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A GENERAL LACUNARY
RECURRENCE FORMULA

F. T. Howard

1. INTRODUCTION

The Bernoulli numbers B,, may be defined by means of the generating function

xr > xr
0 =ZBnH. (1.1)

An example of a “lacunary” recurrence for these numbers is

i

6n + 3
Z( % )Bs,- =2n+1 (1.2)

=0

This recurrence has lacunae, or gaps, or length 6. That is, to compute Bgy, it i8 not necessary to
know the values of B; for all j < 6n; we need only know the values of Bg; for j =0, 1, , n—1.

The purpose of this paper is to prove a general lacunary recurrence, for arbitrary gaps,
that is applicable to the Bernoulli numbers, the Genocchi numbers, the Eulerian numbers, the
Kibonacci numbers, and many other special sequences. The writer believes that the method
used in this paper is new and that the formulas are especially easy to use. It is interesting
that some of the formulas with gaps of 5 involve the Lucas numbers.

This paper 18 in linal Jorm and no version of it will be submitted for publication elsewheru.
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The problem of finding lacunary recurrences for the Bernoulli numbers has a long history,
with the motivation being to find quick ways of computing the numbers. Using different
methods, Ramanujan [4], [11], Lehmer [10], Riordan [12, pp. 138-140], Chellali [2], Yalavigi
[13], and Berndt [1] have all worked out formulas. References to the nineteenth century work
of van den Berg and Haussner, and other historical information, can be found in [10],

2. A GENERAL FORMULA

Let. F'(z) be a function, not identically 0, that can be represented by a power series with
a positive radius of convergence:

oo .'L'ﬂ
n=0
if n < 0, we define f;, = 0. Define the numbers a,, by means of the generating function

n

ht =z

where ¢ is an arbitrary nonnegative integer and h is an arbitrary rational number. The following

lemma [5] is essential, and for completeness we include the proof.

Lemma 2.1: Let m be a positive integer, and let § = ¢™/™ a primitive m*™ root of unity.
Let

co n
F(a)F(6z) - F(E™ ') = 3 b,,%.

n=0

Then by, = 0 unless m divides n. That is,

mn

F(z)F(0z)--- F(8™ ') - Z_%bmn (%ﬁ)i' (2.3)

Proof: Let H(z) = F(z)F(6x)--- F(8™'z). Clearly H{z) - H(6z), so b, = 6™b, for
n=0,1, 2, ---. Since ™ = 1 only when m divides n, we see Lthat the lemma is valid. This
completes the proof. O

For our main result, Theorem 2.1 below, we also need the numbers Cn, defined by

F(02)F(6%z) - - - F(6™ ') = ch%, (2.4)

n=0
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with ¢, = 0 for n < 0. Also, throughout the paper we use the notation
@y =zz-1)(c—2)--- (g —-t+1). (2.5)

Theorem 2.1: Let m be a positive integer and let # be a primitive m*® root of unity. Let
@n,bn,cn be defined by (2.2), (2.3) and (2.4), respectively. Then for 0 < r < m,

n
mn-t+r
g (m_v 4 r)bm(,,_j)amj.,r = h(mn + F)iCmnir—t- (26)

Proof: In (2.3) divide both sides by F{(z) to obtain
1 co rmn
F(fz)---F(f™ '2) = =~ Y bmnr—. :

Now multiply both sides of (2.6) by hz*, and use (2.4), to get

i i f:—— hot & ™
Wt ety = ;_J)"m )l B

n=0

Substitute (2.2) into (2.8), and compare coefficients of z™*+7 /(mn +r)! to complete the proof.
n}

We now look at two simple special cases. If m = 1, then 8 = 1, by = fn, ¢ = 1 and
cp = 0 if n.# (. Theorem 2.1 gives the recurrence

n

i G) Foeity = h{n)sens. (2.9)

i=0

For example, for the Bernoulli numbers, fo = 0 and f, = 1 for n > 0. Thus (2.9) gives us
By =1, and forn > 1:

