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Numbers Generated by the Reciprocal of ex - x - 1

By F. T. Howard

Abstract.   In this paper we examine the polynomials An(z) and the rational numbers

An = An(0) defined by means of
oo

exzx2(ex - x - I)'1 =22   An(z)x"/n\.
n=0

We prove that the numbers An are related to the Stirling numbers and associated

Stirling numbers of the second kind, and we show that this relationship appears to be a

logical extension of a simUar relationship involving Bernoulli and Stirling numbers.

Other similarities between An and the Bernoulli numbers are pointed out.   We also

reexamine and extend previous results concerning An and An(z).   In particular, it has

been conjectured that An has the same sign as —cos nd, where re    is the zero of ex —

x - 1 with smallest absolute value.   We verify this for 1 < n < 14329 and show that

if the conjecture is not true for An, then Icos i7Ô| < 10—'n— '' .    We also show that

An(z) has no integer roots, and in the interval [0, 1 ), An(z) has either two or three

real roots.

1.   Introduction.   Define the rational numbers A0, Ax, A2, . . . by means of

2xn    V1 _      x2I2

<u)        L?nôTT2)T    =e^v^r ?/«^i-« (n + 2)! ,17 = 0 v '    I 17 = 0

This definition is apparently due to L. Carlitz [4], who raised the question of whether

a theorem like the Staudt-Clausen theorem holds for the numbers An. Because of the

obvious similarity of (1.1) to the definition of the Bernoulli numbers Bn, i.e.

(1.2) e^T=  ZB»~ñ\'
ii = 0

this seems to be a reasonable question.  The writer [6] has shown, however, that

evidently such a theorem does not hold:   If p is any odd prime, then

(1.3) pmAm(p_2)l[m(p-2)]l=2m    (modp),

which implies that arbitrarily large powers of p will divide the denominator of some

An.  However, for n > 1,

(1.4) 2.4„ = 1    (mod 4),

so the denominator of An, for n > 1, is even and not divisible by 4.  This last property

is also true of the Bernoulli numbers B2fJ.
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582 F. T. HOWARD

In the present paper we reexamine questions raised in [6] and [8] about An,

and we attempt to clarify and extend the results in those papers. We also prove that the

numbers An are related to the Stirling numbers of the second kind, and we show that

this relationship appears to be a logical extension of a similar relationship involving

Bernoulli and Stirling numbers.  The goal of the present paper is to show that (1.1) is

a natural definition to make and that the An are of interest in their own right.   A

summary by sections follows.

In Section 2 we examine a conjecture made in [8] about the sign of An.  We

prove that if rée is the zero of e* - x - 1 with smallest absolute value, then An has

the same sign as -cos nd if Icos nd\ > 10~("~~'^5.  We show that An does indeed

have the same sign as -cos nO for 1 < n < 14329.

In Section 3 we examine the polynomials An(z), defined in [6] by means of

££?-,-£>»*,.

We prove that if n > l,An(z) has either two or three real roots in the closed interval

[0, 1].  We show that An(z) has no integer roots and A2n(z) has no rational roots.

For special values of n we show An(z) is irreducible over the rational field.

In Section 4 we prove some general theorems for numbers generated by the

reciprocal of any series.  We show that, in a sense, there is always an explicit formula

for these numbers, and there is also a way of expressing these numbers as a linear com-

bination of numbers which have a combinatorial interpretation.

In Section 5 we apply the theorems of Section 4 to An.  We show how An can

be expressed in terms of the Stirling numbers of the second kind and the associated

Stirling numbers of the second kind.

In Section 6 we prove some miscellaneous results for An and An(z).  We show

that 2\An\ < \Bn\, if n is even; and we prove some theorems concerning possible ration-

al roots of An(z), if n is odd.  We include in this section a table of values of cos nd,

1 < « < 46, where re'6 is the zero of e* - x - 1 with smallest absolute value.  We also

include a table indicating how the sign of An changes for 1 < n < 14329.

All calculations in this paper were performed on a Texas Instruments SR-50A

calculator.  This machine computes to thirteen significant digits and rounds off to ten

significant digits.

We note that a listing of the first 15 numbers An can be found in [6].

2.   Sign of An.  It is pointed out in [8] that by using Hadamard's factorization

theorem [17, p. 250], we can write 2An = -«! 2,™=x(xs)~n, where xx, x2, ... are the

zeros of ex - x - 1.  Using

i0.     — -i0.
xt"V     »    Xs = rse       '.

we can write
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NUMBERS GENERATED BY THE RECIPROCAL OF ex - x - 1 583

OO

(2.1) An = ~"!  L  r7" cos n6s-
s—l

If we let xx be the zero with smallest absolute value, the following conjecture was

made in [8].

Conjecture.   For n > 0, An has the same sign as -cos ndx.

We shall refer to this as "the sign conjecture", and we shall show that it is true

at least for n < 14329.  In [8] the conjecture was verified for n < 37.

