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AN ANALOGUE OF WIENER
MEASURE AND ITS APPLICATIONS

MaN Kyu IMm AND KUN SIK RyU

Dedicated to Professor Kun Soo Chang on his sixtieth birthday

ABSTRACT. In this note, we establish a translation theorem in an
analogue of Wiener space (C[0, ], w,,) and find formulas for the con-
ditional w,-integral given by the condition X (z) = (x(to), z(t1),- - ,
z(tn)) which is the generalization of Chang and Chang’s results in
1984. Moreover, we prove a translation theorem for the conditional
wy-integral.

1. Introduction

Since the Brownian motion was found by the British botanist Robert
Brown in 1827, the theory of this motion was developed extensively
and deeply by many scientists including Albert Einstein. Specially, for
the probabilistic approach to the theory of Brownian motion, Wiener
suggested a measure space (Co[0,t],m,,) where Cy[0,¢] is the space of
all continuous functions on a closed interval [0, ¢] which vanish at origin,
the so called Wiener space in 1923 [7]. But, through the Wiener measure
theory, one could obtain theories for a single small particle, merely.

Recently, the authors introduced a new definition of an analogue of
Wiener measure space (C[0,t],w,) and investigated some theories on
many small particles moving along the law of diffusion [6]. In other
word, we assume that space is filled by a solvent, that particles reacting
with the solvent spreads through it according to the laws of diffusion and
that the distribution of the substance at the beginning is a measure ¢,
our theory tell us what distribution would be at any time afterwards. In
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this case, if ¢ is the Dirac measure dp, the total mass one concentrated
at origin then w, is the Wiener measure.

In the theory of infinite dimensional analysis, translations are diffi-
cult problems to deal with and Cameron and Martin proved a trans-
lation theorem on the Wiener space Cy|0, t], under some conditions, in
[1]. In Section 3, we will treat a translation theorem on the analogue
of Wiener space (C[0,1],w,). In [10, 11], Yeh presented the definition
and some examples of the conditional Wiener integral and he proved
a translation theorem for the conditional Wiener integral. In section
4, we will find formulas for the conditional w,-integral under the con-
dition X (x) = (x(s0),z(s1), - ,2(sp)) which is the generalization of
Chang and Chang’s results in [3]. In the last section, we will establish
a translation theorem for the conditional w,-integral X (x) = x(t).

2. Preliminaries

In this section, we will introduce some notations, definitions and facts
which are needed in the subsequent sections.

(A) Let R be the real number system and let C be the complex
number system. For a natural number n, let R” be the n-times product
space of R. Let B(R™) be the set of all Borel measurable subsets of R".
Let my be the Lebesgue measure on R.

(B) For a positive real number ¢, let C[0,t] be the space of all real-
valued continuous functions on a closed bounded interval [0,¢] with the

supremum norm || - ||eo-
(C) Let t be a positive real number and let n be a non-negative
integer. For ¢ = (to,t1, -+ ,tp) with 0 = tg < t; < -+ < t, < t, let

Jz: C[0,t] — R™! be the function given by
(2.1) Jx) = (z(to), z(t1), - ,x(tn)) -

For Bj (j =0,1,2,--- ,n) in B(R), the subset Jg_l(H?:o B;) of C[0,1] is
called an interval and let Z be the set of all intervals. For a probability
measure ¢ on (R, B(R)), we let

) mo (37 (1] ))
§=0

n
[ Lo, Wt o wna[[moun )] do(uo),
Bo~/ "1 By j=1
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where
(23) W(n+17t_;u07u17 ,’U,n)
n n
1 1 = ujo1)?
(11 Jexp{ — 13 (oY
j=1 27T(tj - tj_l) 2 =1 tj - tjfl

By [5, Theorem 5.1, p.144] and [5, Theorem 2.1, p.212], B(CI0,t]), the
set of all Borel subsets in C0,¢], coincides with the smallest o-algebra
generated by Z and there exists a unique probability measure w, on
(C10,t],B(CI0,t])) such that w,(I) = my(I) for all I in Z. This mea-
sure w,, is called an analogue of Wiener measure associated with the
probability measure ¢.

By the change of variable formula, we can easily prove the following
lemma.

