
Ulam Quaterly { Volume 3, Number 1, 1994Applications of Modi�ed PellNumbers to RepresentationsA.F. HoradamUniversity of New EnglandDepartment of MathematicsArmidale, Australia 23511 BackgroundDe�ne the sequence fqng for all integers n by the recurrenceqn+2 = 2qn+1 + qn (q0 = 1; q1 = 1); (1.1)and the associated Pell sequence fPng for all integers by the recurrencePn+2 = 2Pn+1 + Pn (P0 = 0; P1 = 1): (1.2)For a few basic relationships connecting Pn and qn, see, for instance, [1] and[14].Closely related to fqng is the Pell-Lucas sequence fQng which has beenextensively analyzed in a series of publications (e.g. [8], [11]), principally inrelation to fPng, but also in its own right. In fact, Qn = 2qn. Consequently,the known properties of fQng are easily transferable to fqng.Here, we are concerned only with fqng and more especially, with theproblem of representing any integer by sums of the numbers qn.For this purpose, we require the extension of the sequence fqng to neg-ative values of n. Inevitably, a study of fqng involves familiarity with Pn.Using (1.1) and (1.2), we readily derive the following tabulation:n � � � �6 �5 �4 �3 �2 �1 0 1 2 3 4 5 6 � � �qn � � � 99 �41 17 �7 3 �1 1 1 3 7 17 41 99 � � �Pn � � � �70 29 �12 5 �2 1 0 1 2 5 12 29 70 � � �Fig. 1: Values of qn; Pn (�6 � n � 6).Clearly q�n = (�1)nqn (1.3)



A.F. Hordam 35and P�n = (�1)n+1Pn: (1.4)Also, qn = Pn + Pn�1 = Pn+1 � Pn = Pn+ 1 + Pn�12 (1.5)while 2Pn = qn + qn�1 = qn+1 � qn = qn+1 + qn�12 : (1.6)Explicit Binet forms for qn and Pn areqn = �n + �n2 ; (1.7)and Pn = �n + �n�� � (1.8)where �,� are the roots of the characteristic equation x2 � 2x + 1 = 0 ofthe recurrence relations (1.1) and 1.2), i.e.,� � = 1 +p2� = 1�p2 so �+ � = 2; �� � = 2p2 ; �� = �1: (1.9)With negative subscripts, (1.6) becomes2P�n = q�n + q�n�1 = q�n+1 � q�n = q�n+1 + q�n�12 : (1.10)The Name of the Sequence fqng References to the numbers qn inSloane [13] are associated with Th�ebault [14] in 1949, and earlier in 1916with an unspeci�ed writer in [12]. Both Pn and qn were designated Eudoxusnumbers by Budden [2] in 1969, though I have no independent informationof this claim.Lucas [10] makes no speci�c reference to qn so far as I am aware, but hedoes use the numbers 2qn which he designates Vn� a generic symbol of his,and couples them with Pn (his Un) as Suites de Pell. Because of these his-torical origins, I have called 2qn, which I label Qn, the Pell-Lucas numbers.(Perhaps, then, pn might be named the \quasi Pell-Lucas numbers"?)All things considered, I accept the nomenclature of Bruckman [1], whorefers to qn as modi�ed Pell numbers, as suitably apt, and to this I haveadhered.



36 Applications of Modi�ed Pell Numbers2 Properties of fqngSome properties of fqng per se which are relevant to our study includethe Simson formula qn+1qn�1 � q2n = 2(�1)n+1 (2.1)and the summations nXi=1 q2i = q2n+1 � 12 (2.2)nXi=1 q2i�1 = q2n � 12 (2.3)nXi=1 qi = qn+1 + qn2 � 1 = Pn+1 � 1 by (1:6) (2.4)n�1Xi=0(�1)iq�i = (�1)n(q�n � q�n+1)2 = (�1)n+1P�n by (1:10) (2.5)qn = 2(qn�1 + qn�3+ � � �+ q4 + q2) + 1 n odd (q0 = 1)= 2(qn�1 + qn�3+ � � �+ q3 + q1) + 1 n even (c:f: (2:2); (2:3))(2.6)nXi=1 Pi = �qn+1 � 12 (2.7)Checking on the validity of these results is left to the vigilance of the reader.Moreover, nXi=0 q�2i = �q�2n�1+ 12 (2.8)nXi=1 q�2i+1 = �q�2n + 12 : (2.9)Presence of 0 as the starting point in (2:8) is to be especially noted.3 Representation of Positve Integers By fqng; n � 0A. Minimal Representation