It is not too difficult to find approximations for xs. If we set e* - x - 1 =0

and let x = a + bi, we see that

a = b colb - I =lnb - ln(sin b),    (sin b) exp(b cot b) = eb\

and by examining the graphs of e* and (sin x) exp(x cot x), we see that

(2.2) (2n + 1/4)tt < b < (2n + &>,       n = I, 2, . . .   .

We can compute the following approximations: xx — a + bi, with

2.08884300 <   a < 2.08884302,

7.461489270 <   b < 7.461489300,
(2-3) 74.360416° <6X< 74.360417°,

7.748360 < rx < 7.748361.

From (2.1) we see that An has the same sign as -cos ndx if

Icos ndx\ >
°°   /ri\"

Since, by (2.2) and (2.3),

oo

z

we have the following theorem.

Theorem 2.1.  If Icos ndx \ > (5/4)"2¡l2s_", then An has the same sign as

-cos ndx.

The sum in Theorem 2.1 is very small for large n.  In fact, it is not difficult to

show it is less than (5/8)"_1 and hence less than 10_("_1)/s.

Corollary. If |cos w0j| > lO-^"-1^5, thenAn has the same sign as -cos n9x.

The values of cos nd x have been computed for 1 < n < 46 and are included in

Section 6.  We see that the sign conjecture holds for 1 < n < 46, the smallest value of

cos nOl, being .005 when n = 23. We have the following approximations modulo 360

degrees.

230j = 270.289°,   466»! = 180.579°,

690j =90.869°,     920j = 1.158°.

We see that if n = 46 + k, 0 < k < 46, then An and Ak have different signs; the exact

opposite of the original pattern of signs occurs for 46 < n < 92.   (A0 is a special case
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584 F. T. HOWARD

for which the sign conjecture is not true.)  In fact, we expect A46+kH46 4- k)\ to be

approximately -(rx)'46Ak/k\.  Also, the pattern of signs for 0 < n < 92 will be re-

peated for 92 < n < 184; that is, A92+k and Ak will have the same sign for k = 1,2,

. . . , 92.  The following theorem tells exactly what the signs are for 1 < n < 327.

Theorem 2.2.  For positive n, let n = 46k + s, 0 < k < 6, 0 < s < 46. Let

s = l2m + t,0<t<l2. If t = 0,1, 4, 5,6,9 or 10, then i-l)k+m + 1An>0. If

t = 2,3,1 or 8, then i-l)k+mAn > 0. If s = 11 or 23, then i-l)k+mAn > 0. If

s = 35, then i-l)k+1An > 0.

As n gets larger, the discrepancy between 460 x and 180 degrees begins to make

a difference.   Using Table 1 in Section 6, we see that the first change in the pattern of

Theorem 2.2 occurs at n = 328 = 46-7 + 6.  That is, as k increases from 0 to 7, the

angle (46& + 6)0j changes in the following way (approximately): 86°, 267°, 87°, 268°,

88°, 269°, 89.637°, 270.2166°.  If n = 46k + s, 1 < k < 12, the pattern of Theorem

2.2 holds with one exception: if n = 46k + 6, then i~l)kAn > 0.  As « gets larger,

the pattern will continue to change.   Table 2 in Section 6 indicates when the pattern

of Theorem 2.2 changes for various values of s.  When n = 633 = 46-13+35, for

example, the pattern changes for numbers of the form 46k + 35; i.e. (~^)kA46k+3s >

0.   By checking the value of cos ndx at the numbers given in Table 2, and also at

n = 46(k - 1) + s, we see, by the corollary to Theorem 2.1, that An has the same sign

as -cos H0j for 1 < n < 14329.  The smallest value of cos n9x for 1 < n < 14329

occurs when n = 1243 and is about .00004. We have used the approximation 74.360416

< 0j < 74.360417 in these calculations.  We see by the corollary to Theorem 2.1 that

if the sign conjecture is not true for An, then |cos «0j | < 10-2865.

Theorem 2.3.  For n > 0, we never have An > 0, An + x < 0, An + 2 > 0 or

An<0,An + x>0,An+2<0.

Proof.   Suppose An > 0, An + X <0,An + 2 > 0.  Since 0X is about 74 degrees,

it is clear the sign conjecture does not hold for at least one of n, n + 1 or n + 2.

Suppose An does not have the same sign as -cos nO,.  Then by the corollary to Theo-

rem 2.1, «0j is within one degree (modulo 360 degrees) of either 90 or 270 degrees.

It is then clear that the sign conjecture does hold for An + 1 and An + 2, and, in fact,

they both must have the same sign, which is a contradiction.  If the sign conjecture

does not holds for An+X, we see that An and An+2 must have opposite signs, and if

the sign conjecture is not true for An + 2, we see that An and An + 1 must have the

same sign.  The reasoning is similar if An < 0, An + X > 0, An+2 < 0.

Using the same kind of reasoning, we have the following theorem.