LEMMA 2.1. (The Wiener integration formula) If f : R"*! — C is a
Borel measurable function then the following equality holds.

(2.4) / Falto), x(tr), - x(tn)) dwy(z)
Cl0,]

*

= /|: f(UO,Ul,"',Un)W(TL—}—l;EUO,Ul,"',Un)
R R™

xd H mL((ulv U2,y -+ 7un)] ng(U()),
j=1

where = means that if one side exists then both sides exist and the two

values are equal.

(D) Let ¢ be a probability measure on (R, B(R)) and let n be a
non-negative integer. Let X be a R™"!-valued measurable function on
(C[0,t], B(C[0,1]),w,). We write Px for a measure on (R"™!, B(R"*1))
determined by X, that is,

(25) Px(B) = w,(X"!(B))
for B in B(R"*1). If X(z) = x(t) then

= [ [ ew{-EEY dmu@rtotun

Let Z be an integrable function on (C[O,t],B(C[O,t}),ww). The con-
ditional w,-integral of Z given X, written E“#(Z|X), is defined to be

(2.6) Px(B
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any real-valued Borel measurable and Px-integrable function 1) on R"+1
such that

(2.7) /)(1(H) Z(x)dw,(x /¢ )dPx (¢

for H in B(R"*1). By the Radon-Nikodym theorem, we know that such
a function v always exists.

According to the similar method as in the proof of Lemma 1 in [11,
p.627], we can obtain the following lemma, so we state the lemma with-
out the proof.

LEMMA 2.2. Let Z be a real-valued integrable function on (C10,t], B
(C[0,1]),w,) and let g be a measurable function of (R" ™!, B(R"™1)) into
(R,B(R)). Then

(2.8) / 9(X (2))Z(x) dwy(z) = / 9(6) B (Z|X)(€) dPx(¢),
Clo,) R

n+1

where = means that if one side exists then both sides exist and the two
values are equal.

3. A translation theorem on (C|0,t],B(C[0,t]),w,) and the
Paley-Wiener-Zygmund integral

It is well-known fact that there is no quasi-invariant probability mea-
sure on the infinite dimensional vector space [8]. So, there is no quasi-
invariant probability measure on Cy[0,¢] or C[0,¢]. In 1944, under the
some assumptions, Cameron and Martin established a translation theo-
rem on (Cy|0,t], my) in [1]. In this section, we will prove a translation
theorem on (C10,t],w,) under the similar assumptions to Cameron’s
assumptions. From these concepts, we will show that the Paley-Wiener-
Zygmund integral is well-defined w, — a.e..

By the similar method as in the proof of Cameron and Martin’s trans-
lation theorem on Cy|0,¢] in [1], we can prove the following theorem, so
we give only the sketch of proof of it.

THEOREM 3.1. (The translation theorem on (C[0,t], B(CI0,1]),w,))
Let h be in C[O t] and of bounded variation. Let o be in R and let
= [y h(u)dmp(u) +a for 0 < s < t. Let L : C[0,t] — C[0,¢]

be a funcmon with L(x) = x + x¢ and let ¢ be a probability measure
n (R, B(R)). Let ¢, be a measure on (R, B(R)) such that ¢,(B) =
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@(B + «) for B in B(R). Then if F is w,-integrable then F(x + ) is
w-integrable of x and

(3.1) /C o P )

R
1L / Fla+a0) e 070 @) gy (2).
C0,t]

Proof. Suppose F' is bounded and continuous, and vanishes on {y €
Cl0,t)] || y |[co> M} for some real number M. Then F o L is w,-
integrable and F' is bounded by K for some real number K. For a
natural number n, we consider two functions P, : C[0,t] — C|0,t] and
Gy, : R"! — R such that

B2 RO ="y

for t € [t;—1,t;] and

(3.3) Gn(y) = Fy(to), y(t1), y(t2), - ,y(tn)),

where t; = %t fort=0,1,2,--- ,n. Then by Lemma 2.1 and the change
of variable theorem, we have

(3.4) /C F(P(y) dwy(y)

[0,t]

_ / G (00, 01, -+ 0)W (1 + L5 g, vn,s -+, o)
R JR"
n

X d H mr,(vi,v2, -, vn)de(vo)
i=1

_ 1 O~ (@o(ti) — zo(ti-1))?
- exp{—§Z : ti—tjq 1 }/C[o,t}F(Pn(xJMEO))