A.F. Hordam 37Theorem 3.1 The representation of a positive integer N > 0 in the formN = 1Xi=1 �iqi (�i = 0; 1 or 2) (3.1)where �i = 2) �i�1 = 0 (3.2)is unique and minimal.Proof This is similar to that for fPng in [7], with appropriate adjust-ments. E.g., use (2:6). Alternatively, consult the proof given in outlineafter Theorem 2.By the phrase minimal representation we mean the representation withthe least number of numbers qi occurring in the sum (3:1), subject to theproviso (3:2). Such a representation may be called a Zeckendorf represen-tation [7]. Figure 4 gives the minimal representations of N by fqng : 1 �N � 50. Absence of q0 in (3:1) ought to be compared with the situation in(3:3) for Theorem 3.2.A \Greedy" Algorithm. Remarks similar to those in [7] regarding a\greedy algorithm" for fPng are also applicable in the case of fqng. As anillustration, from Figure 1 we have350� q7 = 111; 111� q5 = 70; 70� q5 = 29; 29� q4 = 12; 12� q3 = 5;5� q2 = 2; 2� q1 = 1; 1� q1 = 0; so that350 = q7 + 2q5 + q4 + q3 + q2 + 2q1:B. Maximal Representation. By a maximal representation, we meanthe greatest number of qi occurring in the sum (3:3) below, in the contextof the criteria (3:4).Introduction of q0. For maximality, we must introduce q0 = 1. Otherwise2, for example, could not be expressed maximally (2 = 1:q0 + 1:q1). Lucasnumbers Ln similarly require the use of L0 = 2 in the theory of maximalrepresentations [15]. But, for uniqueness, we de�ne 1 = qi. Furthermore,in the ensuing MinMax theory (section 4) we require qi = 1 (not q0 = 1 )since q0 is absent in considerations of minimality.Pertinent to our usage is the fact that in section 4 2q0(= 2) is neverused, only 1q0.Thus, the special purpose of q0 for maximality is to �ll in the gap (2 =3� 1) between q1 = 1 and q2 = 3.



38 Applications of Modi�ed Pell NumbersTheorem 3.2 Every positive integer N > 0 has a unique representation inthe form N = mXi=0 �iqi (�i = 0; 1; or 2) (3.3)where � �i = 0 ) �i�1 = 2�m = 1 or 2: (3.4)Proof of this Theorem has a number of lemma as a prologue:First consider the sequence of coe�cients of qi in (3:3) of length k � 1,namely, (�0; �1; �2; � � � ; �k�1) (3.5)subject to the criteria (3:4).Write Sk � the number of sequences (3:5) with (3:4) attachedrk � the range of values of N for SkNmink � the minimum number of rkNmaxk � the maximum number of rkIk � the number of integers in rk.Data relevant to these symbols for the number N in (3:3) are:k Sk rk Nmink Nmaxk Ik1 S1 12 S2 2; 3 2P1 2P2 � 1 2q13 S3 4; � � � ; 9 2P2 2P3 � 1 2q24 S4 10; � � � ; 23 2P3 2P4 � 1 2q35 S5 24; � � � ; 57 2P4 2P5 � 1 2q4... ... ... ... ... ...k Sk 2Pk�1 � � � ; 2Pk � 1 2Pk�1 2Pk � 1 2qk�1Fig. 2: Basic Data for Theorem 2Let us elaborate a little on this information.Lemma 3.1 2Pk�1 � N � 2Pk � 1 (k � 2):



