a good pivot element, set 

P = I and go to (c), 
(a5) if lam,,] 3 ao the element a,,,,,, is a good pivot element, set P = 11~ 

and go to (c). 
(b) There is not any satisfactory 1 x 1 diagonal pivot, set s = 2 and 

P = Izm. 
(c) Compute 

(cl) set PAPT = 
D ET 

[ 1 E G 
, where D is s x s, 

(~2) compute the Schur complement A@+‘) of D, 
(~3) compute the significant elements of the new columns in M as 

ED-‘. 

The algorithm easily extends to the case of a hermitian A. A repeated appli- 
cation of Algorithm BKP will produce the desired decomposition (3.14). 
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The decomposition can be used to solve a linear system of equations Ax = h. 
Given the symmetric decomposition FCPT = MDMT this can be accomplished in 
MS,.(n) = r? multiplications and AS,(n) = 12~ additions for a real A. For a complex 
matrix most operations has to be performed in complex arithmetic. A complex 
multiplication is equivalent to four real multiplications and two real additions. 
A complex addition is equivalent to two real additions. Thus in the complex case. 
given the symmetric (or hermitian) decomposition of A, the cost of solving the lin- 
ear system Ax = h is MS, (H) = 4n’ multiplications and AS, (n) = 4n’ additions. 

3.3. S_vmmetric pivoting on generators 

Recall that the possibility to speed up the factorization procedure for gener- 
alized Cauchy matrices from O(n3) to O(n’) complexity is based on the fact 
that it is sufficient to carry out all operations on the generators. Concerning 
pivoting the following obvious observation is in order. 

If C is a Cauchy matrix with generators 2 and Y and P is a permutation ma- 
trix then c = PCPT has the generators E and PY and the nodes of ? are the 
corresponding permutations of the original nodes. 

The above observation when combined with Algorithm LU-Cauchy and Al- 
gorithm BKP leads to Algorithm BKP-Cauchy which is described below. 

Let A,:, denote a matrix composed of rows i through j of the matrix A. Sim- 
ilarly, if J c { 1~ 2, . , n} then A,, will denote a matrix composed of all rows of 
A which indices are taken from J (in the increasing order). 

Algorithm BKP-Cauchy 
Let C be an n x n Cauchy matrix defined by the generators Y and Z = YK, 

the nodes (c. d) where c, # c, for i # j, and the diagonal diag(C) if c = d. The 
algorithms computes the permutation P, the pivot block D of order .s 
(s = 1 or 2) s columns of the lower triangular factor M, and the generators 
Y and Z, such that Z = PK. 

1. Initialization: Set a = (1 + fl)/8, and s = 1. 
2. (a) Look for a 1 x 1 diagonal pivot, 

(al) compute the off diagonal entries of the first column of C. 
C’t = (air); = (diag (CZ n) - dlZ)-’ YT,K~I, and set i, = Ian,, / = 
max2~k~nlal, 

(a2) if Ia, 11 3 cd set P = I, D = all, E = Cl, and go to (c), 
(a3) compute the off diagonal entries of the mth column of C. 

C,=(~~,)~=(diag(c,,)-d,l)-‘Y~Ky,,,whereJ={l.....m-l. 
m+ 1. . , n}, and set r = maxj+jui,,I, 

(a4) if jutt Irr 3 ajb2 set P = I, D = all. E == Cl, and go to (c), 
(a5) if (umm( 3 ~0 set P = II,, D = u,,,,,~. E = C,,, and go to (c) 
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(b) Set s = 2, 
(bl) P = 12m, 

(b2)D= [;A; I:], andE=[C’,,C,]. 

(c) Compute other relevant quantities 
(~2) permute Y, E, b, c, d and diag(C) according to P, 
(~3) compute the generator Y = Ys+irn - _!k’Yi:,, where _8 equals E 

with its first s rows dropped, 
(~4) compute entries in rows s + 1 through n in the first s columns of 

the lower triangular factor M as ED-‘, 
(~5) compute diag(?) = diag(C) - diag(ED-‘ET). 

