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An algebraic setting for the Roman-Rota umbra1 calculus is introduced. It is 
shown how many of the umbra1 calculus results follow simply by introducing a 
comultiplication map and requiring it to be an algebra map. The same approach is 
used to construct a q-umbra1 calculus. Our umbra1 calculus yields some of Andrews 
recent results on Eulerian families of polynomials as corollaries. The homogeneous 
Eulerian families are studied. Operator and functional expansions are also included. 

1. INTRODUCTION 

A sequence of polynomials {p,(x) 1 is of binomial type if p,(x) is of exact 
degree n for all non-negative integers n and (p,(x)} satisfies the binomial 
type theorem 

(1.1) 

A sequence of polynomials (p,(x)} is a polynomial set if p. = 1, and p,(x) is 
a polynomial of precise degree n, n = 0, 1, 2,.... The combinatorial theory of 
polynomials of binomial type was developed by Mullin and Rota [ 131, and 
in later papers by several authors. We refer the interested reader to the 
extensive bibliographies in Rota ef al. [ 161 and in Roman and Rota [14]. 
The analytic theory of these polynomials is much older, see Sheffer [ 171. 
Guinand’s work [S] contains an interesting review of the classical umbra1 
method. Goldman and Rota [ 71 suggested the importance of a similar study 
for. polynomials related to enumeration problems in vector spaces over finite 
fields. Andrews develioped this theory in [I]. He introduced the concept of 
an Eulerian family of polynomials. 
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DEFINITION 1.1. A polynomial set (p,(x)) is an Eulerian family if its 
members satisfy the functional relationship 

PktX) Y”P, -k(4)). 
4 

(1.2) 

The Gaussian binomial coefficient [; 1, is given by 

n [ 1 k 9 =o if k>n 

(4; 4), (1.3) 

= (4; q)k (q; q),,-k 
if k < n, 

with 

(a;q),,=I and (a;q)n=(l-a)(l-aq)~~~(l-aq”~‘), n>O. (1.4) 

The Gaussian binomial coefficient ]z 1, counts the number of k-dimensional 
subspace of an n-dimensional vector space over a field with q-elements, 
GE’(q). An Eulerian family is (O,(x) 1, where 

@o(x) = 1, e,(x)=@- 1)(x-q) .a. (x-q”-‘), n > 0. (1.5) 

Another Eulerian family is ((q; q),/n!)(x - 1)“. We shall use the notation 

(a; 41m = fi (1 - 47 
n=O 

(1.6) 

A related important set is (0,(x, JP)}, with 

f%l(x, 4’) = 1, e,(x, y) = (x - y)(x - qy) * ‘. (x - q” ‘y), n > 0. (1.7) 

Roman and Rota [14] introduced an umbra1 calculus by introducing a 
product on P*, the dual of the algebra of polynomials over a field of charac- 
teristic zero. They defined the product of two functionals L and M by 

(LM 1 x”) = $ ( j” ) (L 1 x’)(M) x”-‘), (1.8) 

and showed that under the usual addition and above multiplication P* is a 
topological algebra. The topology is defined in the following manner. 

DEFINITION 1.2. A sequence (L,t of linear functionals converges to 
L E P* if and only if for every p E P, there is an no such that 

L I P(X)) = (L I P(X))9 for n>n,. (1.9) 
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Roman and Rota refer to the algebra P* as the umbra1 algebra. We shall 
invariably use P and K[x] to denote the same algebra, namely, the 
polynomials over a commutative integral domain K. 

One of the purposes of the present work is to construct an umbra1 calculus 
that plays in the theory of enumeration of vector spaces over GF(q) the role 
played by the Roman-Rota umbra1 calculus in the theory of binomial 
enumeration. In this setting we replace the product (1.8) on P* by 

(LM 1 x”) = (L 1 .K”)(M / x”). (1.10) 

Section 2 contains the algebraic setting for the polynomials of binomial type. 
Although the results of Section 2 are not new, the presentation is certainly 
new. Section 3 contains the umbra1 lemma and its applications. This is one 
of the main results of the present paper. The umbra1 lemma tells us when two 
polynomials sets are “similar” in the sense that properties of one of them can 
be deduced from the other. Usually we have a model polynomial set and we 
would like to identify all the other “similar” polynomial sets. In the Roman- 
Rota umbra1 calculus the model set is (x”) and the class of similar 
polynomials is the class of polynomials of binomial type. Section 4 illustrates 
the intricate interplay of comultiplications in bialgebras. functional 
relationships like (1.1) and (1.2) and the product (of functionals) on the 
umbra1 algebra P*. This is applied to derive some properties of the Eulerian 
families of polynomials. Section 5 contains further results on these 
polynomials. Some of the results of the present paper were announced 
in [lo]. 

We attempted to include in the present work only the basic part of a q- 
umbra1 calculus with very few applications. Several related important topics, 
for example, the Lagrange inversion, are still under investigation. 

In the remaining part of the introduction we include some standard 
definitions. K shall always denote a commutative integral domain. 

DEFINITION 1.3. (Tensor Products). Let V, and Vz be two modules. A 
tensor product is a pair (4, G) such that 

(i) $ is a bilinear mapping f of V, x V, into the module G. 

(ii) The range of Q spans G. 

(iii) For very bilinear map f of V, x V, into a module H there is a 
map g that maps G into H such that f = gqb. 

Usually 0(x, y) is denoted by x @ J’ and G is denoted by V, @ V,. If V, and 
Vz are algebras then V, @ V, equipped with the product 

(iv) (x, @ 41,)(x, @ y2) = x,x2 @ y, y2, is also an algebra. 
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DEFINITION 1.4. (Tensor Product of Functionals). Let V, , Vz be two 
modules over a K. The tensor product L, @ L, of the linear functionals L, 
and L, maps V, @ V, into K via 

CL, 0 L, I 0’ 0 02) = CL, I L’,)@, I Q. (1.11) 

Similarly. the tensor product of mappings ,D and v is (,u @ v)(u, @ u2) = 
P(LY,) 0 v(Lj2)* 

Throughout the present paper we shall use “functional” to mean “linear 
functional.” We now introduce the concept of a bialgebra. 

