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1 Background

Define the sequence {q,} for all integers n by the recurrence

n+2 = 2(]n+1 + qn (qD = 1a q1 = 1); (11)
and the associated Pell sequence {P,} for all integers by the recurrence
Phio=2P, 11+ P, (Ppb=0,P =1). (1.2)

For a few basic relationships connecting P, and g,,, see, for instance, [1] and
[14].

Closely related to {g,} is the Pell-Lucas sequence {Q,} which has been
extensively analyzed in a series of publications (e.g. [8], [11]), principally in
relation to {P,}, but also in its own right. In fact, @, = 2¢,,. Consequently,
the known properties of {Q),} are easily transferable to {q,}.

Here, we are concerned only with {¢,} and more especially, with the
problem of representing any integer by sums of the numbers ¢,.

For this purpose, we require the extension of the sequence {g,} to neg-
ative values of n. Inevitably, a study of {¢q,} involves familiarity with P,.
Using (1.1) and (1.2), we readily derive the following tabulation:

n ... -6 -5 -4 -3 -2 -1 0123 4 5 6 -
qn - 99 —41 17 =7 3 -1 1 1 3 7 17 41 99 ---
P, - =70 29 —12 5 =2 101 2 5 12 29 70 ---

Fig. 1: Values of ¢n, P, (=6 < n <6).

Clearly
q—n = (_1)HQn (13)
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and
P, =(-1)"*t'p,. (1.4)
Also,
gn =P+ Ppr1=Pop1 — Py = w (1.5)
while
2Py =qn +qn-1=Gn41 — qn = W% (1.6)

Explicit Binet forms for ¢, and P, are

an + it
and
P, = P (1.8)

where «,3 are the roots of the characteristic equation z? — 2z + 1 = 0 of
the recurrence relations (1.1) and 1.2), i.e.,

With negative subscripts, (1.6) becomes

-n +q-n-
2P—n =q-n +q_pn_1= q—n+1 —4—n = % (110)

The Name of the Sequence {q,} References to the numbers ¢, in
Sloane [13] are associated with Thébault [14] in 1949, and earlier in 1916
with an unspecified writer in [12]. Both P, and ¢,, were designated Fudozus
numbers by Budden [2] in 1969, though T have no independent information
of this claim.

Lucas [10] makes no specific reference to ¢, so far as I am aware, but he
does use the numbers 2¢,, which he designates V;, — a generic symbol of his,
and couples them with P, (his U,,) as Suites de Pell. Because of these his-
torical origins, I have called 2¢,,, which I label @,,, the Pell-Lucas numbers.
(Perhaps, then, p, might be named the “quasi Pell-Lucas numbers”?)

All things considered, T accept the nomenclature of Bruckman [1], who
refers to ¢, as modified Pell numbers, as suitably apt, and to this I have

adhered.
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2 Properties of {¢,}

Some properties of {g,} per se which are relevant to our study include
the Simson formula

In1dn—1 — 45 = 2(=1)" ! (2.1)
and the summations
n . -1
3 g = P 5 (2.2)
i=1

n L =1
Y guio =L 5 (2.3)
i=1

Z%z%qzaﬁlq by (1.6) (2.4)
i=1
Sy, ED e = gens)
D (Nigu = T = () P, by (L10)(25)
i=0
g = 21+ qn-3+ - +qatq)+1 nodd(g=1)
= 2(gn-1+qn-s3+---+aq3s+q)+1 neven(cf. (2.2),(2.3))
(2.6)
n —qn _1
Yop= T - (2.7)
i=1

Checking on the validity of these results is left to the vigilance of the reader.
Moreover,

& “Y—-2n— +1

ZQ—zi S 2 - (2.8)
=0

& —4Y-2n + 1
> i =~ (2.9)
i=1

Presence of 0 as the starting point in (2.8) is to be especially noted.

3 Representation of Positve Integers By {g.}, n > 0

A. Minimal Representation
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Theorem 3.1 The representation of a positive integer N > 0 in the form

N=> aig (a;=010r2) (3.1)
i=1
where
a;=2=>a,_1=0 (32)

1s unique and minimal.

Proof This is similar to that for {P,} in [7], with appropriate adjust-
ments. E.g., use (2.6). Alternatively, consult the proof given in outline
after Theorem 2.