A.F. Hordam 39Proof: For a sequence (3:5) of length k � 2, the maximum number Nmaxkwhich it can represent is given by(1; 2; 2; 2; � � �; 2)| {z }k digitscorresponding toNmaxk = 1:q0+ 2Pk�1i=1 qi= 1 + 2 h qk+qk�12 � 1i by (1:1); (2:4)= qk + qk�1 � 1= 2Pk � 1 by (1:6): (3.6)The minimum number Nmink for a sequence of length k is obtained by thefollowing reasoning:After the number in (3.6), the next number in order is (2Pk�1)+1 = 2Pkwhich occurs as the �rst number in the (next) sequence of length k + 1.Accordingly, the minimum number in the sequence of length k is derivedfrom 2Pk by replacing k by k � 1, i.e., Nmink = 2Pk�1: Hence2Pk�1 � Nleq2Pk � 1| {z }rk (k � 2):Corollary 3.1 When k � 1, we are left merely with the number 1.Lemma 3.2 Sk = 2qk�1 (k � 2).Proof From Lemma 3:1, the number of numbers Ik included in the rangerk, which is the same as the number of sequences Sk, isSk = (2Pk � 1)� f(2Ppk�1� 1g = Ik= 2(Pk � Pk�1)= 2qk�1 by (1:5):Lemma 3.3 k is uniquely determined by N (�k 6= 0).This is obvious from Figure 2. As an example, considerN = 1000) 816 � 1000 � 1969 (= 1970� 1)) 2P8 � 1000 � 2P9 � 1) k = 9



40 Applications of Modi�ed Pell Numbers(with r9 = 1969� 815 = (1970� 1)� (816� 1) = 1154 = 2qs):Lemma 3.4 �k (6= 0) is uniquely determined by N .This is clearly so, since, from (3.3), N � �kqk is a speci�c number.For instance; N = 50) ( N � 2q4 = 1 + 2 + 6 + 7 = 16 (�4 = 2)N � q4 = 1 + 2 + 6 + 7 + 17 = 33 (�4 = 1):Proof of Theorem 3.1 Assembling all the evidence which has followedthe enunciation of Theorem 3.1 (namely, Figure 2 and Lemmas 3.1-3.4), weare led to accept the validity of the Theorem.Observation We remark that the numbers Nmaxk are identical with thesubsidiary MinMax numbers Nk�1 (k � 1) for Pell numbers [5]. The reasonfor this is that, by (3:6), Nmaxk = 2Pk � 1 = Nk�1 by [5].Alternative Proof (Outline) of Theorem 3.1 This may be set out toparallel the treatment in Theorem 3.1 by using similar techniques. Firstly,consider the sequence of length k in (3.7)(�1; �2; � � � ; �k):The minimum number represented by this sequence is given by(0; 0; 0; � � �; 1)| {z }k digitsi.e., qk.The maximum number is given by(2; 0; 2; 0; � � �; 2; 0) or (0; 2; 0; 2; � � �0; 2)depending on the parity of k, i.e., q2k+1� 1 or q2k � 1 from (2.2) and (2.3)respectively. Eventually, we may assert (replacing Sk in Lemma 3.2 by sk):Lemma 3.5 qk � N � qk+1 � 1Lemma 3.6 sk = 2Pk.Lemma 3.7 k is uniquely determined by N (�k 6= 0).



A.F. Hordam 41Lemma 3.8 �k (6= 0) is uniquely determined by N .Gathering together these results, we establish the validity of Theorem 3.1.Remarks(i) The ranges in the above treatment for Theorem 3.1 are:1; 2; 3; � � � ; 6; 7; � � � ; 16; 17; � � � ; 40; � � � :(ii) Figure 5 gives representations of N for 1 � N � 50.(iii) ( In Figure 4, 2 is always preceded by 0 (except in the �rst column).In Figure 5, 0 is always preceded by 2 (except in the last column).That is, there is a type of duality in the enunciations of Theorems 3.1and 3.2 -cf. the criteria (3.2) and (3.4). In a similar context for Fibonaccinumbers, Brown [9] refers to a \Dual Zeckendorf Theorem".4 The MinMax Sequence fQng.Comparing the data in Figures 4 and 5 we discern that, for certain valuesof N , the minimal and maximal representations are identical. These may bedesignated as the MinMax numbers for fqng. But what are these numbers?Inspection of Figures 4 and 5, buttressed by an argument paralleling thatused in [5] relating to fPng, establishes that the MinMax sequence fQngconsists of those numbers whose representations (3.1) and (3.3) have coe�-cients �i and �i of qi which are all unity, i.e. for which �i = �i = 1, wherei = 1; 2; 3; � � �.Write Qn = nXi=1 qi: (4.1)Take Q0 = 0: (4.2)Then by (2.4) and (1.8), Qn = Pn+1 � 1 (4.3)that is, Qn = �n+1 � �n+1�� � � 1 (Binet form) (4.4)