DEFINITION 1.5. (Bialgebras). A bialgebra V is an algebra over K 
equipped with a multiplication ,u: V@ V+ V, a unit e: K + V, a 
comultiplication A: V + V @ V and a counit E: V + K satisfying 

(i) p(u @ I) = p(Z @ p) (associativity), 

(ii) p(Z @ e) j, = p(e @ I) j, = I (e is a unit), 

(iii) (A 0 I) A = (I @ A) A (coassociativity), 

(iv) j; ‘(E @ I) A = j; ‘(I @ E) A = Z (E is a counit), 

where Z is the identity mapping of V into itself, j,, jz, j; ‘, j;’ are defined by 

j,(c) = c @ 1. j,(u) = 1 @ ~1. j; ‘(~1 @ I) = c, j;‘(l Or)=21 

for all ~1 E V and 1 is the multiplicative unit in K. 
Finally we define symmatric maps. Let V be a vector space over a field K 

and let .Z be the map: 

J(v, 0 L’J = u2 0 Ulr t’,,u2E v, (1.12) 

defined on V@ V. 

DEFINITION 1.6. (Symmetric Maps). A map Z of V into V 0 V is 
symmetric if and only if 

JoZ=Z. (1.13) 

where J is the map defined in (1.12). 

DEFINITION 1.7. (E, and q”). The functional E, and the operator q” are 
defined on K[x] by 

(5 I P(X)) = Aa) (1.14) 

and 

(4Q)W = P(4 (1.15) 



182 IHRIG AND ISMAIL 

respectively. In two variables the defining formulas are 

(Lb I A-v9 4’)) = P(Qlb) (1.16) 

and 

(PP)(& 4’) = p(ax, by). (1.17) 

2. AN ALGEBRAIC SETTING FOR POLYNOMIALS OF BINOMIAL TYPE 

It has been generally felt that certain families of polynomials {p,(x)} may 
be formally manipulated as if p,(x) was actually X. Thus results that are 
easy to show for p,(x) =x” would follow in an identical formal way for the 
other p,(x)‘s yielding less obvious results. Roman and Rota [ 141 made this 
process precise for polynomials of binomial type (p,(x)} by formulating 
what they termed “the umbra1 calculus.” This formulation works because 
polynomials of binomial type are modelled after the monomials (x”} and the 
monomials satisfy the binomial theorem. This formulation then can be 
carried out in.the same way for other polynomials. So, one may show results 
for these model polynomials and get as a corollary results for any “similar” 
sets of polynomials. The important contribution of this procedure is not 
providing results that are necessarily new or deep, but rather unifying 
seemingly different results in a simple way. In Section 3 we will illustrate 
what is involved in this procedure by testing the case of Eulerian families of 
polynomials in which the model polynomials are the 0,‘s of (1.5). We hope 
that this will illustrate some aspects of the procedure which go unnoticed in 
the umbra1 calculus of Roman and Rota [ 141 because of the specific form of 
the model polynomials in that case. As we already mentioned in the 
Introduction, we give a general outline of the method by first reviewing the 
ideas of the umbra1 calculus in the present section. The model polynomials 
will have to satisfy functional relationships like (I. 1) and (1.2). Our 
approach can be extended to treat model polynomials satisfying the 
relationships 

pn(a(x5 Y)) = ' aj(Y) PjCx) Pn-j(Y) 
,TJ 

P-1) 

for some polynomial a(.~, 4’). 
We want to consider P,,(X) to be x”, n = 0, I,..., in some precise manner. 

This is not too difftcult to do because (p,(x)) forms a basis for the algebra 
K[x], the algebra of polynomials over K. K[x] is endowed with the usual 
addition and multiplication. We now introduce a new product “*” on the set 
K[x]. The star product is defined relative to a polynomial set {p,(x)}. 
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DEFINITION 2.1. ,K[x] will denote the algebra of polynomials equipped 
with the usual addition, the usual multiplication by scalars and the star 
product *‘*” defined on the given set of polynomials {p,(x)} by 

Pn * P, = Pm+n, (2.2) 

and is extended to *K[x] by linearity, since (p,(x)} is a basis. 

It is clear that the star product is well defined. We shall adopt the 
convention of adding a * to a formula involving products when the star 
product is used instead of the ordinary product. Thus 

P n* :=p* p* ..a *p. 
mm 

n times 

(2.3 1 

Clearly 

P, = PY”. (2.4) 

Observe that the functional equation (1.1) satisfied by polynomials of 
binomial type {p,(x)} implies pO(x) = 1 and p,(O) = 6,., . So, at this stage 
we restrict ourselves to polynomials satisfying 

P&U) = 1, P,(O) = 0. (2.5 > 

Combining this assumption with (2.3j we arrive at the crucial relationship 

P”(X) = (P,( 11)” x”*. V-6) 

So, p,(x) is (cx)~*, in a suitable multiplication. We must now relate this star 
multiplication to the usual multiplication in K[x] since a concrete theorem 
involving the star multiplication will not be very useful without a translation 
to the language of K]x]. Of course it is obvious that the star multiplication 
coincides with the ordinary multiplication if and only if p,(x) = (cx)‘, the 
trivial case. Luckily for us K[x] is equipped with another very natural 
structure, the comultiplication A mapping K[x] into K[x] @ K[x] in the 
following manner: 

d(x)=x~ 1 + l@X (2.7) 

and 

A( P(X)) = P(e)), for all p E K[x]. 

Recall that K(x] @ K[x] is an algebra with 

(4, 0 9Ar, 0 rz) = q1 rI 0 6 rzv qlq2, rlrI EKl.ul. 

(2.8) 

(2.9) 
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Condition (2.8) just says that A is an algebra map. So, A is completely 
specified once we require it to be an algebra map and define it symmetrically 
on a generator. Both properties, i.e., being an algebra map and symmetry, 
are essential in what follows. Observe that K[x] also happens to be a graded 
algebra and the comultiplication (2.7), (2.8) is actually grade preserving. 
This is just a coincidence and is not necessary. In fact the comultiplication 
A’: s +x @x used in the case of Eulerian families of polynomials in 
Section 3 is not grade preserving. 

The principal use of the comultiplication is that it can be used to define a 
product of linear functionals on K[x]. 

DEFINITION 2.2. Let L and M be two linear functionals on KIx]. The 
product functional LM is defined as 

C,LM I pi = (L 0 ~4 I A(P(x))), for all p E K[x]. (2.10) 

The above product of linear functionals is commutative since A is 
symmetric. 