% ()me

=0

Ifm=2 then 8 = —1, by, = E?:o (iﬁ)(*l)jfjfzn_j, and ¢ = (—1)"f.. Thusforr =0
orr=1,

n
2n+r
Z (2 . )b2(n~j)a'a’j+r =20+ r)e(=1)""" fanpros- (2.10)
P A
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For the Bernoulli numbers, by = 0 and b2, = —2, so (2.10) gives us: forn > 1

n—1
2n
Y, (o) 5=

3=0

3. BERNOULLI, GENOCCHI AND EULERIAN NUMBERS

In this section, and section 4, we show how Theorem 2.1 can be applied to the Bernoulli,
Genocchi and Eulerian numbers for m = 3, 4 and 5. More generally, the results of these
sections are for numbers an defined by the following type of generating function: Let h, v
and ¢ be nonzero rational numbers, let w be an arbitrary rational number, and let ¢ be a
nonnegative integer. Let

F(z) = ve? + w, (3.1)

in definition (2.2). Note that if v + w # 0, then a, = 0 for n < t and a; = tlh/(v + w). If
v+w = 0, then a; = 0 for n < (¢t — 1) and az—y = (t — 1)th/(quv). It follows from (2.9), with
m = 1, that

n-1 .
. Oifn#t
(v+w)a, +v E (?) a;q" 7 = { i

i= h(n!) if n=1t.

When h =1t =v =g¢=1and w = —1, we have a, = B,, the Bernoulli number defined
by (1.1). When h=2, t =v=¢ =1 and w = 1, then a,, = Gy, thc Genocchi number:

Whent=0, h=u—-1, v=u, ¢=1-uand w = —1, then a, = A,(u), the Eulerian
number:

u—1 - e A ™
uyel—wlz _ 1 g "(u);—!-.

A good reference for all of these special numbers is (3, pp. 48-50].
Using the notation of Section 2, let m = 3 and let 8 be a primitive third root of unity.
Let F(z) be defined by (3.1), and note that 1 + # + 62 = 0. Then

o n 9 ) 2 )
Dbn% = P(@)P(B2)F(8°2) = (+° + w®) + vPw 3 o™ % +vu? 3 P,

n i=0 j=0
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Thus by = (v + w)?, and for n > 0

bSn - U2w(_q)3n(1 £ 9371 + 96!\) + ,U,w2q3n(1 + 331; 4 96")
= Jvwg™[(—-1)"v + ). (3.2)

We now compute ¢,. We have

e n
Z c,,%!m = F(8z)F(0%z) = v2e™% + vw(eP% + & %%) + w2,

n=0

Thus ¢g = {v + w)?, and for n > 0

2 n noo; i
" " i v v4(—g)™ + 2vwg™, if n =0 (mod 3)
= v*(—¢)" + vwg™ (8" + 6°") = - 3.3
en = vi(=9) 7 ) { w3 (—~g)"* —vwg®, fn=1or 2 (mod 3) ©.3)
By Theorem 2.1, we have for r =0, 1, and 2:
n
n+r

Z (3] + T) 63(“_:,’)(13]‘.).,— = h(3n + f)tC3n+r._;, (34)

=0

with ba(n—j) and c3nir—¢ given by (3.2) and (3.3), respectively. For the Bernoulli numbers, the
case r = 0 gives formula (1.2), and wc get similar formulas for r = 1 and r = 2. We get gaps
of 6, instead of 3, hecause B, = 0 if n is odd, n > 1. That is, in (3.4) we can assume 3j +r is
even for the Bernoulli numbers.

We proceed in the same way when m = 4 and 8 = i, a primitive fourth root of unity. We
have

an% = F(z)F(8z)F(6%)F(6°z)

n=0

3 ) . 3
= (‘U4 + w:&) + U3w Z e—9’ = v2w2 Z 8(9" +6%)qz oS vw3 Z ea’qx_
§=0 0<F<s<3 j=0 (3.5)

Now since
1+ =i+ =0,

P =(i+1), i+ =1, 1448% =14,
A+ =(1-9)"=—4
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By (2.9) we have the simple recurrence: Bgo =1 and for n >k

n—k
% (5)p=o

=0

By (2.10) we have for r =0, r = 1, and n > k:

n—k
2n+7r 2n+r K
(2]‘ + r)bz("—j)Bk»l’j‘H' - ( k )(—l)r ’

i

where

2n~25~k

bi("“i) = E (*1)3(27" : Zj) = 22(—1)3“ (Zn s Qj)_

s=k

Let m = 3, let  be a primitive third root of unity and let Fi(z) be defined by (5.1).
Define bg n, Cen, Gr(x) and Hi(z) in the following way.