1=

—_

n
ti) — a(ti t:) — o (ti
x expd — (@(ti) — x(ti-1))(@o(ti) — zo(ti-1)) dw,, (2),
t — ¢ Pa
i—1 1 i—1
where ¢ = (to,t1, -+ ,tp). From the mean-value theorem, for each i =
1,2,--- ,n there is a real number 7; in [¢;_1, t;] such that % =

xo(ri) = h(7i). Since (P,) converges uniformly to Ic(oy, the identity
function, (FP,(x + xzg)) converges to F(z + x¢) for each = in C]0,1].
Moreover, if || P,(z + o) ||oo< M then |z(t;)| < M + |zo(t;)| < M+ ||



806 Man Kyu Im and Kun Sik Ryu

xo ||oo fori =0,1,--- ,n. If F'is a non-negative, bounded and continuous
function, let

1 fo<u<n
(3.5) My(u)=¢ n+l—u if0<u<n
0 tfn+1l1<u

and Fy,(x) = F(z)Mu(]| 2o ||o) for each natural number n. For each
n, F, is bounded, continuous and vanishes on || zg || > M(|| zo [|s0),
so the equality (3.1) holds for F),, and by the monotone convergence
theorem, the equality (3.1) holds for a non-negative bounded continu-
ous function. By the properties of integral and F'(z) = max{F(z),0} —
max{—F(z),0}, we know that the equality (3.1) holds for a bounded
continuous function F. Appling Lusin’s theorem, we obtain that the
equality (3.1) holds for wg,-integrable function F. O

Putting F' =1 in Theorem 3.1, we have the following corollary.

COROLLARY 3.2. Under the assumptions in Theorem 3.1,

o) [ ew{- | hfu) da()} dwg(@) = exo{ - 2 113}

for any « in R.

Replacing h by Ah in the above Corollary 3.2, by the uniqueness the-
orem for analytic extension in the theory of complex analysis, we have
the following corollary.

COROLLARY 3.3. Under the assumptions in Theorem 3.1, for all A
in C,

(3.7)/0[0771 exp{ - )\/Oth(u)d:c(u)} dwe, (z) = exp{ - % | |3 }

for any « in R.

THEOREM 3.4. Under the assumptions in Theorem 3.1, consider
a random variable X : C[0,t] — R with X (z) = fg h(u) dx(u). Then
X has a normal distribution with the mean zero and the variation || h ||3.
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Proof. By Corollary 3.3, taking A = ¢ and o = 0, the Fourier trans-
form of X is given by

(38)  [FEOE) = / OteXp it / b dug, (2)

- exp{—5||h||%}.

Hence X has a normal distribution with the mean zero and the variation
(R O

By the same method as in the proof of Theorem 29.7 in [9, p.447],
we can prove the following theorem.

THEOREM 3.5. Let {hq,ha,--- ,hy,} be an orthonormal system such
that each h; 1's of bounded variation. Fori = 1,2,--- n, let X;(z) =
fO ) dz(s). Then X1, Xs,---, X, are independent, each X; has the

standard normal distribution. Moreover, if f : R™ — R is Borel measur-

able,

(3.9) / FX (@), Xa(@),+ , Xn()) dwp(z)
C[0,t]

= (@) f(uhw,--‘,un)exp{—%Zu]}

R® =

n
XdeL(Ul,UQ, o 7“71)7
i=1

where = means that if one side exists then both sides exist and the two
values are equal.

Let {hg|k = 1,2, -} be a complete orthonormal set in L?([0,],my)
such that each hy, is of bounded variation. For f in L2([0,¢],m) and
in C0,t], we let

(3.10) / f(s)dx(s nlLHOIO ; [kZ:l/O fweg(u) dmp(u) ex(v)|dz(v)

if the limit exists. fo s)dx(s) is called the Paley-Wiener-Zygmund inte-
gral of f according to . By the routine method in the theory of Wiener
space, we can prove that the integral fo dac( ) is independent on the
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orthonormal set {egx|k =1,2,---} and the Paley-Wiener-Zygmund inte-
gral exists w, — a.e. x in C[0,t].