DEFINITION 2.3. The * product of two linear functionals, say? L and A4 
is defined by 

(L * M / P(X)) = (L @ M 1 A*P(x)), for all polynomials P(X) E ,K[.u],(Z. 1 I ) 

where A* is the comultiplication on *K[x], 

A*x=x@ 1 + 1 @,r, (2.12) 

and A* is an algebra map. 
We now observe that although the linear functionals on K[x] do not 

depend on the product of members of K[x], the products of such functionals, 
namely (2.10) and (2.1 l), seem to depend on the product used. So we next 
ask ourselves the question, When will the products (2.10) and (2.11) be 
equal? It is clear that this will happen if and only if A = A*. When this holds 
we find ourselves in a very good position because any results that can be 
formulated using only the products of functionals (2.10) will hold for the star 
multiplication if they hold for the usual multiplication. This will accomplish 
the desired result. 

PROPOSITION 2.4. Let (p,(x)} be a polynomial set satisfying (2.5) and 
defining a star product. The comultiplications A and A* are equal if and onl? 
if the sequence of polynomials ( p,(x)} is of binomial type. 

Proof. Since A(xj = A*(x) = 1 0 x + x @ 1 we obtain 
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A*(P,(x))=A*(P,(l)x) 

=(lo(P,(l).K+(P,(1).~)O l)=loP,(x)+P,(x)oL 

hence 

A*(P”(-~)) =A*((P,(x)Y*) = (A*(P,(x)))“* 

= (P,(X) 0 1 + 1 0 P,(x))“* 

I= ;. n 
( . ) (PlCK) 0 1y’* (1 0 P,(x))‘“-“* 

,Z J 

= ;- “’ (p,(x)y’* @ (p (r))‘“-j’*, 
(4 ,-o J 1 ’ 

since (a @ l)( 1 @I b) = a @ b. Therefore 

On the other hand, we know that d(p,(x)) is p,@(x)). Thus 

A( p,(x)) = p,,(x 0 1 + I 0 x). 

Let us denote x @ 1 and 1 @x by 4’ and z, respectively. Clearly A = A* if 
and only if 

Pn(?’ + z, = ” n 
( 1 ,Tro j 

Pj(MK) 0 P,-j(x) 

c n 

= 0 1% 
j PjtxO l) Pn-j(l 0-v) 

<. ‘n 

,G ( 1 
j P,j(Y) Pn -jtzL 

where we again used (a 0 1 )( 1 0 6) = a @ 6. This completes the proof. 
Note that in the process of proving the above theorem we actually proved 

COROLLARY 2.5. Any sequence of pol.vnomials {p,(x)} that satisfies 
(2.5) also satisfies 

A*( p,(x)) = ‘- 
i ) 

‘: 
1% J 

Pj(X) 0 Pn -j(-u)* (2.13) 

We combine (2.13) and the definition of product of functionals to 
establish 
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COROLLARY 2.6. When a sequence of polynomials (p,(x)} satisJies 
(2.5), the product of functionals L and M is given by 

tLM I P”(-‘)? = c ( 1 ) (L I Pj(-x))(M I p,-,i(*y);‘3 
j=O J 

(2.14) 

then (2.14) holds whenever (p,,(x)1 is a sequence of polynomials of binomial 
type. 

COROLLARY 2.7. (Roman and Rota [ 14 1). If the product of functionals 
on K[x] is defined 6) 

(L 1 .??)@I ) .Y’l -‘), 

then (2.14) holds whenever {p,,(x)\ is a sequence of polynomials of binomial 
type. 

Proof. Construct the star multiplication corresponding to the sequence 
(A?). Since (x”) is of binomial type, A = A* and (2.15) must give rise to the 
same product defined in (2.10). Finally the validity of (2.14) follows from 
Corollary 2.6. 

Let us now see how Proposition 2.4 will enable us to find a result 
involving polynomials of binomial type. We shall prove 

THEOREM 2.8. (Expansion Theorem). Let ( p,,(x)1 be a polynomial set of 
binomial type. Then 

p(x) = c- L (P 1 p(x)) Pj(X), - :1 (2.16) 

where 

(1 I P,(.r)::) = d,., . 

Proof. We start with the Taylor series expansion for polynomials. 
namely, 

Mj being the functional 

(2.18) 
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The next step is to attempt to express Mj as a product of a functional by 
itselfj times. Set 

w I P(X)) = -$ PCY) 1 ; 
I =o 

so 

Making use of (2.14) with p,(x) =x” and straightforward induction we 
obtain 

(M’ ) x”) = n! d,,.,$ 

which identifies iI4’ as Mi (see (2.18)). This enables 
form 

P(X) = t $ @fj* I P(X)) 
Therefore 

p(x) = $ g (A@* ( p(x)) 

(2.19) 

us to write (2.17) in the 

(2.20) 

follows from the fact that the starring map S: x” - Y* is an algebra 
isomorphism from K[x] to *K[x]. The ordinary and star products coincide 
because p,(x) is binomial type. Furthermore p,(x) is (p,(l) x)“*. Hence 
(2.20) becomes 

which is (2.16) with E = (p,(l))-’ M. 
Let us take a closer look at (2.16) and (2.17). The relationship (2.16) 

gives an expansion formula that uses only functionals and their products 
while (2.17) involves the differential operator followed by co. Although both 
expansions are easy to establish for polynomials of binomial type, usually 
functional expansions like (2.16) are harder to prove. Operator expansions 
like (2.17) are usually trivial. We hope the subsequent section will clarify 
this point. 

Professor Jack Freeman of Florida Atlantic University kindly pointed out 
to us that, in an unpublished manuscript [4], he had used the star product 
(2.2) to treat general polynomial sequences like sequences of monomials. 
However, he did not explore the connection with the comultiplication or the 
algebraic setting for the umbra1 calculus. Joni and Rota [ 121 treated some 
combinatorial problems using bialgebras. 
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3. THE UMBRAL LEMMA AND APPLICATIONS 

We now generalize the results of Section 2 to almost any family of 
polynomials. The umbra1 lemma (see below) says, roughly speaking, that 
almost any sequence of polynomials may be considered the same as any 
other sequence as long as we are allowed to alter the multiplication. This will 
allow us to alter formulas involving one sequence of polynomials to find 
formulas for other sequences. 