A repeated application of Algorithm BKP-Cauchy will produce the desired 
decomposition (3.14). The cost of the algorithm will depend on the order n x Y 
of generators, and on how often the step (a3) followed by (c) are executed. If 
(a3) is always performed and is always followed by (c), then, for a real matrix, 
it is maximal and is 1 n2y multiplications and i n2r additions. On the other hand 
if (a2) is always followed by (b) or (c) then the cost is only n2r multiplications 
and n2r additions. The cost of Algorithm BKP for a complex matrix is roughly 
four times that for a real matrix. 

Estimates of the cost (measured by the number of real multiplications) of 
computing the solution of a symmetric n x n linear system 
generators of C are given in Table 1. 

Cx = b given the 

3.4. Computation of generators based on DFT 

In this section we provide some more detailed description of generators for 
Cauchy matrices appearing in Section 2, [ 161 as the result of transformed Toep- 
litz matrices. 

For a complex number 5, let 9(r) denote the matrix 

$ [d-‘]; 

where ci are the nth roots of 4 (in certain unspecified order). We set .9( 1) = p. 
9 is the matrix of the DFT and 9”(t) = Fdiag( 1, cl,. . , c;-‘). 

Table 1 
Cost of solving Cn = b 

Matrix RHS Cost (real multiplications) 

C b Max Min 

Complex 
Real 
Real 

Complex 
Complex 
Real 

4($ II% + rl?) 
2 n’r + 2n’ 
tn’r + n2 

4(n% + n2) 
n2r + 2n’ 
n2v + n2 
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The matrix-vector multiplication S(<)a can be accomplished via FFT in 
Snlog n and 2Snlog n real arithmetic operations for a complex and real vector 
a, respectively (assuming that n = 2’ for some positive integer t). These kind of 
matrix-vector multiplications compute generators of the Cauchy matrices con- 
sidered in Section 2, part I. As only a small number of operations of the type 
.S(jr)u are performed in transforming Toeplitz into Cauchy matrices, we will 
not include the cost of these matrix-vector operations in the overall estimation 
of the amount of solving the resulting Cauchy linear systems. 

Let T = [aim,] and H = [s,,] be n x n Toeplitz and Hankel matrices, respec- 
tively. We will now list generators corresponding to the transformations con- 
sidered in Sections 2.1-2.4, part I. 

(a) HT f f tHC ~ Hermitian Toeplitz to complex hermitian Cauchy: Suppose 
that a-k = & and c, = d, = wj = exp(2ni,j/n) (i = J-1) According to Theo- 
rem 4, Part I, 

is a hermitian Cauchy matrix. More important for our purposes is the fact that 
the matrix C = ni/2diag(w)C is a symmetric Cauchy matrix with c = d. The 
quantities defining C can be derived from the vectors 

T 
a’ = L a0 

-.Ul,...,U,-1 : 
2 1 

a” = [nao, (n - l)a,, .a,-l]‘. 13.16) 

The generator Y and the diagonal of C are given by 

diag(C) = tdiag(w)f. (3.17j 

(3.18) 

where 

e = Im8a’ and f = Re4a” 

Finally,Z=IXwithK= 

(3.19) 

Since C is symmetric and c = d Algorithm BKP-Cauchy can be readily ap- 
plied to C. 

(b) HTf f t SC - Hermjtian Toeplitz to real symmetric Cauchy: Let CO, 
e, f, dtag(C), Y, K and C be as in (a). The fractional transformation 

i+Oj 
c, = __ 1 

[ - Wj 

(3.20) 

maps the complex node vector w into a real node vector c = (c,). The matrix 



26 G. Heinig, A. Bojanczyk / Linear Algebra and its Applications 278 (1998) II-36 

C = diag(c, + i)Cdiag(cj - i) 

is a real symmetric Cauchy matrix. The relevant quantities defining C are the 
same as in the case (a) except for the nodes and the diagonal elements, which 
are now c and d = c, and diag(C) = diag(cj + 1)f. 

(c) STf f t SC - Symmetric Toeplitz to symmetric Cauchy: Let 5 = i and 
p = (p,); with pj = exp((4j + l)ni/2n). Then, according to Theorem 7, Part I, 

C = ,F(i)T9(i)T 

is a symmetric Cauchy matrix. The fractional transformation (3.20) transforms 
p into a real vector c. Now, the matrix 

C = Adiag(1 - c,)C diag(l - cj) 

is a symmetric Cauchy matrix with the entries 

ei + ej 
cij = __ 

Cl + Cj 
, 

where 

e = 9(i)a’ + F(-i)a’ (3.21) 

and a’ is defined by (3.16). Thus the matrix C is defined by the nodes c and 
d = -c, and the generators Y and Z = YK where 

0 1 
and K = 

[ 1 1 0. 