Theorem 2.4.   For n > 0, we never have four consecutive numbers An, An + l,

An+2, An + 3 with the same sign.

Because of (2.1) and the fact that

f (r,/r,r<(5/8y-1,
s=2

we see that, for n > 20, if |cos(w + 1)6 x\ -rx\cosnex\ >.001, then \An + 1\ >

in + l)\An\.  On the other hand, if r,|cos n0x\ > 1.001, then (n + l)\An\ > U„ + 1|.

Thus we have the following theorem, which actually holds for all n > 0.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



NUMBERS GENERATED BY THE RECIPROCAL OF e* - x - 1 585

Theorem 2.5.  If |cos«0j| < .118, then \An + x\> (n + l)\An\. Z/|cosn01|>

.1292, then (n + l)\An\>\An + l\.

Usually (n + l)\An\ > \An + x\, but this is not true for many values of« including

n = 46k + 6,        0 < k < 6,

n = 46k + 35,      2 < k < 12,

n = 46*;+ 18,      9<fc<19.

For these particular values of n, An and ^4„+t have opposite signs, a fact that is im-

portant when we are examining the real roots oX An + 1(z).  Of course there are cases,

like n = 23, when An and An + 1 have the same sign and (n + l)\An\ < \An+l\.

3.  The Polynomials An(z).  It was proved in [8] that the polynomial An(z) de-

fined by (1.5) has at least one real root in the closed interval [0, 1] for n > 0.  In this

section we show that An(z) has either two ör three real roots in [0, 1], and in addition

we prove that A2n(z) has no rational roots for n > 0.   For a few specific values of n,

we show that An(z) is irreducible over the rational field.  These results can be compared

to similar properties of the Bernoulli and Euler polynomials [1], [2], [9], [10], [15].

In [6] the following formulas were proved.

(3.1) AM = ± ($)A/n-r,

(3.2) A'H(z) « «¿„..O),

(3.3) An(z + l)-An(z)-A'n(z)=(n2jz"-2    fer H > 1.

It follows from (3.2) and (3.3) that

(3.4) fAn(z)dz=An,

and more generally

(3.5) fy+1An(z)dz = An(y) + nyn~^2.

In the theorems that follow, we assume u/b is a rational number reduced to its

lowest terms.   Also, we note that

A0(z)=l,   Ax(z) = z-U3,

so Ax(z) does have the rational root 1/3.

Theorem 3.1.   If An(u/b) = 0, then b = 3 and u = n = 1 (mod 3).

Proof.   By (3.1) we have

3" "   3r 3"~r

and since 3"~r/(n - r)\ = 0 (mod 3), unless r = n, we have, by (1.3),

3"^(2)/«!=(-l)"    (mod 3).

It follows that if u/b is a root then b = 0 (mod 3).   Otherwise we have (-1)" =0
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(mod 3).  (See also Lemma 2.3 in [7].)  We have, from (3.1),

(,6)        o^_^ + 0^ + ¿(>^-.

In [6] it is shown that if m = [n/(p -2)] + 1, p an odd prime, then pmAjn\ = 0

(mod p).  Thus br~ 1Ar is integral (mod b) for r > 2, and we see that

(3.7) ""     "»""' i  (n\u"-2b

b 3 \2J    18

must be integral (mod 3); i.e., the above sum is a rational number with denomination

not divisible by 3. For any prime p =£ 3, let ps be the highest power of p dividing b.

Then if s > 0,

0 = psu"/b ? 0    (mod p),

by (3.6), which is impossible. Now suppose b = 3s. If s > 1, we see from (3.6) that

0 = u" (mod 3), a contradiction since g.c.d. («, 3) = 1. Hence b = 3, and since (3.7)

must be integral (mod 3), we must have u = n = 1 (mod 3).

Theorem 3.1 shows that no polynomial Aniz) has an integer root.

Theorem 3.2.  For n > 0, A2niz) has no rational roots.

Proof.   By (1.4) and (3.1), we have, for any k > 2,

2Akiz) = £ (î)z*~r + 2zk + 2fefc_1

= (1 + zf +zk + kzk-1    (mod 4).

If k = 2«, we see that 2A2n(u/3) = 1 (mod 2), so w/3 cannot be a root of A2n(z).

Unfortunately,it is not clear whether or not A2nJrXÍ7:) can have rational roots.

If we let k = 2« + 1 in the proof of Theorem 3.2, the only conclusion we can draw is

that u is odd and u=2n + l (mod 4). We do know by Theorems 3.1 and 3.2 that if

An(u/3) — 0> then n = 1 (mod 6). Furthermore, it can be proved that if p - 2 divides

n, where p is any prime number larger than 3, then An(z) does not have a rational root.

Also, if ^4n(l/3) = 0, n > 1, then n = 1 (mod 36). These last two results are proved

in Section 6.

Next we examine the real roots of An(z) on the closed interval [0, 1].

Lemma 3.1.   If n > 1, then Aniz) has at least two real roots in [0, 1].