DEFINITION. The polynomial p*(x) associated with a polynomial p(x) 
and a multiplication * is defined by 

p*(x) = \’ cj2* 
7 

iff p(x) = y ~~-4. (3.1) 

We now state and prove the umbra1 lemma 

THEOREM 3.1. (The Umbra1 Lemma). Let { p,(x)} and {b,,(x)} be two 
sequences of polynomials such that the nth polynomials is of precise degree n. 
Then (a) and (b) are equivalent. 

(a) There is a unique multiplication * on K[x] such that 

(i) p,(x) = b,*(x), n = 0, l,.... 

(ii) There exists a mapping S: (K[x]. .)--t (K[x], *). called the 
starring map, such that S is an isomorphism and S(x) =x. S( 1) = 1. 

(b) p,,(x) = b,(x) and p,(x) = b,(x). 

Proof of (a) + (b). Observe that x’* = x and .x0* = l*, the identity in 
,K[x]. But S(1) = 1 implies 1 = l*, that is, .u”* = 1. Hence b: = b, and 
b,* = 6,. 

Proof of(b) Z- (a). The existence of the star product and the map S can 
be proved as follows. Define tin by 

&,$4 b,(x) = \‘ ck,,, PAX) 
77 

and defined the * operation by 

Pm * P, = T ckm, P/G), 

and extend it to a multiplication on K[x] by 

(y ajPj(x)) * (\‘ c,kPk(-X)) =z QjCkPj * Pk. 
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where aj. ck E K. This multiplication is clearly well defined. We define S by 

S (~ Ujb,(i)) = ~ Ujpj(-u). 

S is clearly a module isomorphism since (b,(x)} and {P,(X)} are bases. By 
the definition of * S is an algebra map from (K[x], .) to (K[x], *), so S is an 
algebra isomorphism. Note that 

S(hlP)) = PO(X) and b,(x) = p&u) = a . 1, a # 0. 

imply a(S(l)- l)=O, hence S(l)= 1. Let 

p,(x)=b,(x)=ax+p~ 1. 

so 

S(ax+p~ l)=aS(.u)+pS(l)=aS(.u)+p. 1 =o.u+p. 1. 

hence a(S(.u) - X) = 0 and a# 0: that is, S(x) =x. Thus S satisfies 
condition (ii) of (a) and it remains to show that a(i) holds. Set 

b,(x) = y A ,rj+ri and 

Clearly 

p,(x) = 1 AniS = \‘ A,(S(x)Y’* = x Anjzrj* = b,*(x). 
i 

Thus we have shown that the proper * exists and we now show that it is 
unique. If * , . ** are two * products on K[x] and S,, S, are their respective 
isomorphism then 

S = SJ; : (K[x]. *,) -+ (K[x], *2). 

is an isomorphism with S(x) = X, S( 1) = 1. Since it is an algebra map we 
have 

S(b,* ‘(X)) = b,* ‘(x), 

that is. S(p,(.u)) = p,(x) by a(i), hence S must be the identify map. This 
concludes the proof of the umbra1 lemma. 

The map S of the umbra1 lemma will be called the starring map and its 
inverse will be called the star erasing map. Next we investigate consequences 
of the umbra1 lemma. Our first result is 
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THEOREM 3.2. Let {p,,(x)} be any polynomial set. Then there exists a 
product * such that 

where p,(x) = c(x - a). 

p,(x) = (c(x -a))“*, (3.2) 

Proof. Define J?,(X) = C-“p,,(x + a). b,(x) =x”. Clearly p’,(x) and b,(x) 
satisfy (b) in the umbra1 lemma and the result then follows from (a) in 
Theorem 3.1. 

Note that for any polynomial set (p,(x)) there is no loss of generality in 
assuming p,(x) = 1. When a = 0 in Theorem 3.2 we are lead to polynomials 
more general than the polynomials of binomial type. What forces these 
polynomials to be of binomial type is the comultiplication structures 
associated with A and A*. as we saw in Section 2. Our next result covers the 
Eulerian families of polynomials, but unfortunately we have to go to two 
variables in order to handle them. 

THEOREM 3.3. Let (p,,(x, y)} be a sequence of polynomials such that 
p,,(x, y) is homogeneous of degree n and 

P& y) = 1, p,(x. >I) = c(x - J). (3.3) 

then there is a product * on IF: [x, y] so that 

p,(x. y) = F(x - y) * (x - qy) * . . . * (x - q” ‘y). n> 1. (3.4) 

Proof. Let K = lR[ ~1 and apply (b) in the unbral lemma to b,(x) = 
0,(x, .v) and $,,(,u) = c-“p,(x, y). 

We shall adopt the notation 

Q(x. y)= 1, e;(X, J’) = (x- .V) * (x-q?‘) * ... * (s-qql’-I?,). n > 0. (3.5) 

We now come to the operator expansion and show how it follows easily 
from the umbra1 lemma. Let us introduce the necessary notations 

DEFINITIONS 3.4. By an operator CJ we mean a mapping of K[x] to 
K[x]. An operator ZJ is a degree reducing operator if the degree of UP is 
n - 1. The functionals E, and E% are defined via 

(&a I PCx)) = T cjde 

when p(x) = rj cj-‘c’ E K[x]. 

(E,* I p(x)) = y ,a*1 (3.6) 

The degree reducing operator expansion theorem is 
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THEOREM 3.5. (Degree Reducing Operator Expansion). Let {p,(x)} be a 
polynomial set. Then there is a degree reducing operator U and a functional 
L such that the following e.upansion holds: 

p(x) = c (L I VP(x)) p,(x)/n!, p(x) E +I. (3.7) 
0 

Furthermore if (Ed 1 p,,(x)) vanishes for all positive n then L = E, 

Proof: The Taylor series is 

p(x) = nzo (E, 1 D”p(x)) (x - a)“/n!. (3.8) 

where D is the differentiation operator d/dx. Let p,(x) = C(X - a) and use the 
;% product of Theorem 3.2. The operator D maps X” to nx”-‘. The starring 
operator is an isomorphism mapping 1 to 1 and x to X. S maps (3.8) to 

p*(x) = c (CT,* 1 (D”)” p*(x)) (n - a)“*/n!, 
n=O 

(3.9) 

where D* is defined on &IX] by D*x”* = nxCn-‘)*, n > 0. Let U be the 
operator 

Up(x) = s-’ 

CJ is a degree reducing operator because 

Slip,(x)=y[c(x-a)]‘*=n[c(x-a)]‘+’)*=np:-,(x), 

implies Up,(x) = np,- ,(x), hence the degree of UX” is n - 1. The functional 
L is defined by (L ( p(x)) = (E,* 1 p*(x)). 