42 Applications of Modi�ed Pell NumbersAssembling this information in order, we �nd that the �rst few members ofthe MinMax sequence fQng for fqng are:n 1 2 3 4 5 6 7 8 9 10 � � �Qn 1 4 11 28 69 168 407 984 2377 5740 � � � (4.5)Using (4.3) with (1.2), or (4.4), one discovers the recursionQn+2 = 2Qn +Qn + 2; (4.6)the Simson formula analogue for fQngQn+1Qn�1 �Q2n = (�1)n+1 � 2Pn; (4.7)and nXi=1 Qi = qn+2 � 12 � (n+ 1): (4.8)Generating function for fQng is(1 + x)(1� 3x+ x2 + x3)�1 = 1Xn=1Qnxn�1: (4.9)Other relationships of interest includeQn �Qn�1 = qn (4.10)Qn + Qn+1 = qn+2 � 2 (4.11)Qn �Qn�2 = 2Pn (4.12)Qn + Qn+2 = 2qn+2 � 2 (4.13)Q2n �Q2n�1 = qn(qn+1 � 2) (4.14)Q2n � Q2n�2 = 4Pn(qn � 1) (4.15)Q2n + Q2n+1 = P2n+3 � 2qn+2 + 2: (4.16)Discoveries of further properties of fQng, e.g. divisibility properties, maybe unearthed ad in�nitum, ad nauseam according to one's fortitude andmotivation.



A.F. Hordam 43Worthy of recording is the following relationship, where fNng is thesubsidiary MinMax sequence of fMng - see [5] -:2Qn = 2Pn+1 � 2 from (4:3)= (2Pn+1 � 1)� 1= Nn � 1 from [5]5 The Subsidiary MinMax Sequence fRngSuppose we introduce the subsidiary MinMax sequence fRng of fQngde�ned recursively byRn = Qn+1 + Qn�1 (R0 = 0; Q�1 = �1): (5.1)Values of Rn are, from (4.5) thus:n = 1 2 3 4 5 6 7 8 � � �Rn = 4 12 32 80 196 476 1152 2784 � � �= 4(1 3 8 20 49 119 288 696 � � �)= 4Mn: (5.2)where fMng is the MinMax sequence for fPng examined in [5].No undue surprise should emanate from this fact, for, with the notationand results of [5],Rn = (Mn+1 +Mn) + (Mn�1 +Mn�2) = Qn+1 +Qn�1= (2Mn +Mn�1 + 1) +Mn +Mn�1 + (Mn � 2Mn�1 � 1)= 4MnProperties of fMg enumerated in [5] may accordingly be transferred tofRng, provided the appropriate modi�cations are made. Thus, for instance,we have the recurrence relationRn+2 = 2Rn+1 + Rn + 4 (R0 = 0); (5.3)4(1� 3x+ x2 + x3)�1 = 1Xn=1Rnxn�1 (generating function); (5.4)Rn+1Rn�1 � R2n = 8((�1)n � qn) (Simson0s formula); (5.5)and Rn = �n+1 + �n+1 � 2 (Binetform): (5.6)



44 Applications of Modi�ed Pell NumbersDivisibility attributes of fMngmentioned in [5] automatically carry overto fRng. Of course, the quality of primeness is absent.Neither the sequence fRng nor the sequence fqng is listed in [13].References to many seminal contributions to representations involvingFibonacci and Lucas numbers (e.g. these by Zeckendorf and Lekkerkerker)are to be found in [5].6 Negatively Subscripted Qn.Though it is not meaningful in the context of representations to extendfQng through negative values of n, let us nonetheless complete the math-ematical theory by considering the numbers Q�n; n > 0. Imagine thatthe recursive statement (4.6) is applied to negative subscripts. Then thefollowing table results:n � � � 9 8 7 6 5 4 3 2 1 0 1 � � �Q�n � � � �409 170 �71 28 �13 4 �3 0 �1 0 1 � � �(6.7)Inherent in (6.1) is the recursionQ�n+2 = 2Q�n+1 +Q�n + 2: (6.8)Many other characteristic features of fQ�ng are deducible, e.g. (cf. (4.3)),Q�n = P�n+1 � 1: (6.9)Replacing n by �n in (4.4), (4.7), and (4.9) readily produces expressions forthe Binet form, Simson's formula, and the generating function, respectively.Similar avenues for development exist in the case of R�n, n > 0.Each of Q�n and R�n, where n > 0, opens up fertile new territory forexploration.However, we must restrict over freedom of choice to our stated goal: therepresentations of the integers by qn, where n may be positive or negative.7 Representation of Any Integer by fq�ng, n > 0.To demonstrate the truth of Theorem 3.1 below, two options are avail-able to us, namely,(i) to follow the techniques for Fibonacci numbers used in [3], and(ii) to modify the proof in [3] to suit our purposes.