Gal2) = Fu(@) P (02)Br(8%2) = 3 b, (5.3)
Hi() = F(05)Fe(0%z) = 3 ck,,,%. (5.4)
n=0 :

Thus

{ bo,o=1, and bgn =0 for n > 0, (5.5)

Con = (‘“1)n-

Our goal here is to use an inductive method to find formulas for b and cg , for general .
Since

2 ’
Gun@ =T (R - L2L),

j=0
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4. GAPS OF LENGTH 5

For the numbers a, defined by (3.1), the lacunary formulas with gaps of length 5 involve
Lucas numbers. This happens because of the following relationships: Let # = £273/5 4 primitive
fifth root of unity. Then

=1 —+/5

145
f+0t=_—"VY°
+ 2 2

, P10 =
S0
Ln = (=1)"[(8 + 6%)™ + (62 + %)™, (4.1)

where L, is the n** Lucas number. Since 8 is a fifth root of unity, the following equations are
obvious:

O +6*=6(62+6%, 62 +1=06(8+6%

8*+1=620+ 6%, 6°+60=062%0+0%
146= 93(02+03), 94 g 92 - 93(0_'_ g4>

0+6% =046+ 6%, 146°=0g%6+06"

We also note that
6°=1and1+60+8°+634+6=0. (4.3)
Using the notation of section 3, with m = 5, we have
. n

3" b = F(2)F(62)F(6%2) F(6°2)F (6')

n=0

4
. gt g _—
= (" + )+ v“wZ e80T 4 3y E e~ (#+6")gz
j=0 0<j<s<4

+ 2203 Z el#+8%)am | gyt Z ez, (4.4)
0<i<s<q 7=0
By (4.1), (4.2), (4.3) and (4.4), we have by = (v + w)® and for n > 0:

by = v‘quf‘[s(——l)"} + P 5(-1)" {0 + 6%)°" + (6 + 5451
' v2w3q5n[5{(92+ 03)5n + (3+ 64)51:}] oo 5U,w445n
= 5uwg™ [(~1)"® + vPwly, + vw?(~1)"Ls, + w] (4.5)

To compute ¢,,, we will use (4.1)-(4.3) and the fact that

(6 46%)(6% + 6%) = —1. (4.6)
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We have
oo zn
Y- e e = F0n)PE)F(6°2) F(6')
n=0 :
4 M
= w4 v1e” % 4w Z e~ (1490)em 4 2y Z et +0az
s=1 1<j<s<4

4
i
+ vw? E e?'ee,
=1

Now we observe that, by (4.2),
4 oG P
Dy
n!
s=1 n=0

where

yn = (=)™ (87" + 03™)(62 + 6%)™ + (8™ + #*™) (6 + 61"

2q™ Ly, if n =0 (mod 5),
=49 —q"Lpt1 ifn=1or 4 (mod 5),
q" L, ifn=2or 3 (mod 5).

Also by (4.2),

o0 n
3 e 3 z
Pn TL! E]

1<7<s<4 n=0

where
Pn = q"[(=1)"Ln + (6™ +6°")(6% + 6°)" + (67" + 8°™)(8 + 6*)")

3(—g)"Ln if n = 0 (mod 5),
={ (-0)"Lrsa  ifn=1or 4 (mod 5),
—(=g)"Ly—1 ifn=2or3 (mod 5).

()

(4.8)

(4.9)
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By (4.7), (4.8) and (4.9), ¢o = (v + w)* and
" [(—1)"v + dvw® 4 20°why + 3(-1)"v?w?L,}, if n = 0 (mod 5),
en =4 (-1 v —vw® — Pwlny + (-1)"v*w? Loy, if n =1 or 4 (mod 5), {4.10)

" [(-1)"v* — vu® 4+ PwL,—y + (1) v?w?L, ], if n =2 or 3 (mod 5).

