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THE ASSOCIATED ASKEY-WILSON POLYNOMIALS

MOURAD E. H. ISMAIL AND MIZAN RAHMAN

ABSTRACT. We derive some contiguous relations for very well-poised ¢¢, series
and use them to construct two linearly independent solutions of the three-term
recurrence relation of the associated Askey-Wilson polynomials. We then use
these solutions to find explicit representations of two families of associated
Askey-Wilson polynomials. We identify the corresponding continued fractions
as quotients of two very well-poised ¢, series and find the weight functions.

1. INTRODUCTION

Throughout this work we shall assume that ¢ is a fixed number in (0, 1).
A g-shifted factorial (a), is defined by

(L1) (a)y=1, (@),=(1-a)(1-aq)(1-aq"

Following Gasper and Rahman [13] we shall use the notation

Y, n=1,2,....

(1.2) @.a,,....a),=[l@),, n=0,1,....
j=1

The value n = oo is allowed in (1.1) and (1.2). Normally the dependence on
the base ¢ is indicated by using (a; ¢), and (q,, ..., q;; q), instead of (a),
and (a,, ..., a,),, respectively. However, since we will be using only one base
throughout the paper we decided to delete its explicit display.

A basic hypergeometric series with r + 1 numerator and r denominator
parameters is defined by

oo

a.,da,,...,da (a,a,,....a_,) z
1.3 12 %2> ’ ’+1;q,z]= 1 2 r+l/n .
(1.3) r19; byy.... b 2 (b,,by,...,b), (@),

The Askey-Wilson polynomials [7] are the ,¢, polynomials

n

q™ ", abcdq" ", az,a/z

(1'4) pn(x;a9b,c,dlq)=4¢3|: ab ac ad ,qsq ]
x=(z+2z /2, |z|<1.
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202 M. E. H. ISMAIL AND MIZAN RAHMAN

Note that the product of the denominator parameters in this ,¢, series is g
times the product of the numerator parameters, and the argument of the func-
tion is ¢ . Basic hypergeometric series having this property are called balanced
[13] (Saalschiitzian in [9]). It is easy to see that if x = cosf in (1.4), then
z=e". The Askey-Wilson polynomials are the most general family of or-
thogonal polynomials that share the properties of the classical polynomials of
Jacobi, Hermite and Laguerre, as pointed out by Andrews and Askey [1]. An-
drews and Askey [1] define a family of orthogonal polynomials to be classical if
and only if it is a special case or a limiting case of the Askey-Wilson polynomials.
The Askey-Wilson polynomials {p,(x;a, b, c, d|q} provide a basic general-
ization or a g-analog of Wigner’s 6—j symbols and the Racah coefficients, [6,
29]. They satisfy the three-term recursion;
(1.5)
2xp,(x;a,b,c,dlg)=4,p,,(x;a,b,c,d|lg)+B,p,(x;a,b,c,d|q)

+Cp,_(x;a,b,c,d|g),

_a”'(1-abg")(1 —acq")(1 - adq")(1 — abcdq"™")

A )
; (1 — abedg® (1 — abedg™ — ¢*")
(16) . _a(l-beq" )1 ~bdg" )(1~cdg" )(1-4q")
" (1 — abedg®™ " )(1 = abedg®™™?) ’

-1
B,=a+a -4,-C

n

In general, if a sequence of orthogonal polynomials {p,(x)} satisfy an initial
value problem:

(1.7) po(x)=1, pi(x)=(x—-by)/a,,
xp,(x)=a,p,, (x)+b,p,(x)+c,p, (X), n>0,

then the associated polynomials {p;(x)} are generated by

(1.8)  pylx)=1, p(x)=(x-b)/a,,
XD, (X) = @y, Py (X) + by P (X) + €y Py (X)), 1 >0,

This is of interest when « is not necessarily a positive integer but the sequences
{aHa}‘, {bnm},.{cnﬂm} are well defined for n = 0, 1, , and for va'lue's
of a in a certain connected subset of (—oo, co0) containing [0, co). This is
particularly the case when a,’s, b,’s and c,’s are rational functions of n or
q". The associated polynomials are orthogonal if and only if the positivity
condition

(1.9) a cn+a+1>0, n=0,1,...,

n+a

is satisfied, [5, 7). For recent work on associated polynomials we refer the reader
to the articles {5, 8, 10, 14, 15, 19, 25, 33], and their references.
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ASSOCIATED ASKEY-WILSON POLYNOMIALS 203