By the phrase minimal representation we mean the representation with
the least number of numbers ¢; occurring in the sum (3.1), subject to the
proviso (3.2). Such a representation may be called a Zeckendorf represen-
tation [7]). Figure 4 gives the minimal representations of N by {¢,} : 1 <
N < 50. Absence of ¢g in (3.1) ought to be compared with the situation in
(3.3) for Theorem 3.2.

A “Greedy” Algorithm. Remarks similar to those in [7] regarding a
“greedy algorithm” for {P,} are also applicable in the case of {¢,}. As an
illustration, from Figure 1 we have

350 — g7 =111, 111 — g5 =70, 70 — q5 = 29, 29 — q4 = 12, 12 — ¢35 = 5,
b—q:=2,2—¢q1 =1, 1—¢ =0, so that
350 = g7 + 2¢5 + qa + g3+ q2 + 2q1.

B. Maximal Representation. By a mazimal representation, we mean
the greatest number of ¢; occurring in the sum (3.3) below, in the context
of the criteria (3.4).

Introduction of ¢y. For maximality, we must introduce go = 1. Otherwise
2, for example, could not be expressed maximally (2 = 1.go + 1.¢1). Lucas
numbers L,, similarly require the use of Ly = 2 in the theory of maximal
representations [15]. But, for uniqueness, we define 1 = ¢;. Furthermore,
in the ensuing MinMax theory (section 4) we require ¢; = 1 (not ¢g = 1)
since qq is absent in considerations of minimality.

Pertinent to our usage is the fact that in section 4 2¢o(= 2) is never
used, only 1qq.

Thus, the special purpose of ¢¢ for maximality is to fill in the gap (2 =
3 —1) between ¢; =1 and ¢ = 3.
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Theorem 3.2 FEvery positive integer N > 0 has a unique representation in
the form

N=> pigi (B =01, or2) (3.3)
i=0

where

Bi=0 = fioi=2

{ Bm =1 or 2. (3.4)

Proof of this Theorem has a number of lemma as a prologue:
First consider the sequence of coefficients of ¢; in (3.3) of length k > 1,

namely,

(60a61a62a"'a6k—1) (35)

subject to the criteria (3.4).

Write S = the number of sequences (3.5) with (3.4) attached
ry = the range of values of N for Sy
N,?”” = the minimum number of r;
N = the maximum number of r;,
Iy = the number of integers in 7.

Data relevant to these symbols for the number N in (3.3) are:

k| Sy - Nmin  Nmaz [
115 1

2| S, 2,3 2P, 2P —1 2q
3| Ss 4,9 2P, 2P;—1 2¢
4158, 10,---,23 2Py 2P,—1 25
5 S5 24, 5T 2P, 2P5—1 2q
k|Sy 2Pp_q1---,2Pp—1 2P4_1 2P,—1 2q4_1

Fig. 2: Basic Data for Theorem 2

Let us elaborate a little on this information.

Lemma 3.1 2P,_1 < N <2P,—1 (k>2).
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Proof: For a sequence (3.5) of length k£ > 2, the maximum number NJ***
which it can represent is given by

(1,2,2,2,---,2)
—_——

% digits
corresponding to
N = Lgo+ 23000
= 142 |BEe= ] by (11),(24) 56
gkt qr-1—1
= 2P, -1 by (1.6).

The minimum number N,?”” for a sequence of length k is obtained by the
following reasoning;:

After the number in (3.6), the next number in order is (2P, —1)+1 = 2P;
which occurs as the first number in the (next) sequence of length & + 1.
Accordingly, the minimum number in the sequence of length & is derived
from 2P by replacing k by & — 1, 1.e., N,?”” = 2P;_1. Hence

2Pp_1 < Nleq2Py — 1 (k> 2).

Tk
Corollary 3.1 When k — 1, we are left merely with the number 1.

Lemma 3.2 S; = 2¢;—1 (k> 2).

Proof From Lemma 3.1, the number of numbers I}, included in the range
rt, which is the same as the number of sequences Sg, is

Sk = (QPk—l)—{(QPpk_l—l}IIk
2Py — Py_1)

Lemma 3.3 k is uniquely determined by N (5 #0).