When (E, ) p,,(x)) = 0, n > 0, then L = E, because 

(E,* 1 p:(x)) = (E, ( c”(x -- a)‘) = 0. 

This completes the proof. 
For polynomials of binomial type {p,,(x)} the functional L is so since 

P,(O) = k&o. When {p,(x)} is an Eulerian family of polynomials p,(l) is 
6 n.O, hence L coincides with E, . 

Theorem 3.5 implies another expansion theorem, namely, 

COROLLARY 3.6. For eveql polynomial set { p,,(x)1 with pa(x) = 1 there 

409i84; I I3 
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exists a functional L and a degree reducing operator I/ such that an? 
functional or operator A has the expansion 

A = c AP,(~) 
--+L/Ufl.). 

7 . 
(3.10) 

Proof. Apply A to (3.7). 
In Theorem 3.5 we discovered that a polynomial set (p,(x) ] determines a 

degree reducing operator U and an expansion (3.7). We now show that the 
converse is also true, that is. U and (3.7) essentially determine the p,,‘s. 

THEOREM 3.7. Given a degree reducing operator U and a sequence of 
scalars {a,,} there exists a unique polynomial set {p,,(x)} and a unique 
functional L such that 

p&A = 0. n > 0, (3.11) 

and (3.7) hold. 

Proof. Let 4,-,(x) = Ux”, n > 0. Since the degree of g,(x) is precisely II 
they span iFi 1x1. Define the polynomial set (p,(x)} inductively by 

p&) = 1, UP,(~) = np,- ,(x)- p,(a,) = d,.,. (3.12) 

These polynomials are well defined and unique because U is onto, the null 
space of U is the constant polynomials. We now start with the p,,‘s and can 
easily show that the degree reducing operator U constructed in the proof of 
Theorem 3.5 agrees with the one we started with. 

Next we prove L is unique. Set p(x) = pk(x), k = 0. l,... in (3.7) to obtain 

CL I P/C(X)) = 4,“. 

which defines L uniquely on the p,,‘s, hence on all polynomials because 
(p,(x)} is a basis for R [xl. This completes the proof. 

DEFINITION 3.8. A polynomial set (p,(x)} is associated with a degree 
reducing operator U if 

UP,(~) = np, ,(x). (3.13) 

Let us reexamine the role played by the sequence (a,} in Theorem 3.7 and 
its proof. The sequence was used to exhibit a functional M defined on the 
P,,‘s by 

w I P,(X)) = 4.0. (3.14) 
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and extended to all of K[x] by linearity. This functional enables us to 
compute the constant term in p,(x) once all the other terms have been 
already computed from (3.13). The converse is also true in the sense that 
every polynomial set uniquely determines a degree reducing U satisfying 
(3.13) and generates a functional M via (3.14). This proves 

THEOREM 3.9. There is a one-to-one correspondence between poi-vnomial 
sets (p,(x)} and pairs (U, M), U is a degree reducing operator and M is a 
Junctional. Furthermore (3.13) and (3.14) hold. 

When the polynomials p,(x), p2(x),... haoe a common zero a, A4 is e,. For 
polynomials of binomial type a = 0 while a = 1 for Eulerian families of 
polynomials. Our next result is an expansion theorem in polsnomials that 
resemble the B,‘s. 

THEOREM 3.10. (Operator Expansion Theorem). Let (p,(x)} be a 
polynomial set with p,(x) = .Y - 1. There exists an operator U and a 
functional L so that 

02 
p(x) = K‘ q 

-“,)I- lh2 

0 (9; s>, 
c--1)” (L I em P(X)> P,(S). (3.15) 

Furthermore tfp,( 1) = 6,., then L = E,. 

Proof. We first consider the case p,(x) =8,(x). In this case we claim 
that U is qq. Set 

Clearly 

(6 I en(qq> em(x)) =$ Cnk(6 1 e,&kX)i =e &ko,(qk) 
0 

= $ cnk(eqX 1 em(x)) = e Cnk@ 1 em(x))9 
0 

where the functional product is given by (4.2). With that functional product 
E,,, is E:. Therefore 

(E, I e,w) u-4) = ($ CnkE: ) em(x)) = (en(Eq) 1 em(x)) 

= (-1)” qncn ‘)i2(q; 4)” 6,., , 

by (4.22). This establishes (3.15) when p,(x) is e,(x). We now use the 
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umbra1 lemma to obtain the general result snce p,(x) and 19,(x) coincide for 
n=o, 1. 

Note that the operator expansion (3.15) is easy to prove because all it uses 
is (3.12). What is nontrivial is finding a functional expansion where the coef- 
ficients of p,(x) are scalar multiples of (r,(L) 1 p(x)) for some sequence of 
polynomials (r,(L)} and a certain functional I.. In the next section we shall 
see that it is impossible to do so for Eulerian families of one variable. This 
situation can be remedied if we go to homogeneous polynomials in two 
variables. 

Another treatment of polynomial sequences using general degree reducing 
operators appears in Freeman [ 4-6 I. 

4. EULERIAN FAMILIES OF POLNOMIALS 

In the present section we explore certain properties of Eulerian families of 
polynomials via the comultiplication 

As we pointed out in Section 2 the comultiplication induces a product on P*, 
the dual of K[x]. The product of functionals is 

hence 

(IA4 1 x”) = (L @ A4 ( (x @ x)“) = (L @ M 1 s” @ x”). 