In this paper we introduce two families of associated Askey-Wilson polyno-
mials. Our approach is to use the properties of very well-poised basic hyper-
geometric series. The basic hypergeometric series in (1.3) is called well-poised
if

b, = qa,/a,, b,=gqa,/a,, ..., b, =qa,/a,,,;
it is called very well-poised if, in addition, a, = qall 2 and a; = —qa: /2 Since
the very well-poised ;¢, and | ¢, series will be used quite frequently in this
paper, we shall use the contracted notation

malasa, .08, 554, 2)
1/2 1/2 .
(1.10) - 6 a,qla2 ,—lqza b @y, 8, 534, 2
@2 _d'? qafa,, ..., qafa,_,
In §2 we shall first obtain a set of contiguous relations satisfied by
Su/7(a; b’ C, d7 e’ fs aq> azqz/deef)

and use them in §3 to prove that two linearly independent solutions of the
functional equation

(1.11) 2xh (z)=A_h_, (z)+B.h (2) + C,h _ (2)

a fa+l afa—1

are given by

r(z) = (abq”, acq®, adq®, bedq®/z) (g)a
(1.12) > (beq®, bdq®, cdq”, azqg®),

zZ
< Wilbed/qz; b/z,¢/z,d]z, abedg™ ', ¢ % q, qz/a),

and

5 (2) = (abedg™, bzg"*', czq*", dzq™*", bedzq%)
(113) a (bcqa,bdq“,cdqa,an,bcdzqz"“)oo
-8W7(bcdzqza; beq®, bdq”, cdq”, ¢

(az)”

,zq/a; q,az),

where

(1.14) 4 =g (1 — abg®)(1 — acg®)(1 — adq®)(1 — abedq™™")

* (1 — abcdg™")(1 — abcdgq™)
e
and
(1.16) Ba:a+a_l—Aa—Ca,
and o is an arbitrary complex parameter such that o # -1, -2, ..., with

(z + z_')/2 = x, as in (1.4). When a = n, it can be shown by using the
transformation formula of Watson [9, 8.5(2), p. 69] and Sears [26] that r, (x)
is a multiple of the Askey-Wilson polynomials defined in (1.4). If |z| < 1 and
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204 M. E. H. ISMAIL AND MIZAN RAHMAN

|a| < 1 then the ¢¢, series in (1.13) is convergent but the series in (1.12) may
not converge. So, to ensure convergence of both these series in the nontermi-
nating case we assume, for the time being, that |z| < 1 and |gq| < |a} < 1. The
assumption |z| < 1 is equivalent to requiring x to be in the complex plane cut
along [-1, 1].

Masson [20] observed that when abcd = g, or q2 in the Askey-Wilson poly-
nomials (a = 0), there is an indeterminacy in the expressions (1.14), (1.15),
(1.16) for 4_, C_, B, respectively. He pointed out that one can redefine
Ay, By, C, as the limiting values of 4,, B,,C, as n — 0" . This leads to a
new family of polynomials that Masson called exceptional Askey-Wilson poly-
nomials. Similarly a family of exceptional Jacobi polynomials was introduced
and studied in [16]. Masson [20] pointed out that the continued J-fraction cor-
responding to the exceptional Wilson polynomials (¢ = 1) is in Ramanujan’s
published notebooks. Masson’s exceptional Askey-Wilson polynomials corre-
spond to the limiting case o — 0% of p: (x;a,b,c,dlqg) studied in this work.

A sequence of polynomials {p,(x)} generated by (1.7) is orthogonal with
respect to a positive measure with infinite support and finite moments if and
only if the positivity condition
(1.17) a .c, >0, n=1,2,...,

n—1t-n

holds. Furthermore, if (1.17) holds and {p,(x)} is orthogonal with respect to
a positive measure du then the orthogonality relation will be

(1.18) / " (0, (x) du(x) = £,8,,

—o0

where

(1.19) &=1, &, =(ccc)/(aya,--a,_ ), n=1,2,....

In (1.18) the measure du has been normalized by

(1.20) /oo du(t)=1.

To determine the weight function of the associated Askey-Wilson polynomi-
als we found it convenient to use a theorem of Nevai [22, Corollary 36, p. 141,
Theorem 40, p. 143] stated below.