Proof.   We shall consider four different cases, using (3.2), (3.3), (3.4).

Case 1. An > 0,An+x > 0.  We see that An + Xiz) is an increasing function at

z = 0 and that ^4W + 1(1) >An + xi0).  It follows from (3.4) that the area bounded by

An + Xiz), the x-axis and the lines x = 0, x = 1 is exactly An + X = An + j(0).  Thus for

some values of z we must have An + 1(z) <An + x, and we see there must be at least

two "critical points" on the graph, i.e., there are two real numbers a and b, 0 < a <

b < 1, such that 0 =A'n + 1ia) =A'n + xib).  Thus Ania) = 0 = Anib).  The case An <

0, An + X < 0 is similar.

Case 2. An < 0,An + x > 0.  In this case -4„ + 1(l) <^4„ + 1(0) and An + Xiz) is a
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decreasing function at z = 0.  As in Case 1, we see there must be at least two real

numbers a and b such that A'n + l(a) = 0 =A'n + i(b).  The case An >0,An + x < 0 is

similar.

Lemma 3.2.   Ifn>0, then An(z) has no more than three real roots in [0, 1 ].

Proof.   Suppose n is the smallest positive integer such that An(z) has more than

three real roots in [0, 1 ].  Then n > 3.

Case 1. An > 0, An_ x > 0.  Since .4„(z) is increasing at z = 0, we see that there

must be at least four critical points on the graph of An(z). This implies that An_xiz)

has at least four real roots in [0, 1], a contradiction.  The case An < 0, An_l < 0 is

similar.  It is clear that if the lemma is true for Aniz), and An and AnX have the

same sign, then Aniz) has exactly two real roots in [0, 1].

Case 2. An > 0, An_l < 0, Anil) < 0.  If Aniz) has at least four real roots in

[0, 1], it is clear there are at least four critical points on the graph of Aniz).  This

implies An_xiz) has at least four real roots in [0, 1], a contradiction.  The case

An < 0, An_ j > 0, Anil) > 0 is similar.

Case 3. An > 0, An_x < 0, Anil) > 0. By Theorem 2.3 we know An_2 < 0,

and from Case 1 we know An_xiz) has exactly two real roots in [0, 1].  If ^4„(z) has

at least four real roots in [0, 1], there are at least three critical points on the graph of

An(z), which is impossible.  The case An < 0, An_ x > 0, An(l) < 0 is similar.

Lemma 3.3.   If n > 0, An(z) has no multiple real roots in [0, 1].

Proof.   Suppose n is the smallest positive integer such that An(z) has a multiple

root.   By (3.2) it must be a double root.

Case 1. An > 0, An_ x>0. We know An(z) is increasing at z = 0; ^„(1) >

Ani0), and An(z) has exactly two distinct real roots in [0, 1]. We see, then, that a

double root implies four critical points on the graph of An(z), a contradiction. The

case An < 0, An_ x < 0 is similar.

Case 2. An > 0, An_l < 0, .4„(1) < 0.   The only possibility is that Aniz) has

exactly two real roots in [0, 1], one of them a double root.  By Theorem 2.3, we

know An + 1 > 0, so An + 1iz) has exactly two real roots in [0,1]. Also, An + liz) is

decreasing at z = 1, since v4„(l) < 0, and is increasing at z = 0.   This implies there

are at least three critical points on the graph of An + 1iz), a contradiction.  The case

An < 0, An_, > 0, Anil) > 0 is similar.

Case 3. An > 0, An_ x < 0, Anil) > 0.  Since Aniz) has at least two distinct

real roots in [0, 1 ], a double root implies at least three critical points on the graph of

Aniz).  We know, however, that Anl has exactly two real roots in [0, 1] since

An_2 <0.  The case An <0,An_x > 0, Anil) < 0 is similar.

By Lemmas 3.1, 3.2 and 3.3, we have the following theorem.

Theorem 3.3.  Suppose n > 1.  Then An(z) has no multiple real roots in [0, 1 ],

and

(a) if An and An_x have the same sign, then Aniz) has exactly two real roots in

[0,1].

(b) if An and An_x have opposite signs, and if n\An_x\> \An\, then Aniz) has

exactly three real roots in [0, 1].
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(c) if An and An_x have opposite signs, and if n\An_x\ < \An\, then Aniz) has

exactly two real roots in [0, 1 ].

By (3.3), the condition n\An_x\ > [AJ is equivalent to Anil) having the same

sign as AnX, if An and An_x have different signs.  Similarly, the condition n\An_x\

< \An\ is equivalent to Anil) having the same sign as An.  By Theorem 2.5 and the

remarks following it, we see that usually Anil) has the same sign as An_x.  However,

this is not the case for many values of n, such as n = 46k + 6, 0 < k < 6.

It is not clear how the roots of Aniz) are distributed outside the interval [0, 1].