This is obvious from Figure 2. As an example, consider

N = 1000

816 < 1000 < 1969 (= 1970 — 1)
2Ps < 1000 < 2P — 1

k=9

¢ Ul
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(with 7o = 1969 — 815 = (1970 — 1) — (816 — 1) = 1154 = 2q,).
Lemma 3.4 35 (# 0) is uniquely determined by N.

This is clearly so, since, from (3.3), N — Byq; is a specific number.

Forlnstance,N:50:>{N_q4 = 142464+7+17 = 33 (u=

Proof of Theorem 3.1 Assembling all the evidence which has followed
the enunciation of Theorem 3.1 (namely, Figure 2 and Lemmas 3.1-3.4), we
are led to accept the validity of the Theorem.

Observation We remark that the numbers N** are identical with the
subsidiary MinMaz numbers Ny_1 (k > 1) for Pell numbers [5]. The reason
for this is that, by (3.6), N;?*" = 2P, — 1 = Nj_1 by [5].

Alternative Proof (Outline) of Theorem 3.1  This may be set out to
parallel the treatment in Theorem 3.1 by using similar techniques. Firstly,
consider the sequence of length & in (3.7)

(ala g, -, ak)~
The minimum number represented by this sequence is given by

(anaoa"'al)
~———

k digits

1e., qk.

The maximum number is given by
(2,0,2,0,---,2,0)0r (0,2,0,2,---0,2)

depending on the parity of &, i.e., gap41 — 1 or ¢o2p — 1 from (2.2) and (2.3)
respectively. Eventually, we may assert (replacing Sy in Lemma 3.2 by sy, ):

Lemma 3.5 ¢ < N < qpy1—1
Lemma 3.6 s, = 2F;.

Lemma 3.7 k is uniquely determined by N (ap # 0).

N-2q = 1424647 = 16 (Ba=2)
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Lemma 3.8 «ay, (# 0) is uniquely determined by N.

Gathering together these results, we establish the validity of Theorem 3.1.

Remarks
(i) The ranges in the above treatment for Theorem 3.1 are:
1,2, 3,---,6; 7,---,16; 17,---,40;
(ii) Figure 5 gives representations of N for 1 < N < 50.
In Figure 4, 2 is always preceded by 0 (except in the first column).
(iii) { In Figure 5, 0 is always preceded by 2 (except in the last column).

That is, there is a type of duality in the enunciations of Theorems 3.1
and 3.2 -cf. the criteria (3.2) and (3.4). In a similar context for Fibonacci

numbers, Brown [9] refers to a “Dual Zeckendorf Theorem”.

4 The MinMax Sequence {Q,}.

Comparing the data in Figures 4 and 5 we discern that, for certain values
of NV, the minimal and maximal representations are identical. These may be
designated as the MinMaz numbers for {g,}. But what are these numbers?
Inspection of Figures 4 and 5, buttressed by an argument paralleling that
used in [5] relating to {P,}, establishes that the MinMaz sequence {Q,}
consists of those numbers whose representations (3.1) and (3.3) have coeffi-
cients «; and §; of ¢; which are all unity, i.e. for which «; = 3; = 1, where
1=1,2,3,---

Write
Qn=>_a. (4.1)
i=1
Take
Qo =0. (4.2)
Then by (2.4) and (1.8),
Qn="PFPoy1—-1 (4.3)

that is,
an+1 _ Bn+1

Qn: Oz—ﬁ

1 (Binet form) (4.4)
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Assembling this information in order; we find that the first few members of
the MinMax sequence {@,} for {¢,} are:

3 4 5 6 7 8 9 10

n|l 2 (4.5)
Qn |1 4 11 28 69 168 407 984 2377 5740 ’
Using (4.3) with (1.2), or (4.4), one discovers the recursion
the Simson formula analogue for {Q,}
Qn+1Qn—1 - Qrzl = (_1)n+1 - 2Pna (47)
and
n N _ 1
S Qi= q%—(n—l—l). (4.8)
i=1
Generating function for {Q,} is
(1+2)(1-3z+2"+ 271 = Qna" . (4.9)
n=1
Other relationships of interest include
Qn—Qn_1=14qn (410)
Qn + Qny1 = dny2 — 2 (4.11)
Qn — Qn-2=2P, (4.12)
Qn + Qn+2 = 2(]n+2 -2 (413)
Qn — Qno1 = 4n(dns1 — 2) (4.14)
Qn = Qnoz=4Pu(ga = 1) (4.15)
Qr + Qi1 = Popgs — 2¢p42 + 2. (4.16)