REMARK 3.6. In 1980, Cameron and Storvick introduced the defi-
nitions and some related theories of the spaces S,S” and S” of Wiener
functionals. If we replace (C0, t], my) by (C[0,t],w,) in their paper, we
can prove various results on (C0,t],w,) which are similar to Cameron
and Storvick’s results in [2].

4. The conditional w,-integral

In 1975, Yeh introduced the definition and some related theories of
conditional Wiener integral. In 1984, Chang and Chang found some
formulas for conditional Wiener integral E¥(Z|X), given by X(x) =
(z(s1),x(s2), - ,x(sy)) [3]. In this section, we will establish some for-
mulas for conditional w,-integral which generalize Chang and Chang’s
the results.

From [4, Lemma 1, p.67], we have following lemma.

LEMMA 4.1. For each measurable partition = of R"T!, define the
linear operator

n n
(4.1) Ty : Lo <R"+1,HmL X gp) — Lo (R"'H,HmL X go)
i=1 i=1

by

— Jaf Al me x ¢
2 T = 2 T o (A)

for f in F(Joo(%ﬂ,n?:l mp, X ¢). Here if ([[;_; mp X ¢)(A) = 0 then
we take (/d”i mZL:;ZL)L(Z;‘D = 0. Then if the partitions are directed by re-

finement, then lim || Tr(f) — f |lco= 0 for f in Loo(R™ 1, [T, mz X ).

LEMMA 4.2. Let X and Z be as in Lemma 2.2. Assume that
Py < [[ymr x ¢ on (R™L BR™1)). For (ug,u1,--- ,u,) € R*M!
let J(ug,u1,- -+ ,un;-) be the function on R"*! defined by

(43) Jﬂ'(uO)"' y Un; S0, * * - ,Sn)

=) [HmL X SO(A)rlXA(Soa“' »8n) XA(uos -+ un),

Aer =1
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where m is a partition of measurable sets on R"™! and if ([[i_, mp x
©)(A) = 0 then we take [([[\_;mr x ¢)(A)]"! = 0. Then there is a
version of E¥¢ (Z|X)d43% such that

i=1

dPx
4.4 EYe (7| X e Up) (g, U
(4.4 (21X) . ) e, )
= lim (Jr(uo, -, un; X(x))Z(x) dwy(x)
T Jot
for [[;_,mp x ¢ —a.e. ((u1,---,up), up).
Proof. Substituting J;(ug, w1, -+ ,uy;-) in the place of g in Lemma
2.2, we have
(5) Tim [ (el un X(2)Z(2) dip(a)

T Joo

= hm// an' © 5 Uny S0, 51, Sn)Eww(Z’X)(S()?"' 78n)

4 nd R nd
dH L omr XQO(S()’ © S ) il_{mL(Sl S ) 90(50)

for [Tie; mp xp—a.e. ((u1,-- ,un),up). Let f = Ew‘P(Z|X)dJQ£foﬂ—LW'

Then f is [[; mr X ¢-integrable since Px < [[I; mp X ¢ and E¥¢
(Z|X) is Px-integrable. So, from Lemma 4.1 we have the result. O

The following Theorem 4.3 and Theorem 4.6 are the generalization
of Chang and Chang’s 1984 results in [3].

THEOREM 4.3. For xz € C[0,t], let X(x) = (x (80),1’(31),--- ,x(sp))
and let Z(z) = 1 fo s)ds where 0 = 59 < 81 < +++ < 8y < Spy1 =t for
a non—negamve 1n1;eger n. Suppose f(u) = u is @-integrable. Then the
conditional w,-integral of Z given X is

(4.6) E“?(Z|X)(up,ut, -+, up)
1

1
= 2% Z'_1(81 —8i—1)(ui—1 +u;) + Z(t — Sp)Unp.

n

Proof. Since |Z(z)| < % fo |2(s)| ds and [g |w| dp(w) is finite, fc[o t]

[2(s)] duy (@) is inite. So, Jorg ¢ fo le(s)l ds dw(@) = [ fepo,g 12(5)
dwy(x) ds is finite. Therefore fc[o q | Z|dw,, () is finite and so E*#(Z|X)
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exists. According to Lemma 4.2, a version of E“» (Z|X)d49ndpjfl—Lw is
i=1
given by
dPx
d H?:l my X @