A.F. Hordam 45Initially, (i) was attempted but its procedures seemed too intricate topursue. Possibly it is still amenable to mathematical discipline. However,the treatment de�ned in (ii) appeared quicker and generally more desirable(cf. [6], [4]).Heavy reliance will be placed on (2.5) in what follows.But �rst we need to note the following comments.Representationof Zero (0) Evidently the integer 0 is not representableby fqng since no qi, where i = 0; 1; 2; � � � is zero. To represent 0, we need tointroduce a negatively subscripted qn, via q�1:0 = 1:q�1 + 1:q0: (7.1)Theorem 7.1 The representation of any integer N asN = 1Xi=0 aiq�i (ai = 0; 1;or 2) (7.2)where ai = 2) ai+1 = 0; (7.3)is unique and minimal.Proof Suppose there are two di�erent representationsN = hXi=0 aiq�i ak 6= 0; ai = 2) ai+1 = 0 (7.4)N = mXi=0 biq�i bm 6= 0; bi = 2) bi+1 = 0 (7.5)Case I Assume h = m. Conceivably, the numbers in (7.3) and (7.4) arethe same but their coe�ecients ai; bi are generally di�erent.Write ci = ai � bi (ci = 1;�1;�2; i = 0; 1; 2; � � � ;m): (7.6)Subtract (7.4) from (7.3). After simpli�cation using (7.5), we derivecmq�m + m�1Xi=0 ciq�i = 0 (m � 1): (7.7)Employing (2.5), we see that for a maximum or a minimum sum (7.6) i.e.,ci = �2 where i = 0; 1; 2; � � �;m� 1, we must havecmq�m + (�1)m(q�m � q�m + 1) = 0 (m � 1) (7.8)



46 Applications of Modi�ed Pell Numbersin which the notation of (1.10) may alternatively be used. Concentrate nowon cmq�m because this term reigns supreme over the sums (7.6) and (7.7).m even (q�m > 0) Equation (7.7) now yields(cm + 1)q�m � q�m+1 = 0 (m � 2): (7.9)So, with m � 2, cm = 0 ) q�m = q�m+1cm = 1 ) q�m�1 = 0cm = 2 ) q�m = q�m�1:For m odd (q�m < 0: Under these circumstances (7.7) becomes(cm � 1)q�m + q�m+1 = 0 (m � 1): (7.10)Then, for m � 1,cm = 0 ) q�m = q�m+1 as beforecm = 1 ) q�m+1 = 0cm = 2 ) q�m = �q�m+1:None of these can possibly be valid, as a little checking discloses. Similarreasoning can be applied for cm = �1;�2: Consequently, the assumption inCase I is untrue.Summary of Case I conclusions If h = m, then ai = bi where i =0; 1; 2; � � �;m. That is, (7.3) and (7.4) are identical, so the representation(7.1) with (7.2) is unique.Case II Assume h > m: Consider the set of coe�cients of q�i of lengthk + 1 in (7.1), namely, (a0; a1; a2; � � � ; ak�1; ak): (7.11)For a minimum sum, we must have the arrangement(0; 2; 0; 2; 0;2; � � � ; 0; 2) (7.12)while for a maximum sum we have(2; 0; 2; 0; 2;0; � � � ; 2; 0) (7.13)Now replace the symbolism used in Figure 2 by the corresponding asteriskedsymbolism, e.g., rk is replaced by r�k. Then the appropriate data may be