Discoveries of further properties of {@,}, e.g. divisibility properties, may
be unearthed ad infinitum, ad nauseam according to one’s fortitude and
motivation.
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Worthy of recording is the following relationship, where {N,} is the
subsidiary MinMax sequence of {M,,} - see [5] -:

2Q, = 2P,y —2 from (4.3)
= (2Pup—1)—1
= N, -1 from [5]

5 The Subsidiary MinMax Sequence {R,}

Suppose we introduce the subsidiary MinMaz sequence {R,} of {Qn,}
defined recursively by

Rn :Qn+1+Qn—1 (ROIOaQ—lz_l)' (51)
Values of R, are, from (4.5) thus:

n|l= 1 2 3 4 5 6 1 8
R, | = 4 12 32 80 196 476 1152 2784
= 41 3 8 20 49 119 288 696 --) (5:2)
= 4M,.

where {M,} is the MinMaz sequence for {P,} examined in [5].
No undue surprise should emanate from this fact, for, with the notation
and results of [5],

Rn = (Mn+1 + Mn) + (Mn—l + Mn—Z) = Qn+1 + Qn—l
= (2Mn+Mn—1+1)+Mn+Mn—l+(Mn_2Mn—1_1)
= 4M,

Properties of {M} enumerated in [5] may accordingly be transferred to
{R,}, provided the appropriate modifications are made. Thus, for instance,
we have the recurrence relation

Russ = 2Rng1 + Rn+4  (Ro=0), (5.3)

41 =3z 4+ 2%+ 27 = Z Rn2"~1  (generating function), (5.4)
n=1

RpypiRn 1 — R:2 =8((=1)" — ¢») (Simson’s formula), (5.5)

and

R, =a" ™ 4 3"t — 2 (Binetform). (5.6)
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Divisibility attributes of { M, } mentioned in [5] automatically carry over
to {R,}. Of course, the quality of primeness is absent.

Neither the sequence {R,} nor the sequence {g¢,} is listed in [13].

References to many seminal contributions to representations involving
Fibonacci and Lucas numbers (e.g. these by Zeckendorf and Lekkerkerker)
are to be found in [5].

6 Negatively Subscripted Q.

Though it is not meaningful in the context of representations to extend
{@, } through negative values of n, let us nonetheless complete the math-
ematical theory by considering the numbers @_,, n > 0. Imagine that
the recursive statement (4.6) is applied to negative subscripts. Then the
following table results:

n _ 9 8 7 6 5 4 3 2 1 01
Q_, --- —409 170 -71 28 —-13 4 -3 0 -1 0 1
(6.7)
Inherent in (6.1) is the recursion
Qont2=2Q0_ 1 +Q_n+2. (6.8)

Many other characteristic features of {@)_,} are deducible, e.g. (cf. (4.3)),
Q_n=P -1 (6.9)

Replacing n by —n in (4.4), (4.7), and (4.9) readily produces expressions for
the Binet form, Simson’s formula, and the generating function, respectively.

Similar avenues for development exist in the case of R_,, n > 0.

Each of Q_,, and R_,,, where n > 0, opens up fertile new territory for
exploration.

However, we must restrict over freedom of choice to our stated goal: the
representations of the integers by ¢,,, where n may be positive or negative.

7 Representation of Any Integer by {¢_»}, n > 0.
To demonstrate the truth of Theorem 3.1 below, two options are avail-
able to us, namely,

(i) to follow the techniques for Fibonacci numbers used in [3], and

(ii)  to modify the proof in [3] to suit our purposes.
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Initially, (i) was attempted but its procedures seemed too intricate to
pursue. Possibly it is still amenable to mathematical discipline. However,
the treatment defined in (ii) appeared quicker and generally more desirable
(cf. [6], [4))-

Heavy reliance will be placed on (2.5) in what follows.

But first we need to note the following comments.