If y > 0 and Aniy) < 0, it follows from (3.5) that An(y) has at least one real root

between y and y + 1.  This is because An+Xiz) is decreasing at z = y and

f*+tA„(z)dz>AH+1(y),

so there must be at least one real number a, y < a <y + 1, such that A'n+Xia) = 0 =

Ania).   By the same type of reasoning, if y < 0 and A2niz) < 0, then A2niz) has at

least one real root between y - 1 and y.  If y < 0 and A2n+X(y) > 0, then A2n+Xiz)

has at least one real root between y - 1 and y.   The distributions of the real roots of

the Bernoulli and Euler polynomials can be found in [10] and [9] respectively.

Eisenstein's irreducibility criterion has been used to show that certain Bernoulli,

Euler and van der Pol polynomials are irreducible over the rational field.  The same

method can be used on Aniz).

Theorem 3.4.  If n = 2k, k > 0, or n = mip - 2) where p is an odd prime,

2m < p, then Aniz) is irreducible over the rational field.

Proof.   If n = 2k, we have

^„(z) = 2 t ("W""" s H, s 1    (mod 2),
r=0 \   '

and furthermore 2A0^0 (mod 4).   Thus 2Aniz) is an Eisenstein polynomial and is

irreducible over the rational field.   Suppose 2m < p.   From a theorem in [6], we know

that if r is in any of the intervals [0, p - 2), \p, 2(p - 2)), . . . , [im - l)p, mip - 2)),

then Ar is integral (mod p), and also p2Ar = 0 (mod p) for 0 < r < mip - 2).  We see,

by (1.3), that if n = mip - 2) then pAn is an Eisenstein polynomial.

4.   The Reciprocal of a Series.   In this section we prove some theorems that are

true for the reciprocal of any power series.  Some of our results can be proved by using

generalized chain rule differentiation formulas; instead we shall generalize methods used

by Jordan [12] and Riordan [16].  We do not claim these results are new, though

references are somewhat hard to find.  Perhaps [14] is a good general reference.  The

goal of this and the subsequent section is to show how the numbers An are related to

the Stirling numbers, and associated Stirling numbers, of the second kind.

Suppose a0 + axx + a2x2 + • • • is a given power series, a0 ¥= 0.  We shall assume

that the series has a positive radius of convergence, though this condition is not really

necessary for the theorems of this section.   Define the numbers cn by means of

(4.1) (taA'1 = ±cnx».
\r=0 / n=0

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



NUMBERS GENERATED BY THE RECIPROCAL OF ex - x - 1 589

Then c0 = l¡a0 and 'L"=0aícn_¡ = 0.  By Cramer's rule, we have the following theo-

rem [13, p. 116]:

Theorem 4.1.   If cn is defined by (4.1), then

ax    a0        0   • • • 0

a2    ax        a0 ■ ■ ■ 0

an    an_x    an_2 ■ ■ ■ ax\

An alternate approach is the following:

„=o \„=oao     /

= i + Zafx»)  =Z(-iy za-^ •
\        „ = ifl0        / /=0 \«=ia0       /

By comparing coefficients of x, we have the next theorem.

Theorem 4.2.  If cn is defined by (4.1), then for « > 0,

^ = Z(-i)V'-\/(ao)/+1
/= i »

where for each j the sum is over all compositions (ordered partitions) kx + ■ ■ ■ + k- =

n, each k¡ > 1.

In Theorem 4.2 the order of the numbers kx, . . . , k, is important.   For example,

1 + 3 is not considered the same composition of 4 as 3 + 1.

Define F(n, j) by means of

(4.2) Z'X     =  Y.PF(n,j)X-T.
V=l / n=j

Then

(4.3) j\F(n, j) = n^aki ■ ■ ■ afc.,

where the sum is over all compositions kx + ■ • • + kj = n, each &,- > 1.  Comparing

(4.3) with Theorem 4.2, we have the next theorem.

Theorem 4.3.   If cn is defined by (4.1) and F(n, j) is defined by (4.2), then

»k - z (-iy/!(«o)"/_M«. /).
/=i

The number F(«, /') has the following interpretation [5], [16, pp. 74-78] :

Consider all the partitions of the set {1,2,..., n} into / nonempty subsets (called

blocks of the set partition).   Assign a "weight" of k\ak to each block which has ex-

actly k elements.  For each set partition there is a weight, found by multiplying the

weights of the / blocks making up the partition.    Then F(n, j) is the sum of the

weights of all the set partitions of {1, 2, . . . , n} consisting of; blocks.

"     (a0)n + 1
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For example, to compute F(4, 2), we see there are three set partitions with

weight 4a\ and four set partitions with weight 6axa3.  Thus F(4, 2) = I2a\ + 24axa3.

If we define Fn(s) by means of

(4.4) ¿^(')£ = exp(s¿.vA
n = 0 "• \ r=\ j

we see that

(4.5) Fjß) = t F(n, />>.