A.F. Hordam 47tabulated in this manner (cf. Figure 2 and the discussion germane to it)with the aid of (2.8) and (2.9):k r�k N�mink N�maxk� 01 � �2; � � � ; 2 �q�2 + 1 = �2 �q�1 + 1 = 2� 12 � �16; � � � ; 8 �q�4 + 1 = �16 �q�3 + 1 = 8� 23 � �98; � � � ; 42 �q�6 + 1 = �98 �q�7 + 1 = 240... ... ... ...� mm + 1 � �x; � � � ; y �q�2(m+1) + 1 = �x �q�2m�1 + 1 = yk I�k� 01 2P2 + 1 = 5� 12 2P4 + 1 = 25� 23 2P8 + 1 = 817... ...� mm + 1 2P2(m+1) + 1 = x+ y + 1Basic Data for Theorem 7.1Appealing to (2.8) and (2.9), we may check this information thus:I�k = N�maxk � N�mink + 1 for the zero representation= (�q�2m�1 + 1)� (�q�2(m+1) + 1) + 1= q�2m�2 � q�2m�1 + 1= 2P2(m+1) + 1 by (1:4); (1:10):



48 Applications of Modi�ed Pell NumbersEvidently, each number N , as it occurs for the �rst time in Figure 3, isrepresented uniquely and minimally, E.g.,�10 = (1q0 + 0q�1 + 1q�2 + 2q�3) + 0q�4 + 0q�5 + 0q�6 + � � �has a unique minimal representation 1q0 + 1q�2 + 2q�3, i.e., the sequence(1; 1; 0; 2). We conclude that h not greater than m and similarly that h notless than m . Consequently, h = m. Hence, Case I and the Summary, aretrue.Collecting together all the arguments above, we agree that the validityof the Theorem has been established. (Consult Figure 6 and 7 for details ofthe numerical mechanism of Theorem 7.1)There can be no maximal representation of a number by means of neg-atively subscripted qn. Arguments for this salient feature are analogous tothose used in [6] for negatively subscripted Pn. Having asserted this, wemay now mentally review our attainments. These con�rm that our statedobjectives have indeed been achieved.References[1] P.S. Bruckman. Solution to Advanced Problem H-361. The FibonacciQuarterly, 23(1):95{96, 1985.[2] F.J. Budden. An Introduction to Number Scales and Computers. Long-mans, 1965.[3] M.W. Bunder. Zeckendorf Representations Using Negative FibonacciNumbers. The Fibonacci Quarterly, 30(2):111{115, 1992.[4] A.F. Horadam. An Alternative Proof of a Unique Representation The-orem. Submitted.[5] A.F. Horadam. MinMax Sequences for Pell Numbers . Submitted.[6] A.F. Horadam. Unique Minimal representation of Integers by Nega-tively Subscripted Pell Numbers. In Press.[7] A.F. Horadam. Zeckendorf Representations of Positive and NegativeIntegers by Pell Numbers. In Press.[8] A.F. Horadam and Br. J.M. Mahon. Pell and Pell-Lucas Polynomials.The Fibonacci Quarterly, 23(1):7{20, 1985.[9] J.L. Brown Jr. A New Characterization of the Fibonacci Numbers.The Fibonacci Quarterly, 3(1):1{8, 1965.



A.F. Hordam 49[10] E. Lucas. Th�eorie des Nombres. Blanchard, 1961.[11] Br. J.M. Mahon. M.A.(Hons.) Thesis. PhD thesis, The University ofNew England, Armidale, Australia, 1984.[12] W.J. Miller. Mathematical questions and solutions. EducationalTimes, 1:9, 1916.[13] N.J.A. Sloane. A Handbook of Integer Sequences. Academic Press,1973.[14] V. Th�ebault. Concerning two classes of remarkable perfect squarepairs. American Mathematical Monthly, 56:443{448, 1949.[15] V.E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Houghton Mi�in,1969.
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50 Applications of Modi�ed Pell NumbersN+ q1 q2 q3 q4 q5 N+ q1 q2 q3 q4 q51 1 26 2 1 12 2 27 1 1 13 1 28 1 1 1 14 1 1 29 2 1 1 15 2 1 30 2 1 16 2 31 2 17 1 32 1 2 18 1 1 33 2 2 19 2 1 34 210 1 1 35 1 211 1 1 1 36 2 212 2 1 1 37 1 213 2 1 38 1 1 214 2 39 2 1 215 1 2 40 2 216 2 2 41 117 1 42 1 118 1 1 43 2 119 2 1 44 1 120 1 1 45 1 1 121 1 1 1 46 2 1 122 2 1 1 47 2 123 2 1 48 1 124 1 1 49 1 1 125 1 1 1 50 2 1 1Fig. 3: Minimal Representations of Positive Integers by Sums of the Numbers qiwhere i = 1; 2; 3::::