~tim [ el s X)) d ),

(47) Ewtp(Z|X)(u07u17"' ,Un) (u(]aulv"' 7“71)

where (ug,u1, - ,un) € R and 7 is a partition of measurable sets
on R™!. With our Z and X, we have

(4.8) / (Tt -+ 1um: X (2)) Z() deoy ()
o,

n+1

- Z/C[O }(JW(UO,-.. ,Un; 2(s0), - - ’x(S”»i/Si z(v)dv dw, ().
i=1 ot Si—1

By Lemma 2.1, if v = 0,

(4.9) /0 t /C y 3 [(ﬂmL x @)(A)}71|x(v)\ dw,(x) dmy(v)

Aer =1
- > glmL <] [ ([ ol dotuo))ami (0

is finite, and if 0 < v < ¢,

(4.10) /0 t /C "3 [(ﬁmL < @) ()] aw)] dip(a) dm(v)

Aem i=1

=Z[(f[mwa><A>}‘l/ot (5= [ [l

Aen i=1

X exp{ - W}dmL(Ul) dcp(uo)>dmL(v)

is finite. So, by the Fubini’s Theorem and Lemma 2.1, we have

n+1

(4.11) Z/C (Jr(uo, -+ yun;x(so), x(s1), - - ,x(sn)):l/%i x(v)dv

[0,1] t

X dwy ()
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- SRR GV R - I e
< Jlamrraren{ -5
xd(}f{lmLXSO)((ala an).a0)

el [ =] 5 gttt
oo { 15 )

< TLmex o) (e an)co),

where x(s;) = «; for i =0,1,2,--- ,n. By (4.7) and Lemma 4.1,

dPx
4.12 Eww Z X R n v 9 9 tee ) n
( ) ( ‘ )(Uo,ul, y U )dl—[;z:1 mr x sD(UO Uy U )
(L3 = s+ ) + 2 sa)u)
= |5 8i — Si—1)(Ui—1 + i) + £ (T — sp)un
2t £ A t
- -3 1 — (uj —uj_1)?
n 2 1
X {(27T) | (55— Sj—l)} exp{ D) Z SJ—S]—l}
]21 ,]:1 J J
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Therefore, for a non-negative integer n we obtain

(413) Ew<p(Z|X)(u07u17"' 7“77,)
1 — 1
— ﬂ . I(Si — Si_1)(ui_1 + Uz) + E(t — Sn)un.
1=

From Theorem 4.3, we have the following two corollaries.

COROLLARY 4.4. For z € C|0,t], let Z(x) be as in Theorem 4.3.
And let X(x) = (x(0)). Suppose f(u) = u is p-integrable. Then the
conditional w,-integral of Z given X is

(4.14) E“#(Z]X)(uo) = uo.

COROLARY 4.5. For x € C[0,t], let Z(z) be as in Theorem 4.3. And
let X(x) = (x(s0),x(s1), -+ ,2(Sp+1)) where 0 = 59 < §1 < -++ < 8 <
Sp+1 = t for a non-negative integer n. Suppose f(u) = u is @-integrable.
Then the conditional w,-integral of Z given X is

n+1

Z(Si —si—1)(wi—1 + u;).
i=1

THEOREM 4.6. For z € C|0,t], let X(z) = (2(s0),z(s1),- - ,2(spn))
and let Z(z) = S L f(Si_l s) x(v)dmp(v) where 0 = sp < 51 <

=1 S;—8;—1

1

(4.15) B2 (Z]X)(uo, urs -+ s unn) = 5

- < 8p < Spy1 =t for a non-negative integer n. Suppose f(u) = u is
p-integrable. Then the conditional w,-integral of Z given X is
1 n
(4.16) E“?(Z|X)(ug,u1, -+ ,up) = 5 Z(Uz’—l + u;) + Up.
i=1
Proof. Tt is obvious that E“#(Z|X) exists. By Lemma 4.2, a version
of B¥¢(Z|X) QX is given by
j=1""L ®

dPx
4.17 E¥e(Z|X o B E—— y ULy t 0, Up
( ) ( ‘ )(UQ,Ul, , U )dl_‘[;bzl mr x (p(uo U U )
= lim (Jr(ug, -+ yup;x(s0), (1), -, z(sn))

T Jopg
n+1

X Z p” 15i1 /Si z(v)dv dwy(x).

i=1 Si-1
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Then by Lemma 4.1, we have

(418) lim / (Jﬂ’(u()a"' >un;m($0)7x(31)7"' ,1‘(Sn))
T Jopt
n+1 1 i
X z(v)dv dw,(x
> e | e doto)
1 n
= 5 Z(ui_1 +w;) + up
=1
as desired. O

From Theorem 4.6, we have the following a corollary.