Algorithm BKP-Cauchy can be now applied to C. The cost of solving TX = b is 
analogous to that in (a) for a complex T, and that in (b) for a real T. 

Remark 5. Note from (3.21) that if T is real then e is also real. Thus we have an 
alternative (to that one in (b)) transformation that takes a real symmetric 
Toeplitz matrix into a real symmetric Cauchy matrix. We will refer to this 
transformation in the section on numerical experiments as RT f f t SC. 

(d) HTpHf f tHC - Hermitian Toeplitz-plus-Hankel to hermitian Cauchy: 
We now consider the case when the Toeplitz-plus-Hankel A = T + H matrix 
is hermitian. As remarked in Section 3, Part I, if 5 = -v] = i then 

c = 9+$4R(~)T 

is hermitian. The transformation from A to C is based on the vectors 
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T 
t cd = [ 

T 

5 t1.. . )  &_I , t;,, = 
2: 1 [ 

+- l)t,. . ..( t,_, 
I 

, 

L 

T 

t TOM’ = $I- I,..., f&l : t&\\= 1 [ .;.,n- T 

1)t .I..... t-,,, 1 
to transform T, and on the vectors 

h 
S,,+l 

1 

T s,, I 1 
TOW = T’S”. . >S?,,_? . hco, = =,s,,_? ._... s0 

2 
, 

to transform H. These vectors are transformed via .8(t) or R(v). The trans- 
formed vectors are combined according to Theorem 9. Part I to give y1 x 4 gen- 
erators Z and Y of C. The generators satisfy Z = Ix for 

K= 

The hermitian version of Algorithm BKP-Cauchy can then be applied 

3.5. Computation of’ generators based on trigonometric trunsfbrmations 

As was pointed out in Section 3, the trigonometric transformations have the 
advantage over the DFT that they are real and hence allow to stay in reals 
when applied to real data. There are numerous fast algorithms for applying 
trigonometric transformations, see [24-261. However, as they are all of order 
O(n log n) for vectors of length n, a simple implementation based on the com- 
plex FFT can be used (in all cases when n is large) as it will only effect lower 
terms in the cost of solving the resulting Cauchy linear system. 

The sine-1 transformation in Theorem 9, part I is straightforward to imple- 
ment and was used in numerical tests. For a Toeplitz-plus-Hankel matrix A this 
transformation operates on vectors 

tcoi = 
[ 
to T T 
- \ fl ) . 

2 . . 1 n-l t 1 , t ImH == [ $I_,% . . . . t_,,_, 1 
tCOI-~Ow = [to,t1 + t-1,. . > t,,.-I + t-,+l]T. 

tLl- row = [nto. (n - l)(tr + t-r). .&-I + r-,+I)] 
T 

to transform T, and on the vectors 

h,,, = s,. . , sznp2jT, 
I- 

h,,, = y. s,,-2. . ..sg 
I 

. 

Scol-row = [h-l > s,-2 + s,: . . S(I + S?, _2]T. 
LroM. =[ns,-~,(n-l)(~~~2+~,,),.....~~~+~~~ 2 I' 
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to transform H. The transformed vectors are combined according to Theorem 
9, Part I to give n x 4 generators 2 and Y of C. The generators satisfy 2 = Ix for 

I 0 -1 0 0 

I 0 0 0 
K= I . 0 0 0 -1 

0 0 1 0 

The hermitian version of Algorithm BKP-Cauchy can then be applied. We will 
refer to this transformation as HTpHsineHC. 

As stated in Theorem 9, Part I, for a real symmetric Toeplitz matrix, the 
transformed matrix is a 2 x 2 block diagonal with blocks that are symmetric 
and each having Cauchy rank 2. The symmetric version of Algorithm BKP-Ca- 
uchy can be applied to each of the two blocks. This leads to a potential saving 
of 50% in the cost of solving a real symmetric Toeplitz system of linear equa- 
tions. We will refer to this transformation as STsineSC. 