Theorem 1. Assume that {p,(x)} is generated by (1.7) and that (1.17) and (1.18)
hold. If the series 3" {Ib,| + |\/a,_,b, — 1/2|} converges then {p,(x)} is
orthogonal with respect to a positive measure

du(x) = i’ (x)dx + dj(x),

where j is a jump function, with possibly infinitely many jumps, and

(1.21) lim sup p, (x)'(x)\/ 1 = x* /¢, = -2~,
n A
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ASSOCIATED ASKEY-WILSON POLYNOMIALS 205

Jor almost all x in (-1, 1), where &, is as in (1.19). Furthermore j(x) is
constant in (-1, 1).

Polynomials generated by (1.7) are denominators of approximants of positive
definite J-fractions when (1.17) is satisfied. The numerators of the correspond-
ing approximants of the J-fractions, say {p;(x)}, are generated by

(122) p(x)=0,  p(x)=1/a,,
’ xp,(x)=a,p,, (X)+b,p,(x)+c,p,_,(x), n>0.

If {a,},{b,} and {c,} are bounded sequences then a theorem of Markov,
(Szegd [29, §3.5]) asserts that:

123 Jim /e = [ 9 x ¢ suppidat,

uniformly on compact subsets of the complex plane cut along any closed interval
containing the support of du. Here du is normalized by (1.20). When we
consider associated polynomials {p;(x)}, as in (1.8), then in view of (1.22) we
have

(1.24) (B () =Pyt \(0)/a,,  n>0.
If {a,,.}, {b,.a}> {Crso) arebounded, and {p,(x)} is orthogonal with respect
to du”, then (1.23) and (1.24) yield

o N © du®(t
(1.25) nlg{.lop,,f:(X)/Pn (x) = aa/_ :_(,)

, x ¢ supp{du},

The measure du” can then be found from (1.25) using the Perron-Stieltjes
inversion formula for the Stieltjes transform.

A birth and death process with birth rates {4,} and death rates {x,} gen-
erates a family of orthogonal polynomials {Q,(x)} via

(1-26) Qo(x)= 1, QI(X)=(/10+/LO*-X)/AO,

127 O AL Q= Gt i)

It is assumed that
#y >0, 4, >0 forn>0, #, >0 forn>0.

When u, is a given function g(n), usually a polynomial or rational function,
and u, = g(0) # O there is usually a companion process with u, redefined
as u, = 0. This companion process leads to a second family of orthogonal
polynomials {g,(x)} generated by (1.27) and the initial conditions

(1.28) Gx) =1, q(x)= (- x)/.

When u, =0 one can prove by induction that Q,(0) = 1, so the companion
family {g,(x)} always satisfies

q,(0)=1, n>0.

License or copyright restrictions may apply to redistribution; see http:/www.ams.org/journal-terms-of-use



206 M. E. H. ISMAIL AND MIZAN RAHMAN

The Askey-Wilson polynomials of (1.5) are renormalized birth and death
polynomials for which g, vanishes. The associated Askey-Wilson polynomials
arise from (1.11), (1.14), (1.15), (1.16) when « is replaced by n + «. Since
#y = C, # 0, for a >0 it makes good sense to introduce a second family of
Askey-Wilson polynomials with the initial conditions (1.28). The second family
of associated Askey-Wilson polynomials {g, (x)} will be introduced in §5 where
we express the ¢ ’s in terms of 7 (x) and s_(x), the basis of solutions of the
recurrence relation (1.11). An explicit formula for g, (x) which exhibits its
polynomial character will be derived in §8.

Note that when abcd is not equal to ¢’, j = 1, 2, both families of as-
sociated Askey-Wilson polynomials tend to the Askey-Wilson polynomials as
a — 0%. It is interesting to note that if abcd = g or abcd = q2 then the
family {g,(x)} tends to the Askey-Wilson polynomials while the {p, (x)} tend
to the exceptional families discussed by D. Masson [20].

T. Chihara [11] considered the effect of changing initial conditions on the
spectral properties of the orthogonal polynomials generated by the same re-
currence relation. Chihara considered general initial conditions. The change in
initial conditions (1.28) from (1.26) may not be the most general but we believe
it to be the most natural.

The presence of a second family of birth and death process polynomials was
observed and investigated for linear and asymptotically symmetric quadratic
processes in [14 and 15], respectively. Wimp [33] introduced and investigated
associated Jacobi polynomials. The exceptional family of Jacobi polynomials
was introduced by Ismail and Masson in [16].