Representation of Zero (0) Evidently the integer 0 is not representable
by {¢.} since no ¢;, where 1 = 0,1,2, - is zero. To represent 0, we need to
introduce a negatively subscripted ¢,, via ¢_1:

0=1.q-1+ Lo (7.1)

Theorem 7.1 The representation of any integer N as

N=> aiq—i (a;=0,1,0r 2) (7.2)
i=0
where
a; =2 = Aj41 = 0, (73)

15 unique and minimal.

Proof Suppose there are two different representations

A

N = Zaiq_i ap 75 0,a; =2 = Aj41 = 0 (74)
7=0

N=> bigi bpm#0,b;=2=b11=0 (7.5)
7=0

Case I  Assume h = m. Conceivably, the numbers in (7.3) and (7.4) are
the same but their coeffiecients a;, b; are generally different.

Write
G =a;—b (=1,%1,42;¢{=0,1,2,---,m). (7.6)
Subtract (7.4) from (7.3). After simplification using (7.5), we derive

m—1

Cmem + Z ciqg—; =0 (m>1). (7.7)

i=0

Employing (2.5), we see that for a maximum or a minimum sum (7.6) i.e.,
¢i = 2 where : = 0,1,2,- -+ m — 1, we must have

em@-m +(=1)"(q-m —g=m +1) =0 (m>1) (7.8)
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in which the notation of (1.10) may alternatively be used. Concentrate now
on ¢m¢—m because this term reigns supreme over the sums (7.6) and (7.7).

m even (¢_m, >0)  Equation (7.7) now yields

(4 D — gmpr =0 (m 2 2) (7.9)
So, with m > 2,

Cm = 0 = d—m = qd—_m+41

tm = 1 = q-m-1 = 0

Cm = 2 = d—m — d—m-1.

For m odd (¢—m < 0: Under these circumstances (7.7) becomes

(em—1)¢em +9—my1 =0 (m>1). (7.10)
Then, for m > 1,
cm = 0 = q_m = ¢_m+1 as before
em = 1 = q¢my1 = 0
m = 2 = q¢-m = —4-m+1-

Nomne of these can possibly be valid, as a little checking discloses. Similar
reasoning can be applied for ¢, = —1, —2. Consequently, the assumption in
Case I is untrue.

Summary of Case I conclusions If h = m, then a; = b; where i =
0,1,2,---,m. That is, (7.3) and (7.4) are identical, so the representation
(7.1) with (7.2) is unique.

Case IT  Assume h > m. Consider the set of coefficients of ¢q_; of length
k+1in (7.1), namely,

(ao, a1, az, -, ag—1, ax). (7.11)
For a minimum sum, we must have the arrangement
(0,2,0,2,0,2,---,0,2) (7.12)
while for a maximum sum we have
(2,0,2,0,2,0,---,2,0) (7.13)

Now replace the symbolism used in Figure 2 by the corresponding asterisked
symbolism, e.g., r 1s replaced by r§. Then the appropriate data may be
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tabulated in this manner (c¢f. Figure 2 and the discussion germane to it)

with the aid of (2.8) and (2.9):

k 7“;: N}:mm N;;max
0 _Q—1+1:2
1 —2,---,2 —q_,+1=-=2
: — +1=8
2 —16,---,8 —q.+1=-16 It i =
2 —q_,+ 1 =240
3 —98,---,42 —q_¢+1=-98
m B Ll
m+1 &, Y —q_2(m+1) +1=—z -2m- =Y
k Ir
0
1 2P, +1=5
1
2 2P 4+1=25
2
3 2Ps +1 =817
m
m+1 2Py t+l=z+y+1

Basic Data for Theorem 7.1

Appealing to (2.8) and (2.9), we may check this information thus:

Iy = Ny™a® — N™n 11 for the zero representation
(=q—2m—1+1) = (=q—2(my1) + 1) + 1

= (-2m-2—q-2m—1+1

2Pymsry+ 1 by (14),(1.10).



48 Applications of Modified Pell Numbers

Evidently, each number N, as it occurs for the first time in Figure 3, is
represented uniquely and minimally, E.g.,

—10 = (1qo + O0q—1 + 1g—2+ 2¢_3) + 0q—4 + Og—5 + Og_s + - - -

has a unique minimal representation lgg + lg_s + 2¢_3, 1.e., the sequence
(1,1,0,2). We conclude that h not greater than m and similarly that A not
less than m . Consequently, h = m. Hence, Case I and the Summary, are
true.