4. Numerical experiments 

Numerical tests for all transformation based algorithms were conducted on 
a Macintosh PowerBook 180 computer using MATLAB 4.1. The relative 
machine precision was eps = 2.2e - 16. 

In the tests we generated indefinite Toeplitz or Toeplitz-plus-Hankel matri- 
ces as follows. A matrix 2 was first generated randomly. Next 2 was modified 
to obtain another matrix A according to the formula 

A = A - (IL + epsa)l,, 

where J. was an eigenvalue of A, eps the machine relative precision, and 
0 < a < 1. Such modification does not change the underlying structure of the 
original Toeplitz or Toeplitz-plus-Hankel matrix. By varying CI we could influ- 
ence the magnitude of the condition number of A. We also varied the dimen- 
sion n of A. 

The right-hand side vector b in the linear system Ax = b was chosen in such a 
way so the true solution x was a vector of ones. This was because such a vector 
does not reflect potential ill-conditioning of the matrix and hence may expose 
numerical deficiencies of the solvers. 

In the tests we measured the residual error resx in the computed solution X 
as follows 

ItA? - bll 
reSx = ItAll . 1141 + Ilbll ’ 

We also measured the relative error res C in the symmetric (or hermitian) de- 
composition of C as 
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and the relative error resA in the decomposition of .4 as 

resA = IIA - EJffLTGII 
II4 ’ 

where F and G were the transformations that related the matrix A with the ma- 
trix C. The ratio of resA and res C measures the degradation of accuracy caused 
by the transformation from A to C and back to A. For the algorithm LU-CA- 
UCHY, res C and resA are defined in an analogous way. For the algorithm 
UL-INVCAUCHY, resC and resA would have to be computed for C’, hence 
only resx was recorded. 

4.1. Hermitian Toeplitz-plus-Hankel 

Solving systems of equations with a complex hermitian Toeplitz-plus-Hank- 
el coefficient matrix we compared the following algorithms. 

ALG 1.1. Use HTpHf f tHC to transform the matrix into a hermitian Cauchy 
matrix. Then apply algorithm LU-CAUCHY in combination with algorithm 
BKP-Cauchy for pivoting. 

ALG 1.2. Instead of HTpHf f tHC use the real transformation HTpHs ineHC. 
(The advantage is that the resulting Cauchy matrix is real if the original matrix 
is real). Then apply LU-CAUCHY in combination with BKP-Cauchy as in 
ALG 1.1. 

ALG 1.3. Apply the transformation HTpHf f tHC and algorithm LU-CA- 
UCHY but instead of BKP-Cauchy pivoting as in ALG 1.1, use the standard 
partial pivoting. 

ALG 1.4. Use HTpHf f tHC. Instead of algorithm LU-CAUCHY apply algo- 
rithm UL-INVCAUCHY combined with BKP-Cauchy pivoting. 

ALG 1.3 was included in order to check whether symmetric pivoting may 
cause less accurate results than standard partial pivoting. ALG 1.4 was includ- 
ed in order to check whether the algorithm UL-INVCAUCHY may produce 
less accurate results than LU-CAUCHY. Representative results are given in 
Table 2. 

The table suggests that accuracy of the symmetric pivoting on the Cauchy 
matrix C is comparable to that of unsymmetric pivoting. The accuracy of 
the decomposition of A is slightly lower than that of C. This is caused by the 
transformation of A into C, and possibly could be improved by a more careful 
implementation of FFT-like transformations. The residual error of the solution 
is comparable to that one of the decomposition of A. 
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Table 2 
Complex Hermitian Toeplitz-plus-Hankel A 

Size Cond ALG 1.1 ALG 1.2 ALG 1.3 ALG 1.4 

80 3.8526 x lo4 res x 
res A 
res C 

1.6275 x 10’ res x 
res A 
res C 

2.6182 x lOI resx 
res A 
res C 

120 2.9335 x 10’ resx 
res A 
res C 

2.9691 x IO6 res x 
res A 
res C 

2.0951 x lOIs res x 
res A 
res C 

150 3.6807 x lo3 res x 
res A 
res C 

3.5337 x lo6 ress 
res A 
res C 

2.8970 x 1O’5 res x 
res A 
res T 

3.1655 x lo-l5 
6.9822 x lO-‘j 
5.3745 X lo-‘6 
2.7303 x 10-15 
6.9938 x lo-” 
4.7229 x IO-l6 
3.2986 x 1O-‘5 
3.9141 x 10-16 
7.8609 x IO-l6 