In §9 we include miscellaneous results. The first is a complete asymptotic
expansion of {p;(x)}. The second result, Theorem 4, states that the coefficients

O

€y » x 1N the linearization of products

py(x;a,b,c,dlg)p,(x;a,b,c,dg)
(1.29) =

= Y Cupasl@b,c,dipi(x;a,b,c,dig),
k=|m—n|
are nonnegative for o« > 0, and a = -b, c = ~-d, —qg < b, d < q. The

linearization coefficients are usually very difficult to find explicitly, but in many
cases of orthogonal polynomials the nonnegativity of the linearization coefhi-
cients has interesting implications (see the excellent source [3]). They may also
have combinatorial interpretations (see [4]).

The following theorem of Askey [2] is very useful in proving the nonnegativity
of linearization coefficients.

Theorem 2. Assume that {r,(x)} is a family of monic polynomials, i.e. rn(x)—x"

is a polynomial of degree less than n, and let ry(x) =1, r,(x) = X+, where
o is a real number. If

(1.30) rr,(x) =r,, (x) +e,r,(x)+ B,r,_(x), n>0,
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ASSOCIATED ASKEY-WILSON POLYNOMIALS 207

and @, >0, B,., >0, Xy Z.an', B> By, n=0,1,2,..., then the
coefficients d,, , , in the linearization formula

m+n

(1.31) PO ()= > d, , rx),

k={m—n|
are nonnegative.

There is very little known about the location of zeros of hypergeometric func-
tions ,F, or generalized hypergeometric functions pF v when the parameters are
complex. There does not seem to be anything known about zeros of basic hy-
pergeometric series (functions). Studying the presence, or absence, of a discrete
spectrum for a family of orthogonal polynomials is a problem of determining
when a certain transcendental function has, or does not have, zeros. In §4 we
shall prove that {p;'(x)} is orthogonal with respect to an absolutely continu-
ous measure when o >0, —l <a,b,c,d <1, 0<g < 1. In §5 we shall
prove that {g;(x)} is orthogonal with respect to a positive measure with at
most one discrete mass which, if it exists, will lie outside [—1, 1]. This proves
the following theorem.

Theorem 3. Let 0 >0, 0<g<1.1If-\/g<a,b,c,d <./q thenthe W, in
(4.31) will have no zeros in C/[—1, 1]. On the other hand if -1 <a,b,c,d <
1 then the (W, in (5.15) will have at most one zero in C/[-1, 1].

2. CONTIGUOUS RELATIONS FOR 8W7 SERIES

Let us assume that a, d, ¢ and f are fixed parameters and denote

(2.1) o(b, ¢) :=8W7(a;b,c,d,e,f;q,azqz/bcdef).

We shall use the usual notation of writing b+ for bg™', ..., etc. For ex-
ample ¢(b+,c) stands for ¢(bg*', c) and ¢(b, cx) for ¢(b,cqg™'). A
contiguous relation is a three term recurrence relation connecting ¢(b, ¢},
¢(b+, c+). We shall first prove the following identities:

(b —c)(1 — a’q*/bede f)d(b, c)

(1 —aq/bd)(1 — aq/be)(1 —aq/bf)
(2.2) =b (1—aq/b) (b=, c)
(1-aq/cd)(1 —aq/ce)(1 —aq/cf)
e (T=aq]0 #o. )
and

(c—b/q)(1 —aq/bc)p(b—, ¢) = (c = 1)(1 - a/c)p(b—, c+)

2.
(2.3) +(1=b/q)(1 —aq/b)p(b, c).
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208 M. E. H. ISMAIL AND MIZAN RAHMAN

To prove (2.2) we shall use Nassrallah and Rahman’s [21] integral represen-
tation for an (W, series:

1
/ v(x;A, pu,v,p,0; A)ydx
-1

(2.4) _ 2rn(AA, Au, Av, Ap, Ao, /l;wpaA_l)oo
(q, Au, Av,Ap, Ao, uv, up, uc,vp,ve, pa, Az)oo
W42 [gs A/A, Alu, Alv, Ap, Al q, wpod”"),

provided that
-1
Max(|A], |u], [v], |pl, lol, [Apvped ) <1,

where
v(x; A, u,v,p,0;A)

(2.5) h(x;1,-1,4"%, —¢'%, 4)

_ L 2-12
 h(x;A,u,v,p,0) (=x9 7
with
h(x;al,az,...,ak)znh(x;aj),
(2.6) - i=l
hix;a)= H(l —2axq" +a2q2").
n=0