If a generating function is written in the form

(4.6) °mxm(L°rXrY = i <k**.
\r=m j 17 = 0

where m is a fixed nonnegative integer, am ¥= 0, it is perhaps more convenient to pro-

ceed as follows.  We have d0 = 1, and for « > 0 we have, by Theorem 4.2,

n

(4.7) ¿«"lí-^V«'" ak/+m/(am)/'

where the sum is over all compositions kx + ■ ■ ■ + k, = n, each k¡ > 1.   For t > 0

define Gt n(s) and G(i*; «, /) by means of

oo n I °° \

(4.8) X Gr,i,(s)77 = exP(s     Z   «r*').
71 = 0 \   r=i+l /

(4-9) <?r>)=     Z     G(t;n,j)si.
/=i

Then

(4.10) ;'!C(i; ",/")= Z«!flkl • • -akj,

where the sum is over all compositions kx + ■ ■ ■ + k- = n, each k¡> t + 1.  The

number G(t; n, j) has the same interpretation as Fin, j), except each block used in a

set partition of {1, . . . , n) must contain at least t + 1 elements.   For example,

G(l; 4, 2) = I2a\ and G(2; 4, 2) = 0.   By (4.7) and (4.10) we have

(4.11) dn = ¿ (-1 )'/!(am)~>G(m; « + m/, /)/(« + m/)!.

By using the principle of inclusion-exclusion and the identity

U'Htl)
(see also the derivation of formula 18 in [12, p. 598]), we can derive the formula

(4.12) dn - Z (-iy'iKamr''(jl^jG(m-l;n+mj, /)/(« + mj)\.

So if cn is defined by (4.1) and dn by (4.6), it is always possible to write
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"explicit" formulas for cn and dn, as shown by Theorem 4.2 and (4.7).   It is also

possible to write cn and dn as linear combinations of numbers which have a combina-

torial interpretation, as shown by Theorem 4.3, (4.11) and (4.12).  The next theorem

shows it is always possible to find an application for the numbers cn and dn (see [12,

pp. 587-599]).

Theorem 4.4.  If cn is defined by (4.1) and fix), h(x) are functions defined for

positive integers x, then

(4.13) Ä(«)=Z   «,/T«-0
i=0

if and only if
«-i

(4.14) W=   Z  cmh(n-m).
V ' 171=0

Proof   Suppose (4.13) holds.   Then

¿ Knp:"-1 = ¿ x"-1 "¿ «,/(» - 0
17=1 H=l 1 = 0

= Z*í*'    Z An-Ùx"-'-i-i-i
'V" ~ <>*

1 = 0 71=1+1

k-1

This implies

Z^M     Z A--0»"-'-1.
1 = 0 /        ti = I+l

Z ctxl)( ¿ *(«>"-M = Z Any1-1
1 = 0 /\n = l '       " = 1

and (4.14) follows.   If we assume (4.14), we use a similar method to prove (4.13).

We note that several formulas in [12, pp. 219, 247, 599] involving the Bernoulli

numbers are special cases of the theorems of this section.

5.   Relationship of An to the Stirling Numbers.  We now apply the results of

Section 4 to the numbers An.   From (1.1) and (4.7) we have, for n > 0,

(5J) A" = "l Z (^ + 2)! • • • (it, + 2)!   '

the sum being over all compositions kx + • ■ ■ + k- = n, each k¡> 1.   This can be

compared to a similar formula for the Bernoulli numbers [12, p. 247] :

5"='î!,Ç1(fci + 1)!-■•(*, + !)!"

To find formulas corresponding to (4.11) and (4.12), we define bt n(s) and

b(t; n, j) by means of

(5.2) t bt „(*)í = expire* - 1-x*/t\))
n = 0
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and

[n/t+l]

(5.3) bt,n(s)=     Z     b(t\n,j)si.

Then (5.2) and (5.3) imply

(5.4) V-l-x-x'/fiy =  ¿ /!*(*; «, /)£ .
17 = f/

Using a different notation, these definitions were made by Riordan [16, p. 102, prob-

lem 7].  The numbers b(0; n, j) are the Stirling numbers of the second kind, which are

very important in combinatorial analysis and finite differences.  See [12] and [16] for

applications.  We shall use the notation

(5.5) KO; n, j) = S(n, j).

The numbers b(l; n, j), called the associated Stirling numbers of the second kind, have

also been studied [16, p. 77], [12, pp. 171-173], [3].   Following Riordan, we shall

use the notation

(5.6) b(l;n,j) = b(n,j).

We shall also write

(5-7) b(2; n, j) = g(n, j).

The numbers bit; n, j) have the following interpretations (see the remarks follow-

ing Theorem 4.3): bit; n, j) is the number of set partitions of {1, . . . , «} consisting

of exactly / blocks, where each block contains at least t + 1 elements.   Another inter-

pretation is that bit; n, j) is the number of ways of placing n distinct objects into j

nondistinct cells, where each cell must contain at least t + 1 objects.