Collecting together all the arguments above, we agree that the validity
of the Theorem has been established. (Consult Figure 6 and 7 for details of
the numerical mechanism of Theorem 7.1)

There can be no maximal representation of a number by means of neg-
atively subscripted ¢,. Arguments for this salient feature are analogous to
those used in [6] for negatively subscripted P,. Having asserted this, we
may now mentally review our attainments. These confirm that our stated
objectives have indeed been achieved.
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NY ¢ ¢ ¢ ¢ ¢ NT ¢ ¢ ¢ ¢ ¢
11 26 2 11
2 2 27 1 1 1
3 1 28 1 1 1
4 1 1 20 2 1 1 1
5 2 1 30 2 1 1
6 2 31 2 1
7 1 32 2 1
8 1 1 33 2 2 1
9 2 1 34 2
10 11 35 1 2
11 11 36 2 2
2 2 1 1 37 1 2
13 2 1 38 1 1 2
14 2 39 2 1 2
15 2 40 2 2
6 2 2 41 1
17 1 42 1 1
18 1 1 43 2 1
19 2 1 44 1 1
20 1 1 45 1 1 1
21 1 1 1 46 2 1 1
22 2 1 1 47 2 1
23 2 1 48 1 1
24 11 49 1 1 1
25 1 11 50 2 1 1

Fig. 3: Minimal Representations of Positive Integers by Sums of the Numbers ¢;
where 1 =1,2,3....
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G ¢ ¢ ¢ 9« N ¢ ¢ & ¢

Nt

26
27
28
29
30
31

32

33
34
35
36
37
38
39
40

10
11
12
13

14
15
16

41

42

17
18
19
20
21

43

44
45

46

47

22
23

48

49

24
25

50

Fig. 4: Maximal Representations of Positive Intergers by Sums of the Numbers

¢i, where 1t = 0, —1,—2,....
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0 1 1

N* qo gy g2 qos qos qos o6 N7 g0 qon g2 qos 4w 9os G-
1 1 26 1 1 2

2 2 27 1 2

3 1 28 1 1 2

4 1 29 2 1 2

5 2 1 30 1 1 2

6 2 31 1 1 1 2

701 2 32 2 2

8 2 2 33 2

9 1 1 1 34 2

10 1 1 35 1 2

11 1 1 36 2 2

12 2 1 1 37 1 2

13 1 1 1 38 1 1 2

14 1 1 1 1 39 2 1 2

15 2 1 40 2 2

16 1 41 2 2

17 1 42 2 2 2

18 1 43 1 2 1 1
19 2 1 44 2 1 1
20 1 1 45 2 1 1
21 1 1 46 2 2 1 1
22 2 1 1 47 1 2 1 1
23 2 1 48 1 1 2 1 1
24 2 1 49 2 1 2 1 1
25 2 2 1 50 2 2 1 1

Fig. 5: Minimal Representations of Positive Intergers by Sums of the Numbers ¢;,
where 1 =0,—1,—-2,....
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0 1 1
Nt qo qov g2 qos qos g5 NT g0 g oo qos g 4o
-1 1 —26 2 1 1
-2 2 —27 1 1 1 1 1
-3 1 11 —28 1 1 1 1
—4 11 -29 2 1 1 1
-5 2 1 -30 1 1 1 1
—6 1 —-31 1 1 1
-7 1 —32 1 1 1 1
-8 1 -33 2 1 1 1
-9 2 1 -34 1 2 1
-10 1 1 2 -35 2 1
—11 1 2 -36 2 1 1
-12 2 2 —37 1 1
—13 2 —38 1 1
—14 2 -39 2 1
-15 2 —40 1 1
—16 2 2 —41 1
-17 1 2 1 1 —42 1 1
—18 2 1 1 -43 2 1
-19 2 1 1 1 —-44 1 1 1 1
—20 1 1 1 -45 1 1 1
—21 1 1 1 —46 2 1 1
—22 2 1 1 —47 1 1 1
—23 1 1 —48 1 1
—24 1 1 -49 1 1 1
—25 1 1 1 =50 2 1 1

Fig. 6: Minimal Representations of Negative Integers by Sums of the Numbers ¢;,
where 1 =0,—1,—-2,....