7.3268 x IO-” 
1.8614 x lo-“’ 
2.0574 x lo-l5 
6.9222 x lO_” 
1.8270 x lo-l4 
1.4279 x lo-l5 
5.5690 x IO-l5 
1.7484 x 10-14 
2.0453 x IO-l5 

1.1590 x lo-l4 
2.8423 x 10-l” 
1.0333 x 10-14 
1.0409 x lo-l4 
2.6824 x lo-l4 
8.5036 x lo-l4 
8.1843 x lo-‘5 
2.6317 x lo-l4 
2.9684 x lo-l5 

9.3151 x lo-‘4 
5.0378 x lO-‘5 
5.0378 x 10-15 
1.1814 x lo-” 
1.3900 x IO-l4 
1.3900 x lo-l4 
1.2818 x lo-l3 
9.2986 x lo-l4 
1.6000 x lo-l4 

2.8937 x IO-l3 
5.5601 x IO-” 
4.0819 x lo-l4 
2.9267 x IO-” 
5.4112 x lo-l3 
4.0414 x lo-l4 
3.2705 x lo-” 
5.1699 x lo-‘) 
3.9838 x lo-‘4 

2.4397 x 10-l’ 
5.5647 x lo-l3 
3.8046 x IO-l5 
2.3590 x IO-l3 
3.5981 x lOm’1 
4.7821 x lo-l5 
2.0285 x IO-” 
3.6961 x lo-” 
3.9237 x IO-l5 

9.5612 x lO-‘5 5.5622 x lo-l4 
7.1205 x lo-l4 
6.4230 x lOm’5 
1.0432 x lo-l4 2.3952 x 1Om’3 
8.3806 x IO-l4 
1.4163 x lo-l4 
7.8452 x lo-l5 3.3623 x lo-l3 
7.1720 x lo-l4 
7.0866 x lo-l5 

5.1263 x lOI 3.1281 x lo-l3 
1.6654 x lOI 
1.2077 x lOI 
5.1182 x 10-l” 3.8811 x lo-l3 
1.7444 x 10-13 
1.4117 x IO-l4 
5.4942 x IO-l4 4.8662 x lo-l3 
1.7495 x lo-” 
1.4298 x IO-l4 

2.8876 x lo-l4 2.1523 x lo-‘) 
3.0573 x 10-13 
2.8126 x IO-l4 
2.2918 x lo-l4 5.7461 x lo-” 
2.6781 x IO-l3 
1.4756 x lo-l4 
1.4991 x IO-14 6.1183 x IO-l3 
2.4262 x IO-l3 
3.0188 x 10-14 

Table 3 
Cost of solving Ax = b 

Multiplications 

Max Min 

ALG 1.1 28n2 20nZ 
ALG 1.2 28n2 20n2 
ALG 1.3 36n2 36n2 
ALG 1.4 52n2 52n2 
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The cost of the three methods (excluding the cost of the transformations) can 
be derived from Table 1 with r = 4. These costs (measured by the number of 
real multiplications) are summarized in Table 3. 

4.2. Real symmetric Toeplitz 

Solving systems of equations with a real symmetric Toeplitz coefficient 
matrix we compared the following algorithms. 

ALG 2.1. Use RTf f t SC 7 to transform the matrix into a real symmetric 
Cauchy matrix. Then apply algorithm LU-CAUCHY in combination with 
algorithm BKP-Cauchy for pivoting. 

ALG 2.2. Use HTfftSC for the transformation into a real symmetric 
Cauchy matrix. Then proceed as in ALG 2.1. Apply BKP-Cauchy as in 
ALG 1.1. 

ALG 2.3. Apply the transformation HTf f tHC to transform the matrix into a 
complex hermitian matrix. Then proceed as in ALG 2.1. 

ALG 2.4. Apply the transformation of the nonsymmetric standard choice in 
Section 2.1 of Part I. (This is the type-11 algorithm proposed in [ 121 where a 
general Toeplitz matrix is transformed into a complex matrix with the Cauchy 
rank 2). Then proceed as in ALG 2.1. 