By (4.11) and (4.12), we have the following formulas:

(5.8) K = £ (-!)>(" + 2/)_1 [1 • 3 ■ • ■ (2/ - l)]-1^« + 2/, /),

(5.9) An = t (- O'/ n + l)(n + 2/)~l [1 ' 3 • • • {2/ - 1)] -1?K» + 2/, /)•

We can compare (5.8) and (5.9) to similar formulas for the Bernoulli numbers [12, pp.

219,599].   Since [16, p. 77]

b(n,j)= Ç(-D*(j)s(n "*./-*),

we have, from (5.9),

(,10)     ^ij<-ot;/)(7-?HT
• [1 • 3 • • -(2/- l)]-1^ +/ + *, k).

The integers g(n, j) defined by (5.4) and (5.7) have properties similar to those of

the Stirling numbers and associated Stirling numbers of the second kind.   In particular,

with g(0, 0) = 1, we have

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



NUMBERS GENERATED BY THE RECIPROCAL OF ex - x - 1 593

(5A 0 g(n + l,f)= jg(n, j) + (^Jg(n - 2, / - 1),

and we can easily compute a few values of g(n, j):

x"
/

123      456789 10

0     0     1111111 1

0     0     0      0     0     0   35   91 210    456

000      00000 280 2100

We also have

(5.12)

(5.13)

g(n, /) .t<-o[1 • 3 • • -2k- l]b(n - 2k, j - k),

b(n, f) = ¿ ("k\ [l-3---2k-l]g(n-2k,j- k).

Formulas (5.11), (5.12) and (5.13) can be proved in a more general setting.   Following

Riordan [16, pp. 76—78], we see that

(5.14) bt,n + i(s) = s Z("K>)'
i-=0 ^    '

(5.15) èr,«(s) - Z   r!(„ _ ¿)i     *f-i,„-rr(s).
r=0

(5.16)
,,     jU n\(t\)-r(sY  , ,.

*r,„-1 (*) = Z   r;(w _ ^)!   *r. « - »(*)■

By differentiating (5.2) with respect to u and subtracting s times the derivative of

(5.2) with respect to s, we derive

(5.17) Mf, n + l,j)= jb(t; n, j) + (")&('; n - t, j - 1),

with b(t; 0, 0) = 1.   Also, from (5.2) and (5.3),

(5.18)
,        .     v        n\

*(f;«./)=2-/!Jt ; ...¿.j .

the sum being over all compositions kx + • • • + k, = it, each fcf. > f + 1.

A natural generalization of (1.1) is

(5.19) e*-l-x

xw/ffi!/"':_  V 4       —
■-x"1-1!^- 1)!       ~0 "! '

Definition (5.19) was made in [8], and arithmetic properties of the rational numbers

Am n were discussed in that paper.  It follows that

(5.20) Am,n = Z (-™tyj\n\b(m; n + mj, j)/(n + mj)\
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and

, A (-ml)'

(5-21) A>»-"     "■ px (m + kx)\ ■ ■ ■ (m + kf)\ '

the sum being over all compositions kx + ■ ■ ■ + k- = n, each k¡> I.  Applying

Theorem 4.4, we see that if

m -•£'(" 7% +„.".' „+m) *>- o.

then

n-l

1 = 0   x 7

From (5.19) we have Ax n = Bn and y42     = An.

6.   Miscellaneous Results.   From (1.1) and (2.3) we see that

(6.1) (e-2)"1-2 Z^/«!;
fi = 0

and the convergence appears to be very rapid since

5

(e-2)-1 = 1.392211191 • • •    and    2 ¿ AJnl = 1.392210464
17 = 0

By letting x = -I in (1.1), we have

(6.2) « = 2 ¿ (- iyu„M
71=0

and again the convergence is rapid.  More generally, from (1.5) we have for all z

(6.3) e1-* = 2±i-l)"Aniz)ln\.
71=0

We can compare the sizes of An and the Bernoulli numbers.   From (2.1) and

(2.2) we see that

(6.4) \An\<n\ ¿ (2m)-",
s=\

and since [12, p. 244]

2(/i!) Y. (2w)-" = IÄJ,
í=i

for n even, we see that for n = 2m, m > 0,

(6-5) 2H2J<|Z?2J,

and it follows [12, p. 245] that for m > 0
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(6.6) 24\A2m\<i2m)\i2*)2-2m.

Generally, using the approximation

\An\ =n!(cos«0 x)rxn,

we conjecture that for all n > 0

(6.7) \An\<n\l-n.

It was proved in [8] that the numbers An are not bounded.

As we saw in Section 3, there is still a question of whether or not Aniz) can

have rational roots when n is odd.  The following theorems shed a little light on this

situation.

Theorem 6.1.  If p is a prime number, p>3, and if p - 2 divides n, then Aniz)

has no rational roots.