COROLLARY 4.7. For xz € C[0,t], let Z(zx) be as in Theorem 4.6. And
let X(z) = (x(s0),x(s1), - ,2(Spt1)) where 0 = sp < 81 < -+ < 8 <
Sp+1 = t for a non-negative integer n. Suppose f(u) = u is @-integrable.
Then the conditional w,-integral of Z given X is

n+1

(4.19) B (Z1X)(uo, w1, unp1) = 5 Z;(ui_l + ;).

THEOREM 4.8. For z € C|0,t], let X(z) = (2(s0),z(s1), - ,2(spn))
and let Z(x) = fg(az(v))QdmL(v) where) = 59 < 51 < -+ < 55 < Spg1 =
t for a non-negative integer n. Suppose f(u) = u? is p-integrable. Then
the conditional w,-integral of Z given X is

(4.20) E*¢(Z|X)(ug, w1, -+, Up)
1 n
= 5 > (si = sic0)[(si — si-1)
i=1
1
—|—2(uz2 4+ ui_qu; + u?_l)] + §(t — sn)2.

Proof. 1t is trivial that E“¢(Z|X) exists. By Lemma 4.2, a version
of E¥#(Z|X) % is given by
j=1 LXp
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dPx

4.21 B (Z|X cee —_—————
( ) ( ’ )(u07u1’ dH;LZImLXSD

, Un)

(U(),’LLl, e 7u’fl)

n+1

=i 3 / <o, s 2(50), (1), ()

></ (z(v))2dmp(v) dwy(x).
81
Thus by (2.4) and the elementary calculus, we have

n+1

(4.22) Z/C[Ot] (w0, s un;x(s0), z(s1), -+, x(sn))

[ ) ima) doy (o

—Z / ) JC: el i) a(sn), - (o) (o(0)

xdmp (v)dw,(x)

Sn+1
+ / / (Ju(tig, i z(s0),2(s1), 2 (50))
Sn C[0,t]

%(2(v))? dmg(v)dw,(z)

_ZZ XAluTOr;LXLp) /|:27T H —5]1]

i= 1A67r Jj=1

K\J\)—'

1 1
X [*(Si —sim1)’ 4 g(si — si—1)(0f + qi—10y + o )}

6
xexp{—ié%} (HmLXg0> a1, Q) Q)
D e AL [@ﬂ:ﬁ{@ el
Xexp{_;z":(o;]] _O;;j) } d<ﬁmLX<p>((061, , ), Q)
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where z(s;) = a; for i =0,1,2,--- ,n. So, by Lemma 4.1,

(4.23) li7rrn Z/ (Jﬁ<u07... 7un;m(S()),.%'(sl)j... 7x(3n))

=1
1 - -3
2
+ gyl = 5 [em TTtsy = 55-0)]
7j=1
1 — (uj —uj—1) }
X exp{ — =
2 j; S5 — Sj-1
Hence we have the desired result. O

By Theorem 4.8, we have the following two corollaries.

COROLLARY 4.9. For z € C[0,t], let Z(x) be as in Theorem 4.8
and let X(x) = (2(0)). Suppose f(u) = u? is p-integrable. Then the
conditional w,-integral of Z given X is

(4.24) B4 (Z]X) (ug) = %t2 |

COROLLARY 4.10. For z € C]0,t], let Z(x) be as in Theorem 4.8
and let X (z) = (z(s0),z(s1), -+ ,x(spt1)), where 0 = s9 < 51 < -+ <
Sp < Spy1 = t for a non-negative integer n. Suppose f(u) = u? is

p-integrable. Then the conditional w,-integral of Z given X is

(4.25) Ew‘p(Z|X)(uO,U1,"- ,un+1)
1 n+1
= 5 D (si = sic)[(si = sim1) + 2(uf + wimrui + i)
=1
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5. A translation theorem of conditional w,-integral

In 1978, Yeh found a formula for the translation of conditional Wiener
integral [12]. In this section, we will prove a formula, similar to Yeh’s
result, for the translation of conditional w,-integral.

