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§1. Introduction

Terminology. Modular forms = Vector-valued Siegel modular forms.

Aim. Construct p-adic counterparts of nearly holomorphic modular forms, i.e.,

| Classical modular forms|

Shimura's diff. operator Ny p-adic diff. operator
Nearly holomorphic same values at p-adic and
modular forms p-ordinary CM points “Nearly algebraic”
(Eisenstein series) — modular forms

Elliptic modular case (Katz). For positive integers k, I such that kK — 1 > 2 is odd,

k!m! (a + bz)! © ,
2 - Im(z)’ 2 (at+bz)k+t > a" y d(d)

(a,b)€Z2—{(0,0)} =1  n=dd

which is used to construct p-adic (Hecke) L-functions.

() LHS = &' (const. + 3702, q" 3, _g4q d*7'); 0 = ﬁ (sztz + %)

d\!
A <qd_q) (const. + > 1 g™ >, _qwd*Y) = RHS. O



§2. Classical modular forms

Notations We consider modular forms of degree g > 1, level N > 3, weight p.

e H,={Z ="'Z € M,(C) | Im(Z) > 0} : Siegel upper half-space.

e I'(N) = {'y = ( ‘é" ? ) € Spay(Z)

= 3 Shimura model of H,/T'(N) over Z[1/N,(n]; (n = e2™V /N,

v = 1y (N)} . congruence subgroup

e p: GL; — GL, : representation over a sub Z[1/NN, {n]-algebra R of C.

Classical modular forms are holomorphic maps f : H, — C% satisfying
f(v(Z2)) = p(CyZ + D,) - f(Z) (v € T'(N), Z € Hy).

g-expansion principle. f € M,(R) def {modular forms/ R of wt.p} if and only if

£(2) = Sra(T)q"/N = a(T) € R

Arithmeticity. For a field K D R, any classical modular form f € M, (k) satisfies

o : k-rational CM point with basis wq, ..., wg of regular 1-forms,
(A) S P = (period symbols) € GL,(C) s.t. (w;) = P - *(du;); (u;) € CY
—1
= p (P/(2mv/-1)) - f(a) € k%



§3. Nearly holomorphic modular forms

Nearly holomorphic modular forms are analytic maps f : H, — C¢ satisfying
e f(v(2)) = p(CyZ + D,) - f(Z) (v €T(N), Z € H,).

e f(Z) = > a(T)g™/N, where a(T) consists of polynomials of the entries
of (w-Im(Z))".

For a subfield k of C containing (v,
N, (k) e {f : nearly holomorphic | a(T) : polynomials /k}.

Arithmeticity. Any nearly holomorphic modular form f € N, (k) satisfies (A) when

HJ, of the corresponding CM abelian variety splits over k.

(") Express f as the image of M (k) by Shimura's diff. operator defined as

1 ®e (2 e
Dy, s, (03,) " 25,6 (s (. ()

E,: automorphic bundle associated to P,

Here ¢ (1) <= Gauss-Manin connection + Hodge decomposition,
(2) <= Kodaira-Spencer map for C9/(Z9 + 79 - Z) (Z € H,). O

Remark. Shimura already proved the algebraicity of these CM values.



§4. p-adic modular forms

p-adic modular forms (Serre). For a prime p 4 N and a p-adic field K 5 (n,

def

M,(K) < {lim, £,

fp. € M, (K), p=1lim; p;: continuous hom.},
where lim; f,, is the limit as the Fourier expansions.
Theorem. If the representation p is defined over the integer ring of K, then

31 injective K-linear map ¢, : N,(K) — M, (K) satisfying
a : p-ordinary CM point with basis of regular 1-forms,
P, = matrix of Kashio-Yoshida's p-adic period symbols

= p(P/2ryv/=1)) " - f(a) = p(By) L - tp(F) (@) (f € Ny(K)).

Definition. We call elements of Im(¢,,) “nearly algebraic” p-adic modular forms.



Proof of Theorem.

e Construction of ¢, : p-adic diff. operator (<» Shimura's diff. operator Dz)

D (HE Y gy ) (f € My(K)).

1<i<j<g 0dij
e Definition of ¢,(f) for f € N,(k) : Multiplying a modular form = 1 (p),

39 € Mygrei(K) st. f =37, (6e, 0 Dpjgre:) (9:)
(’Tei = (Symz(Kg)@)ei)v, 0., contractlon)

= p(f) E Y (e, 0 DY o) (90)-

e Preserving p-ordinary CM values : For HIl)R of p-ordinary CM abelian varieties,

Unit root space decomposition in D;p = Hodge decomposition in D;.

e Well-definedness and uniqueness of ¢, : In Serre-Tate's local moduli,

3 nontriv. quasi-canonical lifts of ordinary abelian varieties — canonical lift.

e Injectivity of ¢, : Hecke orbit of a point is dense in H,/T'(IN). O



§b. p-adic Siegel-Eisenstein series

Siegel-Eisenstein series. For a Dirichlet character x modulo M, put

det(Im(Z2))* - x (det(D,))

Ei(Z,5,x) = |
n(Z, 8, X) Z det(CyZ 4 D,)" - |det(CyZ + D,)|?*

YE(PNTo(M))\L'o(M)
abs. convergent, nearly holomorphic modular form of weight h, level M
if s is an integer satisfying (9 +1 — h)/2 < s < 0.

p-adic Siegel-Eisenstein series. Let

N > 3 be a multiple of M, and p 1 N be a prime,
h, s be integers such that (g +1 — h)/2 < s < 0,

Ent2s(Z,0,x) = Yp but2s(T)a", eg(h) = 1925 (h — 3/2).
Then w9°Ey(Z, s, x) is defined over a cyclotomic field, and

—s—1

tp (T En(Z,5,x)) = || e(h+25420)7" ) buiss(T) det(T) *q".
i=0 T

() 7 9%4(h)Epi2(Z,—1,x) = ((idg, ® det) o D,) (En(Z,0,X))
< 0 (En(Z,0,x)); 0: theta operator. [



§6. Related results and problems

Related results.

e Unitary modular case: Harris-Li-Skinner (2006), Eischen (2011-).

e Vector-valued p-adic diff. operators: Bocherer-Nagaoka (2007-).
Problems.

e Construct p-adic Siegel-Eisenstein measures and p-adic L-functions.

Panchishkin (2000) gave such measures in the holomorphic case,
Bocherer-Schmidt (2000) gave p-adic measures for the standard L.

e Characterize nearly algebraic modular forms in the space of p-adic ones.

e 17 Relation between nearly algebraic modular forms and overconvergent ones.

= Darmon-Rotger stated in the elliptic modular case:

{overconv. modular forms} & {nearly overconv.(; nearly alg.) forms}.

e 17 Application of nearly algebraic modular forms to certain Selmer groups.

=> Skinner-Urban applied unitary modular forms to Sel(elliptic curves).
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