Proof.   By the proof of Theorem 6.2 in [6], we have

PmAm(p-2)(»l3) _ Pm

[m(p-2))\     =[m(p-2)]\A»>(P-2)?0    (mod p)'

It follows that w/3 cannot be a root of A, p_2)(z).

Theorem 6.2.   Suppose u/3 is a rational root of An(z) and n = 1 + 3fk, k^O

(mod 3).  Ift = 1, then u = 1 (mod 9). Ift > 1, then u = 1 (mod 3i+2).

Proof.   We know from Theorem 3.1 that u = n = 1 (mod 3).  Note that

(")3r>lr = n(n-l)---(n-r+ l)3rAjr\,

¿    (n)3r-1Aru"-r = 0    (modS""1-1)).
im + 2 \r/

SO

t-=3m + 2

From (3.6) we have

4

= u"-l(u-\)ß + 3,-1fcM"-4(-l -2m + 10«2 -40«3)/40

^"-'(u -l)/3    (mod3f),

which implies u = 1 (mod 3i+1).  In fact, if t > 1,

0 = u"-1(u-l)l3-3tk- 11/40-3^-47/1400    (mod 3f+1),

which implies u = 1 (mod 3i+2).

We can use the method of Theorem 6.2 to get more information about u, if u/b

is a rational root of An(z). Suppose n = 1 + 3'k, t > 2, k = 0 (mod 3) and suppose

u = 1 + 3t+2m.  Then we have
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°- Z (n)y~lu"-r = 3t+1m + 3*Jfc(-ll/40 - 47/1400) + 3f+1/t(5120)

= 3,+ 1m-3t+1k   (mod3i+2).

For r = 8, 9, 10 we have used (1.3).  Thus we see that in this case we must have

m = k (mod 3).

IXn = 4 + 9k ox 1 + 9k, k ^0 (mod 3), we can use this method to show that

u = 19 (mod 27).   If n = 1 + 9k, k ^0 (mod 3), we can use this method to show

that u = 1 (mod 243).

By these results and the remarks following Theorem 3.2, we see that if An(l¡3)

= 0, then n = 1 (mod 36).

Returning to definitions (5.2) and (5.3), we can find a relationship between

b2 n(s) and the Hermite polynomials.   Let

£«(*) = A2,„(s)>   «» = V»-

From (5.2) we have

(6.8) Z *„(«):£ = exPlXe" - l)]exp[-s(u + u2/2)].
17 = 0 "'

In [11, p. 181] the Hermite polynomial Hn(x) is defined by means of

(6.9) exp(^-W2/2)= ¿ZZ„(x)^.
11 = 0 "•

Thus by (6.8) and (6.9) we have

*»o> = Z (%(mn.r(-i),

where ZZ0(-1)= l,ZZj(-l) = -1 and

ZZ„+1(-l) = -/Y„(-l)-/3/Z„_1(-l).

It follows that

«.<»-£  ±(")s(n-r,j)Hr(-l).
r=0 j=oV/

The number g„(l) is the number of ways of putting n different objects into « like

cells, where each nonempty cell must contain at least three objects.

We conclude with two tables.  Table 1 gives the value of ndx (modulo 360°),

rounded off to the nearest degree, and also the values of cos n6x rounded off at the

third place.  This is done for 1 < n < 46.  Table 2 indicates when the pattern of

Theorem 2.2 changes for An when n = 46k + s.
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Table 1

(1

(2

(3

(4

(5

(6

(7

(8

(9

(10

01

(12

(13

(14

(15

(16

74'

149'
223c

297'

12'

86'

161'

235'

309'

24'

98'

172'

247'

321'

35'

110'

.270
-.855

-.730

.461

.979

.067
-.943

-.575

.633

.916
-.139

-.991

-.396

.778

.815
-.338

(17) 184°

(18) 258°

(19) 333°

(20) 47°

(21) 122°

(22) 196°

(23) 270.:

(24) 345°

(25) 59°

(26) 133°

(27) 208°

(28) 282°

(29) 356°

(30) 71°

(31) 145°

-.997

-.288

.890

.679
-.524

-.962

\ .005

.964

.515
-.689

-.885

.209

.998

.329
-.821

(32) 220°

(33) 294°

(34) 8°

(35) 83°

(36) 157°

(37) 231°

(38) 306°

(39) 20°

(40) 94°

(41) 169°

(42) 243°

(43) 317°

(44) 32°

(45) 106°

(46) 180.6°,

.771

.405

.990

.129

.920

.625

.583

.939

.077

.981

.452

.737

.849

.279
-.9999

35  18 1

Table 2

30  13   42 25  8  27 20

k    1     13  20 28  34  41 47 54 61  67 74

3  32  15  44  27  10 39 22

17  46  29  12  41 24 36  19
k 149 155 162 169  175  182 190  196 203

31 14  43  26 38  21

A: 210 216 223 229  236 244  250 257 264

33  16  45  28  11 40  23

k  270 277 283 290 298  304 311

34

k  82     88     95    101    108     115       121       128   136   142
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