Thus form=5and r=10,1, 2, 3, or 4

"L (B4 r
;:1) (5j & r) b5(n—j)885+r = A(5n + r)icsntr—t,

where bs(n—j) and csn4r—: are given by (4.5) and (4.10), respectively. For example, for the
Bernoulli numbers with » = 0, we have

" (10n+5
5; (l()j N 5) (1 + Liogn—j)+5)Bioj = (10n + 5)(1 + L1on+s)-

5. THE RECIPROCAL OF €% — 1 — g — - — 22—

Let £ > 0, and define

F(x)=e"-1—2~ — —— (5.1)

In this section we show how Theorem 2.1 can be applied to the numbers By ,, defined by

¢k & z"
==Y Bip—r- 5.2
Byt fold ol R

We first observe that By, = (—1)", and By, = B, the Bernoulli number. The numbers
By, have been examined in some detail [7], {9], and By, for general k, has also been studied
[8]. To avoid confusion with the Eulerian numbers, in the present paper we have changed the
notation of {7]-[9] from A, to Bz and from Agn to Bga.
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from (3.5) we have for n > 0
ban = vPwl4¢""] + v*w?[4(~4)"¢*] + yudlag™]
= dvwg* vw(—4)" + w? + v?,
and by = (v + w)?. (3.6)

To compute ¢,, we examine

oo n
Y % = F(8z)F(6°)F(6°)
n=0 .

3
2 03 J & J
= w4 ye@+0 +0%z | 2, E O +ENar | S e?97,

0<j<s<3 i=1

Thus we have ¢y = (v + w)3, and for n > 0:

cn = ¢ {13 (-1)" 4 v2wl(i - D'+ (=i )"+ vw?[(—1)" + 47 4 (=)™}

This gives
Can = g*"yfp? 4 2vw(—4)" + 307, (3.7)
Cang1 = g Hy[gy2 _ Zvw(—4)" — w?), (3.8)
Cingp = q4"+2v[02 ~— ?.Uz], (39)
Cingg = 114"'*311[412 + 40211/(—4}" -, (3.10)

Thus when m = 4, for r = 0, 1, 2, 3 we have:

" /4n +r
Z ( i b4("_,-)a4j+, £ h(‘ln + T)tc4n+r—t;
= ity

where by,

~j) and canip_y are given by (3.6) and (3.7)
example,

- (3.10), respectively. When r — 0, for
we get the following formula for the Bernoulli

numbers:
n—1

2, (Z’) =47 - 8)B4; = anf(~4)~ - 2,

7=0

and there are similar formulas for =1, 2 and 3.
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we have
Gra(z) =
s 2 3k
_z gik i g8-a)k 7 __f_.__*,
GRS ) [ Hy(#z)] + k!)(kl) Z[ Fu(#'a)] - EEE (5.6,
Now
2 i ) o0 zn-Hc
3 [PREE)] = Y (1484 0 e
= = n!
o0 I"
= Z [1+6"+6%] (")kck,n—kmx (5.7)
n=3k ’
and
2% : (3—j)k i - +2k | p2ntk il
— o 13 v n
,Z:;) [9 ) Fk(ejz)] = §{1+9 +6 ] T
Z [1+6™+ A (‘n)zk—— {5.8)
n=3k

By (5.6), (5.7) and (5.8) we have, for n > k:

3n 3n\ 2k
bet1,3n = br,gn — 3( & )Ck,3n—lc + 3(21:) ( k ) (5.9)

If n = k, then (3k)!/(k!)® must be subtracted from (5.9).
Next we find a recurrence for ¢ ,. Since

[S]

Hypy(z H (F (°x) Q%;E) ;
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it is clear that

k2 2%k
. T " : T
Hyi1(z) = Hy(z) - o E [9(3 J)ka(ojx)] +

=1

Thus for n > k:

n
ck+1,n = Cgyp — (k) (3n+k i 92nwk)

_{ck,n~2(2)ifn+k:0(mod3),
N S+ (2) 7+ k=1 or 2(mod 3),

Hn = 2k, then (%*) must be added to {5.10).
Thus we can say: For r — 0,1,2

= n+r 3n+r
]go 3jir Ok, (n—3)Bi 3j4r = & CkIntrk,

where bk, (n—s) and Ck,
(5.5) as a starting point, we have

0 if n is even,
b =-3(-1)"+3 =
1,3n ( ) * { 6ifn is Odd,

and
{ (-1)" -2ifp=g (mod 3),
c z=
i (=1)"+1ifn=1or 2 (mod 3),

and these values agree with (3.2) and (3.3). For k = 2, we obtain

boan = 3(3n — 1)[3n -1+ (=1)"],
(~1)*-24nifn=0 (mod 3),

Cn=9 (-)"+1+nifn=1 (mod 3),
(~1)*+1-2nifn=29 {mod 3).