Using the similar method as in the proofs of Lemma 1, Lemma 2 and
Theorem 1 in [12], we can prove the following three lemmas, so we state
the lemmas without the proofs.

LEMMA 5.1. Suppose f(u) = u is @-integrable. Let Z be a real-
valued integrable random variable on (C[0,t], B(C[0,t]),w,) and let X :
(Clo,t], B(C|0,t])) — (R, B(R)) be measurable function. LetT : (C|0,t],
B(C0,t])) — (C[0,¢t], B (C]0,t])) be measurable function. Suppose there
is a bijective function h from R to R such that h and h~' are measurable,
and X oT = ho X for w, —a.e. x in (C[0,t],B(C|0,1]),w,). Then

(5.1) E“#(Z|X o T)(&) = E“*(Z|X)(h™'(£))
for Pxor — a.e. &.

LEMMA 5.2. Under the assumptions in Lemma 5.1, if there is a real-
valued B(C|0,t])-measurable function J on C|0,t] such that w,(B) =
fT*l(B) J(z) dw,(x) for B in B(C[0, t]), then for any real-valued B(C|0, t])

-measurable function T on C|0,t], we have
62 [ T do@) = [ (ZoT)@)I() duyla),
clo.4] clo,]

where = means that if one side exists then both sides exist and the two
values are equal.

LEMMA 5.3. Under the assumptions in Lemma 5.1 and Lemma 5.2,
for every measurable function g of (R, B(R)) to itself, we have

(5.3) /R 9(6) = (Z)X)(€) dPx (€)
= /R 9(E) B ((Z 0 T)J|X)(h™1(€)) dPxar(€),
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where = means that if one side exists then both sides exist and the two
values are equal. Moreover, if Px.r < Px then

dPxor
dPx

(5.4)  E*#(Z]X)(€) = B ((Z o T)J|X)(h™'(€)) (&)

for Px —a.e. €.

Now, we will establish a translation theorem for the conditional w,-
integral.

THEOREM 5.4. Let Y be a real-valued integrable function on (C|0, t],
B(C[0,t]),w,) and let X (z) = x(t) for = in C[0,t]. Let xo be given as
in Theorem 3.1. Then we have

(5.5) E2(Y]X)(6)
E22 (Y (- 4 20) J|X)(€ — 2o(t))

X /Rexp{ _(Ezmlt) - u0)2} deo(ug)

2t

o5 ]

for my, — a.e. £, where

(5.6) J(x) = exp{ _ % /Ot(h(s))2 dmL(s)} exp{ _ /Ot h(s) dﬂc(s)}.

Proof. Let T be the function of C0,¢] into itself with T'(z) = z + x¢
for z in C|0,t] and h a function of R into itself with h(x) = &+ z¢(t) for
¢inR. Then (XoT)(x) = hoX(x), h and h‘R1 are bijective measurable.

By Theorem 3.1, letting J(x) = e 2 )3 =g h(s) da(s)

(5.7) wlB) = [ ) )
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for B in B(CI0,]), that is, Pxor < Px. By (2.7), we have
dPxor
X (g)

dPxor dPx !
- D))

= /Rexp{ _ - xo(;t) — u0)2} dip(uo)

« Mexp{ _ (5_2;‘0)2} dgo(uo)} N

So, from (5.4) we have

(5.9) E=2(Y]X)(€)

(5.8)

dPxor
Py €3]
= E¥ (Y (- + x0)J|X)(§ — o(t))

X /Rexp{ _k= 330(;2 — uO)Q} dep(uo)

[ o] - 50 ao)]
where

(5.10) J(z) = exp{ _ % /Ot(h(s))2 dmL(s)} exp{ _ /Ot h(s) dm(s)}.

= E“((Y o T)J|X)(h~1(€))

O]

REMARK 5.5. In Theorem 5.4, if we take ¢ = §p, the Dirac measure
at the origin, then we obtain Yeh’s 1978 result.
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