A.F. Hordam 51N+ q0 q1 q2 q3 q4 N+ q0 q1 q2 q3 q41 1 26 1 2 2 12 1 1 27 1 2 1 13 1 2 28 1 1 1 14 1 1 29 1 1 1 1 15 1 1 1 30 1 2 1 1 16 1 2 1 31 1 2 1 17 1 2 32 1 1 2 1 18 1 1 2 33 1 2 2 1 19 1 2 2 34 1 2 2 110 1 2 1 35 1 1 2 111 1 1 1 36 1 1 1 2 112 1 1 1 1 37 1 2 1 2 113 1 2 1 1 38 1 2 2 114 1 2 1 39 1 1 2 2 115 1 1 2 1 40 1 2 2 2 116 1 2 2 1 41 1 2 217 1 2 2 42 1 1 2 218 1 1 2 43 1 2 2 219 1 1 1 2 44 1 2 1 220 1 2 1 2 45 1 1 1 221 1 2 2 46 1 1 1 1 222 1 1 2 2 47 1 2 1 1 223 1 2 2 2 48 1 2 1 224 1 2 1 49 1 1 2 1 225 1 1 2 1 50 1 2 2 1 2Fig. 4: Maximal Representations of Positive Intergers by Sums of the Numbersqi, where i = 0;�1;�2; ::::



52 Applications of Modi�ed Pell Numbers0 1 1N+ q0 q�1 q�2 q�3 q�4 q�5 q�6 N+ q0 q�1 q�2 q�3 q�4 q�5 q�61 1 26 1 1 22 2 27 1 23 1 28 1 1 24 1 1 29 2 1 25 2 1 30 1 1 26 2 31 1 1 1 27 1 2 32 2 28 2 2 33 1 29 1 1 1 34 210 1 1 35 1 211 1 1 1 36 2 212 2 1 1 37 1 213 1 1 1 38 1 1 214 1 1 1 1 39 2 1 215 2 1 40 2 216 1 1 41 1 2 217 1 42 2 2 218 1 1 43 1 2 1 119 2 1 44 2 1 120 1 1 45 1 2 1 121 1 1 1 46 2 2 1 122 2 1 1 47 1 2 1 123 2 1 48 1 1 2 1 124 1 2 1 49 2 1 2 1 125 2 2 1 50 2 2 1 1Fig. 5: Minimal Representations of Positive Intergers by Sums of the Numbers qi,where i = 0;�1;�2; ::::



A.F. Hordam 530 1 1N+ q0 q�1 q�2 q�3 q�4 q�5 N+ q0 q�1 q�2 q�3 q�4 q�5�1 1 �26 2 1 1�2 2 �27 1 1 1 1 1�3 1 1 1 �28 1 1 1 1�4 1 1 �29 2 1 1 1�5 2 1 �30 1 1 1 1�6 1 1 �31 1 1 1�7 1 �32 1 1 1 1�8 1 1 �33 2 1 1 1�9 2 1 �34 1 2 1�10 1 1 2 �35 2 1�11 1 2 �36 2 1 1�12 2 2 �37 1 1 1�13 1 2 �38 1 1�14 2 �39 2 1�15 1 2 �40 1 1�16 2 2 �41 1�17 1 2 1 1 �42 1 1�18 2 1 1 �43 2 1�19 2 1 1 1 �44 1 1 1 1�20 1 1 1 1 �45 1 1 1�21 1 1 1 �46 2 1 1�22 2 1 1 �47 1 1 1�23 1 1 1 �48 1 1�24 1 1 �49 1 1 1�25 1 1 1 �50 2 1 1Fig. 6: Minimal Representations of Negative Integers by Sums of the Numbers qi,where i = 0;�1;�2; ::::