(K1)(kY)

3nir—g Are given recursively by (5.9) and (5.10). For example,

F. T. Howard

(5.10)

(5.11)

using

(5.12)

(5.13)
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For example, let & = 2,r = 0 and define g(n) = (3n — 1){3n — 1 + (—1)"]. By (5.11), (5.12)
and (5.13), we have for n > 0:

b (3"3;T 6) g(n+2—§)Bya; = %(n +2)g(n + 2). (5.14)

i=0

To illustrate how (5.14) can be used to compute B3 3n, we first note that g(2) = 30, ¢(3) = 56
and g(4) = 132. Then by (5.14), for n = 0 we get Byp=1. For n =1, we get

(3) 2222+ 501320 = 300

80

For n = 2, we have

(1; )Q(Z)Bz,s + (132)9(3)32.3 +9(4)B20 = 29(4),

which gives

-1
Ba,a = m

The recursive method used in this section can also be used for m = 4 and m = 5, but
the formulas become complicated and cumbersome. For example, here is the formula (without
proof) for by 5,.

Forn odd, n > 1: bzsn = 5(5n — 1)(5n — 2)(25n° — 20n + 1 + Lsy, — 5nls,_3);

For n even, n >0 by 5, = 25n(5n — 1){5n — 3)(5n — 3+ Lsn_3).

Also, ca,5n = €180 + 5n[(1 + 2(—1)""1)Ls, + (5n — 1)(—1)"Lsp—; + (2502 — 25n + 7)] where
the value of ¢; 5n can be computed from (4.10). There are similar formulas for C2,5n+ry (1=
1,2,3,4).

The generating function (2.1) can be generalized hy defining polynomials a,(z) by means
of

e =L mak (6.1)
n=0
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Thus

@ =3 (7)assr.

=0

One well known example is the Bernoulli polynomial B,(z), defined by

. Z Bn(z)i:;‘

n=0

Another example is the polynomial B; ,(2), studied in [7] and [9]:

2/2)8” - Z By n(z)

N l # n=0

Define ¢,(2) by

cn(z) = i (j) ;2"

3=0

F. T. Howard

(6.2)

(6.3)

It is easy to see that for the polynomials defined by (6.1) and (6.3), we can extend Theorem

2.1 in the following way.

Theorem 6.1: Let m be a positive integer and let  be a primitive mt* root of unity. Let
Gny bnyCn,aq(2),cn(2) be defined by (2.2), (2.3), (2.4) (6.1), (6.3), respectively. Then for

< r<n,

We also observe that the Genocchi polynomial G, (z) defined by

Z:ce Z G. (z)-——

n=0
is closely related to the Euler number E, (3, p. 48]:

n

2e” “iE T
6224‘17“_0 " n!

n
mn-+r
Z ( . )bm(n—j)amj+r(z) = h{mn + T)tcmn+r—t(z)-



A GENERAL LACUNARY RECURRENCE FORMULA 135

It is clear that we have the relationship

1
(v B0 = 2*Gasa 5,

and Theorem 6.1 can be used to find a lacunary recurrence for the Euler numbers.

In a letter to the writer, A. Granville made the following observation. If F(z) in the
present paper is replaced by G{z,e®), where G(z,y) is a polynomial in two variables with
integer coefficients, then b, and ¢, are both linear combinations of elements of linear recurrence
sequences of order dividing ¢(n). We reserve this topic for a later paper.

Finally, we note that the general method of this paper was used by the writer [5], [6] to
find lacunary recurrences for the Tribonacci numbers and generalized Fibonacci numbers. To
the writer’s knowledge, Theorem 2.1 and Theorem 6.1 are new, and the lacunary recurrences
for the Eulerian numbers and the numbers By , have not appeared in the literature.
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