Since 1—2A4x + 4> = (1 — A/A)(1 — AA) + A(1 — 2ix + A*)/A and h(x; A) =
(1-24Ax+ Az)h(x; gA), the integral in (2.4) can be split into two parts:

1
/ v(x; A, u,v,p,0; A)dx
-1

(2.7) =(1—A/,1)(1—A/1)/l v(ix; A, u,v,p,0; Ag)dx
~1

A 1
+7/ v(x;Aq, u, v, p,0; Aq)dx.
—1
This decomposition leads to the following identity involving (W, series:
2
W, (A7 )q; AJA, Alu, Alv, Alp, Alo; q, Auvpa/A)

(1 - 4H)(1 = g4")(1 — Auvpa/qA)
(1— Ap)(1 - Av)(1 - Ap)(1 - Ao)

= (1-4/2)

A
(2.8) UL (qu; Aq/A, Aq/u, Aq/v, Aq/p, Aq/o; q, ”:;0>
A (1-4°)(1=gA*)(1 = aw)(1 = w)(1 = Ap)(1 = Ao)
A (1= A1 — AAg)(1 — Au)(1 — Av)(1 — Ap)(1 — Ao)

2 AUV po
W (qA s AJA, qA/u, qAlv, qA/p, qA/o; q, ”Ap )
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ASSOCIATED ASKEY-WILSON POLYNOMIALS 209

We then interchange 4 and u in (2.8) and subtract the result from (2.8). After
replacing 4 by A4/q we obtain the functional equation
(2.9)
2
(A—w)(1 —Auvpa [A)W, (A" [q; A[A, Alu, Alv, Alp, A]o; q, Auvpa|A)
_ A —py)(d — pp)(1 - po)
1—Au
2
'8W](A /q9 A/A'a A/ﬂq, A/V5 A/pa A/G', q, }./leUq/A)
_ (A - Av)(A - 2Ap)(1 — po)
1 - AA
Wi A fa; Ajrq, Alu, AJv, Alp, Ao q, uwpaq/A).

Identity (2.2) follows from (2.9) by setting A = (aq)l/z, A= (aq)l/z/b,

'uz(aq)l/Z/c’ V:(aq)l/z/d, p=(aq)l/2/e,and G=(aq)1/2/f.
To prove (2.3) we observe that for n =0, 1, 2, ..., we have

(ag™*/b, aqg"/c),,  (ag"™'/b,ag"' /o),
(bg" ', cg™h (bg", cq™),

o0

(aqn+2/b, aqn+]/c)°o

(2.10) (bg"""', cq"),
{(1—aq"/e)(1 = cqg") = (1 —ag"™" 1b)(1 - bg" ")}

n+2 n+l
= (bJa ~ o)1 ~ ag/bey 2LV 0 1C)
(bq"™", cq")

oo N
q .

o0}

This establishes the contiguous relation

(ag’/b, afc)y , . _
®la, ca), POt

= (b/q - c)(1 - aq/bc)

(aq/b, ag/c),,
T 0.0, 0

(ad’/b, aq/c)

(b/q’c)oo oo¢(b_,c),

which is essentially the same as (2.3).
Let us now rewrite (2.3) in the form

(1-c)(1 —a/c) B
Gl =0 —aqjb? 0= ¥
_(1-5/9)(1 —aq/b)

(b/q —c)(1 ~aq/bc)

Interchanging 4 and ¢ we also have

(11— b)(1—asb) )
WO )= g =BT ag by )
(1-c/q)(1—ag/c)

" /g = b) (I —agjbc) > O

¢(b_ » C) =

(2.11)
o(b, c).

(2.12)
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210 M. E. H. ISMAIL AND MIZAN RAHMAN

We now multiply (2.11) by b(1 — aq/bd)(1 — aq/be)(1 —aq/bf)/(1 —aq/b),
multiply (2.12) by ¢(1—agq/cd)(1—aq/ce)(1—aq/cf)/(1—aq/c), then subtract
one from the other and use (2.2) to get the contiguous relation
(2.13)
[(b—c)(1—agq/be)(1 —a’q’ /bedef) + L+ Mlp(b, c)
(=0l —aje)M (1-b)1—-a/b)L

= T —ag/m? O™ O T g = agje e )
where
(2.14) 1= 1 —¢/@)(t —ag/cd)(1 —aq/ce)(1 ~aq/cf)
' b-c/q ’
and
(2.15) s = b= b/a)(1 — aq/bd)(1 — ag/be)(1 — ag/bS)
. b/q—c .