ALG 2.5. Use RTsineSC to transform the matrix into a direct sum of two 
real symmetric Cauchy matrices of about half the size. Then proceed as in 
ALG 2.1 for the two matrices. 

ALG 2.6. A look-ahead Levinson algorithm dsytep s for solving symmetric 
(possibly not positive definite) Toeplitz systems of linear equations from [6]. 

The algorithms ALG 2.1-2.5 are all based on the transformation approach 
described earlier in this paper. Algorithm ALG 2.6 on the other hand repre- 
sents another approach known as a look-ahead technique developed in [6] for 
stabilizing the Levinson method when some intermediate submatrices of a sym- 
metric Toeplitz matrix are ill-conditioned, see also [l l] and references therein. 
In the look-ahead approach the user selects the length k of the look-ahead step. 
Ideally this length should equal the maximal number of consecutive ill-condi- 
tioned leading submatrices. The extent of the look-ahead step determines the 
cost of the method. For the extreme cases k = 0 and k = II - 1 the look-ahead 
method becomes the classical Levinson method and the classical Gaussian 
elimination with partial pivoting, respectively. 

It is not difficult to construct well-conditioned symmetric Toeplitz matrices 
with a prescribed number 1 of consecutive ill-conditioned leading submatrices. 
An obvious example is a matrix of the form 

7 See Section 3.4. 
’ This FORTRAN code was run on am IBM RS6000 workstation 
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(4.1) 

or its small perturbations, for which 1 = n/2. Now, if the maximal length k of 
the look-ahead step is smaller than 1 the look-ahead Levinson algorithm will 
either break down or produce inaccurate results. On the other hand, in appli- 
cations where it is unlikely to encounter many consecutive ill-conditioned lead- 
ing submatrices the computed solution will often have sufficient accuracy. This 
was confirmed in our numerical experiments where we tested the behavior of 
the algorithms on matrices with only few consecutive ill-conditioned submatri- 
ces. 

Results of numerical tests are given in Table 4. The table suggests that accu- 
racy of the symmetric pivoting on the Cauchy matrix C in all but one case is 
comparable to that of unsymmetric pivoting. The single exception is the meth- 
od ALG 2.1 which often looses about half of the number of accurate digits. 
This loss of accuracy is most probably connected with the linear fractional 
function which maps a unit circle onto a unit interval. However, the related 
method ALG 2.2 produces an accurate decomposition of C. Reasons for loss 
of accuracy in ALG 2.1 will have to be investigated further. 

The accuracy of the decomposition of T as measured by res T is slightly low- 
er than that of the decomposition of C. This is caused by the transformation of 
T into C, and possibly could be improved by a more careful implementation of 
FFT-like transformations. The residual error resx in the solution vector is 
comparable to that in the decomposition of T. The relative error errx in the 
solution is proportional to the condition number of T. 

On the examples presented, transformation based algorithms ALG 2.2-2.5 
compare favorably with the look-ahead algorithm ALG 2.6. In the examples 
included in Table 4, the matrices had several ill-conditioned intermediate sub- 
matrices. For that reason the length of the look-ahead step was chosen to be 
16. With this choice of the look-ahead step, the algorithm produced the relative 
error errx comparable to that produced by the transformation methods, in 

Table 5 
Cost of solving TX = b 

Real multiplications 

Max Min 

ALG 2.1 5n? 4nz 
ALG 2.1 5d 4n? 
ALG 2.3 1 6n2 12nZ 
ALG 2.4 20n* 20n2 
ALG 2.5 2n” ;n’ 
ALG 2.6 $3 2nZ 
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most of the cases. The exception was the case represented by the first row in the 
table when the matrix was a slightly perturbed version of the matrix in (4.1). 
While the transformation based methods produced accurate solutions, the 
length of the look-ahead step was too small for ALG 2.6 to find a well condi- 
tioned leading submatrix to stabilize the Levinson recursion. 

The cost of the five transformation methods (excluding the cost of the trans- 
formations) can be derived from Table 1 where I- = 2 and are summarized in 
Table 5. Note that except for ALG 2.5 all other transformations transform a 
real right hand side vector to a complex vector. Thus ALG 2.5 is the least costly 
among all five transformation algorithms discussed in this paper. 
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