Consequently 

(LM 1 x”) = (L 1 x”)(M 1 x”). (4.2) 

We now characterize Eulerian families of polynomials in terms of functional 
products. Recall that a polynomial set ( p,(x) 1 is an Eulerian family if and 
only if 

p&y) = 6 ; -Ii L I PC(X) ?‘“P, -k(Y). 4 (4.3) 

THEOREM 4.1. A polynomial set ( p,(x)] is an Eulerian family if atld 
only lq- 

wf I P,(X)) = $ [ ; ] CL 1 Pk(x))(M 1 Xkpn-k(X))’ 
9 

(4.4) 



.A q-UMBRAL CALCULUS 195 

Proof: Let (p,(x)} be an Eulerian family of polynomials. Clearly 

WM I P,(X)) = CL 0 Ml P,(AX)) = (L 0 M I p,(x 0 x)) 

= @@MI P,((XO 1x1 0-r))) 

1 Pk(XO 1x1 cwkP,-k(l OX) 
9 

I Pk(X) 0 XkP”-k(X)) 

and (4.4) follows. Conversely if (4.4) holds then 

(L 0 MI P,W) = (LM I P”(X)> 

(L @ h’f / pk(X) 8 xkp, -k(X)) 
Q 

This shows that 

p,(Ax) = f- 
;5- [ 1 ; PktX) @ -yk& -kcXh 

Q 

that is, since Ax = x @ x = (x @ l)( 1 0 x), 

A?((-rc3 1x1 OxN=~ ; 
L 1 

Pk(X@ l)cx@ l)kp,-&@ I), 
4 

which is a disguised form of (4.3). 
Theorem 4.1 illustrates the connection between the functional relationships 

(4.3) and the product of functionals (4.2). For a given Eulerian family 
1 P,(-u) \ set 

p,(x) = e Cn*mxm, n = 0, l,... (4.5 1 
0 
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and 

X” = f’ d,,, p,(x), n = 0, l,... * (4.6) 
” 

Our next result will eventually enable us to prove that the sequence of 
leading coefftcients (c .,,,I uniquely determines the Eulerian family ( p,(x)). 
Clearly 

4.n = l/c,.,. (4.7) 

THEOREM 4.2. We haue 

n 
C n.m = [ 1 m Q 

cmnl P,-,(O)* (4.8) 

Proof. Define the sequence of functionals L,, M, via 

CL, I P,(X)> = CM, I -xrn? = h&n. (4.9) 

We now compute (L,M, J pi(x)) in two different ways and equate the 
results. Recalling (4.2) and (4.5) we get 

=Cj,m(Ln I-y*> =Cj.tn 

On the other hand (4.4) and (4.9) yield 

CL” / pk(x))(Mm 1 xkPj-k(x)) 
4 

Therefore 

cj.mdrnyn = [ 1 j c. I’ Y /-Il.??-II’ 
The result now follows by letting n = m in (4.10) and the proof is complete. 
The special case m = j of (4.10) establishes the following result 

COROLLARY 4.3, 

d m.n = C 

9 m-n.m-n 
IC 

mym’ 
(4.1 1) 
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Observe that the relationship (4.11) determines d,, uniquely when the 
sequence (c,,,} of leading terms in the p’s is given. The uniqueness of the 
polynomials then follows from the uniqueness of the d’s and simple induction 
since (recall (4.6) and (4.11)) 

“, 

C m*mxm = \’ 
m 4 1 C 

n 4 
m-n.m-n P,(x)* 

I, = 0 
(4.12) 

Relationship (4.12) solves the connection coefticient problem expressing the 
monomials in terms of members of an Eulerian family of polynomials. The 
connection coefficients [z 1, c,-~,~-~ have a very simple form indeed. The 
inverse problem, namely. expressing the p’s in terms of the monomials, seems 
to be much harder. Luckily generating functions come to the rescue because 
a generating function is really an infinite family of identities. The next result 
characterizes Eulerian families of polynomials in terms of their generating 
functions. 

THEOREM 4.4. (Andrews [ 1 I). A polynomial sequence (p,(x)t with 
pa(x) = I is an Eulerian family if and only if it has a generating function 

% n 
f (xt) 

\‘P,(-~)&=-7 
7 J-0) 

(4.13) 

where 

f(t) = \"- 
77 

Ynt"lt% s> II, y. = 1, yn # 0, n = 1, 2 ,..., (4.14) 

and the leading term c,,, in p,,(x) is 11,. 

Proof. It is easy to see that if the p,‘s are generated by (4.13) then c,., is 
;I,. The functional equation (4.3) follows from (4.13), the observation 

fM -f(w) f(P) 
f(t) f(P) f(t) 

and formal power series multiplication. To prove the converse we start with 
an Eulerian family of polynomials (p,,(x) 1, pick >ln to be c,,, and define f (t) 
by (4.14). At this stage we go back to (4.12) multiply it by t”/(q; q), and 
sum over the values m = 0. I.... . This process leads to 

‘x 

f (-4 = f w \- P,(X) t”l(q; q)n 7 
T 

after some easy manipulation. This completes the proof. 
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Andrews [ 11 proved Theorem 4.4 in a different way. As a matter of fact. 
our approach is completely different. We now investigate the Eulerian family 
(e,(x)}. Let X, Y, Z be vector subspaces of V,, the n-dimensional vector 
space over GF(q). Assume that X, Y. Z contain x. y, z vectors, respectively. 
Goldman and Rota [ 7 1 showed that 0,(x, J!) counts the number of one-to-one 
linear transformations f of V, into X such that f(x) n Y = {O}. and Y is a 
subspace of X. By a clever counting argument that squeezes a third subspace 
Z between the subspaces X, Y Goldman and Rota proved that 

(4.15) 

From this one can easily use the obvious identity 

O,,(x, .vj = .fv,(x/y) 

to show that the polynomials B&j satisfy (4.3). hence (0,(x)} is an Eulerian 
family. Andrews [ 1 ] gave a combinational argument, different from 
Goldman and Rota, to show that (B,(x)} is an Eulerian family. The 
polynomials (e,(x)} are manic. thus (4.12) reduces to 

m 
.ym = T 

4 I 
“l e,(x). 

n-0 ” q 
(4.16) 

We now determine the inverse relation to (4.16), namely, the following 

THEOREM 4.5. (Gauss’ Binomial Theorem). The polynomials O,(x) are 
given explicitly by 

t?,(x) = f ‘I 

[ I 

(-1)“-” q (n-m)(n-m-ll.~?mKm 

m=O * 4 
(4.17) 

Proof Use (4.5). (4.8) and 

~,(o)=(-~)“q’+“‘+“-l =(-l)nqmn-w2* Q.E.D. 

Formula (4.17) may also be proved from (4.16) by using the Mobius 
inversion on the lattice of vector spaces over GF(q) (see Rota [ 15 1). The 
Mobius function of this lattice was first computed by Weisner. Note that 
(4.15) actually comprises (4.16) and (4.17) because (4.16) is (4.15) with 
\v=O and z= 1, while (4.17) is (4.15) with z=O and)‘= 1. 

As an application of Theorem 4.4 we prove a nonterminating version of 
the Gaussian binomial theorem. 
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THEOREM 4.5. (Heine’s Binomial Theorem). We have 

F (a: 4)n $3 = (a-x; 4), 

0 (4; q), (x;* 

ProoJ When we replace p,(x) in (4.13) by 
formula 

we get 

B,(x) and apply Euler’s 

(4.19) 

‘L t ,, 
\-e,(y)-= (t; 4)x 
0 (4; q), (4’t: 4), * 

(4.20) 

which is equivalent to (4.18) since O,(J) = j+( l/y: q),. This completes the 
proof. 

Euler’s formula (4.19) can be proved analytically by showing that both 
sides satisfy the functional equation 

f(x) ;f(qx) = &), f (4x) that is, f(x) = - 
1 --x 

and are continuous at x = 0. A truly combinational proof using Ferrer’s 
diagram for partitions of integers is in Hardy and Wright [9] (see also 
Andrews [ 11). The sum (4.18) is an important result in special functions. 
Ismail [ 111 showed how to use it to give an incredibly simple proof of the 
Ramanujan ,Y, sum. Recently the Ramanujan sum has been useful in 
evaluating a new extension of the /I? integral (Andrews and Askey [3]). We 
next prove an expansion theorem that uses only products of functions and 
characterize the 8,‘s in terms of such expansions. 

THEOREM 4.7. (Expansion in terms of 0,(x)). The e.xpansion of an 
arbitrarJ7 polynomial p(x) in terms of the 8’s is- 

C-1 1” C@“(&,) I P(X)> er@h (4.21) 

and B,(E,) is interpreted as E, . 

ProoJ It is sufftcient to show 

(a&,) I MX)) = 9 n(“-‘)j*(q; q)n (-1)” 6,*,. 
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We use induction on n. Clearly (4.22) holds for n = 0 because (E, 1 e,,(x)) is 
indeed a,,, . Next observe that 

4(&q) = L(&q)@q -d-‘&k) 

so 

MA&q) I e,(x)) = ; (enm,(~,)l Oj(x))(Eg-qn-‘&, l.tie,nmj(~~);L 
4 

that is. 

m = [ 1 n-l q 9 ‘“-““‘P2’iz(q; q),m, (es -q’-‘~, Ix”-‘B,,m,,+,(x)j. (4.23) 

Note that (E,\x’~,(x)) = 0 unless r = 0, 1 while (E, Ix’B,.(x)) = 6,., . Thus the 
right side of (4.23) vanishes unless m = n or m = n - 1. When m = n we 
have 

(Eq-qnp’&, J,F e,+)j = qn-~l(q - i), 

and when m = n - 1 we have 

Combining these observations with (4.23) we obtain (4.22) and the proof is 
complete. 

Since our model polynomials are (e,,(x)}, the expansion formula (4.2 1) 
suggests replacing (e,(x)} by any Eulerian family of polynomials (p,(x)} 
and replacing E, by some other functional L so 8,(s,) becomes B,(L). Unfor- 
tunately this is not the case, and (4.21) or (4.22) in effect characterize the 
en(x), up to scaling factors. 

THEOREM 4.8. The only functional L and Eulerian family (p,(x)} that 
satisfy 

ew) I p,(x)) = a,&., (4.24) 

for some sequence of nonzero constants (a,, 1 are L = E, and p,(x)) = k”O,(x). 
bvhere k = a,/(q - 1). Furthermore a, is given by 

a, = (q; q)n qncnP ‘)“a:/( 1 - q)n. 
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Proof: Clearly 

201 

(en+ l(L) I Pm> = ((L - 4”&,) f9,W) I Pm> 

\‘ m =- j 
[ 1 

CentL) I Pj(-“)>(L -qnel I 2Pm-j(x)) 
0 

follows from the assumption (4.24). When m = n one gets 

0 = (On+ 1(L) I P”G)) = %I@- I -q -@I. 

Thus L is E,. At this stage we apply the functional L to (4.12) and obtain 

C m,mq” = ;“- m 4 1 c 
t1 m-tLn,-“v- I P”(X)). (4.25) 

n=O 

Recall that O,(X) is x - 1, so (I!. / p,(x)) is (B,(L) + E, I p,(x)), that is, 

w I P”G)) = a,&, + ~“.O. (4.26) 

The relationships (4.25) and (4.26) imply 

C lMl9” = cl?l.m + aI 
(1 -dY c 

1-q 
m-l.rn-l’ 

so cm ,,,=kc,-, mm,, 
With these value’s for c 

m > 0. and a simple iteration identifies c,., as km. 
m.m we go back to (4.12) and find that 

(4.27) 

Comparing (4.27) and (4.16) identifies ((9 - I)/a,)“p,(x) as 0,(r) for all n. 
This completes the proof. 

In the next section we will extend the functional expansion (4.21) to 
expansion in terms of Eulerian families of polynomials by constructing a two 
variable umbra1 calculus. 

5. HOMOGENEOUS EULERIAN FAMILIES 

We start this section by developing a two variable umbra1 calculus that 
will yields the functional expansion for Eulerian families of polynomials. 
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DEFINITION 5.1. Define the comultiplication A on the generators x and y 
of IF?[.u, 4’1 by 

Ax = qx @ I, Ay = 1 @ J (5.1) 

and extend it to R[x. ,171 using 

Ap(x, y) = p(Ax, 4). (5.2) 

The above definition induces the functional product 

(LM I p(x, y), = L 0 M / p(Ax. Ay)). (5.3) 

Our model polynomials are the two variable polynomials f?,(x, J) introduced 
in (1.7). Let us compute the action of a product of two functionals on 
0,(x, y). Clearly 

(LM) 0,(x, y)j = (L 0 M 1 O,,(Ax, Ay)) 

ej(qX@ 1, 1 0 1) e,-.i(i 0 1, 10 Y) 

= (LOM 1% [ ~]~B,(qx, 1)Oe.-j(l-?i)). 

Therefore 

(LM I 8,(x, 49) = t 
L 1 

1 (L I Oj(qX, l))(M I en-j(lT Y)). (5.4) 
0 Jq 

The above product of functionals is not COmmUtatiVe. Set 

e,(L) := 2 ‘: [ 1 (-1)“-‘q tn-j)(n-j- I)/? L j, (5.5) 
0 Jq 

LO = El,,. L’=L, LJ = Lj- 1L for j>l. (5.6) 

THEOREM 5.2. Under the above functional multiplication we have 

(e”(E,.,) I 0,(-x, ~9) = c-v (4; dn Pn-l)%.,l. (5.7) 

ProoJ Using (5.4) we obtain 

(E a,b%.d 1 em(x% 4’)) = $ [ 7 ] Oj(qa; 1) 8, -j( 1, d) = O,(qa, d), 
9 



A q-UMBRALCALCULUS 203 

by (4.15). Thus 

(E a.bE,.d / e~(x, VI> = k,.d 1 e,(x- y)> 

holds. A calculation gives 

(4.1 I B,(x, ?‘I) = B,(q’, I), 

that is. 

(ej., I end-y 7 Y)) = e,(gi) = (Eqi I e,(-y)). 

Recall that in the single variable case with the comultiplication Ax =x @ x 
the functional E,j is nothing but &i, see the proof of Theorem 3.10. Therefore 

(4. I I em(-y? Y)) = (4 I e*(“y)). (5.8) 

Now (5.8) implies 

em,, ,I I 4(x, ~9) = ow,) 1 fu-4) 

and the result (5.7) follows from (4.22). This completes the proof. 

DEFINITION 5.3. (Andrews [ 11). We say that (p,(x, u)} is a 
homogeneous Eulerian family of polynomials if each P,,(x, ~8) is a 
homogeneous polynomial of degree n in x and .I’, pO(x, J!) = 1, p,(x. 0) # 0 
and 

pn(x, Y) = + T c I ; P&3 z) Pn-k(Z’ 4’). 4 
Observe that homogeneous Eulerian families of polynomials satisfy 

P,(X. x) = 0, (5.10) 

as can be seen from (5.9). The polynomials 8,(x, J) form a homogeneous 
Eulerian families of polynomials. 

LEMMA 5.4. Let (p,,(x, y)} be a homogeneous Eulerian family of 
polynomials with p,(x, y) = x - y. Then there exists an isomorphism S from 
(K[x], .) to (K[x], *), K := p[y] such that 

e:(x, J’) := s(e,+, u)) = pncX, y). (5.111 
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Furthermore we have 

O,*(a, y) = O,(a, y), 0,*(x. a) = pn(x, a), Oz(ax, s) = p&x, I*), 

for all a E K = R[y]. (5.12) 

Proof. Let 

e&K, !‘) = y C;tjXkJj, 
k ..i 

and define S and 8,*(-r, y) as in (5.11). Therefore 

because 

@(x, J’) = x cijxk*Jj* = 2 C;jXk*yc 
k..i k.j 

xk*Y* = S(x”, 4-Q = yqx”) = JJXk”. 

This proves the first two equalities in (5.12). The third equality follows from 
the homogeneity of both e&y, J?) and pn(x, 4’) and 

O,*(ax, y) = aV;(+~. y/a) = a”p,(x. y/a) = pn(ax, y). 

This completes the proof. 
We now extend the functional expansion theorem (Theorem 4.7) to 

homogeneous Eulerian families of polynomials. 

THEOREM 5.5. If { p,,(x, y)) is a homogeneous Eulerian family of 
polynomials then there exists an associated functional M such that 

(B”(M) 1 p,(.u, y)) = (- 1)” (q; q)n qncn - ‘)%,, , (5.13) 

where the functional multiplication is as in (5.3) and (5.6). 

ProojI Apply the map S of Lemma 5.4 to (5.7) to find 

(e,*p4) 1 P&, y) j = C-1)” (4; 41, qncn - Wmn, (5.14) 

where M = E,*, , . We claim that 

+ww 1 prn(x3 4’) > = v,(M) 1 ~,(x? ~9). (5.15) 

Once we establish (5.15) the assertion (5.13) will follow from (5.14) and 
(5.15). First we show that 

(L,L, I P”> = CL, * Lz I P,>l (5.16) 
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where Li = Lie,,, and Ei are functionals defined on R[x]. We have 

and 

using 5.12. Now (Lz IIV,~~~(I, y)) = (t, 1 B,-j(l, 1)) = c~,-~.~(L~] 1:). Thus 
(L,*LJp,,)=(Qlj(L E I 4.r.l/ P,>. Since (L2l P,~j(1,~>)=~n-j,ll(2zIl) 
we also find (L,L, (pa>= (LJ l)(L,cqr., 1 p,) using (5.17). This shows 
(5.16). We next observe that L, L, = (I? ,sqx,,) E,., so L, L, is again of the 
form L3~,.,, where 2, is a functional on IF: [x]. Now (5.15) follows easily 
from the following induction statement: For each n if deg p,,(x) = n then 
(p,,(M) ] 8,(x)) = (p,*(M) ( 0,(x)) and p,(M) = II?&,. , for some functional 
A? on R [x]. For n = 0 or n = 1 this statement is clear since M = E:,, = 
&* 4,, E,,, . For n > 2 we may write p,(x) as a,x” + p(x), where deg(p(x)) < 
tz - 1. By induction M”-’ and p(M) are each of the desired form with 
(M” - I I 0,J.u)) = (M*‘” - I) 1 B,(x)) and 

(P(M) I e,(4) = (P*(M) I ~,w. (5.18) 

Thus by the above a,M” = a,M(M”-j) will be of the correct form and will 
satisfy (u,M” ) 8,(x)) = (unM*” / e,(x)). Add this to (5 18) to give the result. 

We now use this result to give an expansion theorem in one variable. 

THEOREM 5.6. DeJne d(x) = qx @ 1 and dp(x) = p@(x)). up,(x) is un 
Euleriun family of po[vnomiuls there is a functional L such that 

PCY) = x 
(fw) I ~(4) 

(-1)” (q; q), qncn-‘v2 P,C~). 

Proof: Let p(x) = C,,, b,p,(x). We show (-1)” (q; q)n q”‘“- ‘)“bn = 
(S,(L) ] p(x)). Define p,(x, 4’) = y”p,(x/y). P,(x, y) forms a homogeneous 
Eulerian family ([ 11) and p,(x, 1) = p,,(x). One can easily show by induction 
that L” = Lcqnxr where L is any functional on R[x]. Let L = c$. Then the M 
in the previous theorem is LE,. , . We have 
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(-1)” (9; 4)” 4(n-“12&m = @,(W I Pm(X, Y)) 

Writing out (0,(L) ( p(x)) = x,,, 6,(8,(L) 1 p,(x)) gives the desired equation 
for b,. 
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