As we shall see in the next section, (2.13) enables us to show that r (x)
defined in (1.12) is a solution of the functional equation (1.11). However, in
order to show that s_(x) defined in (1.13) also satisfies (1.11) we need a slightly
different approach. Let us assume that u, v, p, o are fixed constants and set

(216)  W(A; 1) = W4’ [q; AJA, Alp, Alv, Alp, ] 4, i po/A).

We then replace 4, 4 in (2.8) by A/q and A/q, respectively, and write it in
the form
(1= 4/ = 418" = 4 /q)(1 = AuvpaqA)
(1= Ap/q)(1 = Av/q)(1 — Ap/q)(1 — Ad/q)
A (1= A/g)(1 ~ 4*/g) (1~ d/a)(1 — v/q)(1 — kp/q)(1 ~ Ao /q)
A (1= A2/q*)(1 — AA/q)(1 — Au/q)(1 — Av/q)(1 — Ap/q)(1 — Ao/q)
By using the definition of the ¢¢, series it can be easily verified that
(2.18)
W(d;A/q)—W(A4; A)
_ (=A%) = gA)(1 - A/w)(1 = A/v)(1 = A/p)(1 — A/a) Iuv po
(1—A44/q)(1 — AA)(1 — Au)(1 — Av)(1 — Ap)(1 — Ag)  Aq
-W(Aq; A).
Eiminating W(A4; A/q) between (2.17) and (2.18) we find that
(2.19)
W(A/q; A/q)
(1= 4/0)(1 - 4/g5)(1 - 4*/q)(1 = Auvpa/Aq)
(1= Au/q)(1 = Av/q)(1 — Ap]q)(I — Ad/q)
A (1= dp/g)(1 = w/q)(1 = Ap/q)(1 — Ao /a)(4*[a*),
A (1~ Ap/q)(1 — Av/q)(1 — Ap/q)(1 — Ad/)(42]/4%),
| Awpa (1= A/A)(1 = A/p)(3 = A/v)(L = 4/p)(1 — 4/0)(1 ~ Auvpo/Aq)(4 /"),
Aq (AA/ay)(Ap/a),(Av[q),(Ap/q),(Ac/a),
cW(Ag; A).

W(A/q;Alq) =

W(A; 4/q)
(2.17)

W(d; 4).

N W(4; 2)
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ASSOCIATED ASKEY-WILSON POLYNOMIALS 211

We can now express W(Aqg; A) interms of W(A4; A) and W (Aq; Aq) by using
(2.17) with A4, A replaced by Aq, Ag, respectively. We thus obtain the second
independent contiguous relation for the (W, series

(1= A/A)(1 — Auvpo/Ag) + —Ap/q)(1 —Av/q)(1 — Ap/q)(1 — Ad/q)

’1 (1 - A3/g*)(1 - 43/q)
Auvpo (1 = A/p)(1 — 4/v)(1 = A/p)(1 — 4/a) .
g (1= Aijq)(1 — A7) w44
(2.20) _ (= Au/q)(1 — 4v/q)(1 —AP/(J)( AU/Q) W(A/q: 4/q)

(1-4%/g))(1 - 4*/q)
| hwpo (4%),(1 — A/u)(1 = A/v)(1 = 4/p)(1 = Afa)(L — Ww)(1 = Ap)(1 — A0)
q (44/q),(A4),(1 — Au)(1 — Av)(1 — Ap)(1 — 40)

(1= Au)W(Aq; Aq).

3. SOLUTIONS OF THE FUNCTIONAL EQUATION (1.11)

In (2.13) let us replace a, b,c,d, e, f by bed/zq, q™“, abedg®™ !, bz,
¢/z and d/z, respectively, and set

(3.1)  fi(z)=4W;(bed/zq; b/z, c/z,d[z, abedg™", q™*; q, qz/a).
Then (2.13) can be written as
(z+z7' —a/g—q/a+4,+C)fi(2)

_ g (1-azg")(1 —abcdg"™")
(3-2) - az (1 _ bca’q“/z)(l _ qa+1) Aaf;-f-l(z)

a—1 a
az (1-bedg™ /2)(1-q") c'r (2,

+ -1 -2 a’a—
q (1 —azq® )1 —abcdq“™™)
where
¢ — a(1=beg")(1 - bdg*)(1 - cdg™)(1 - ¢™*")
(3.3) *q (1 — abcdg®* ") (1 — abcdq™*)
C - q(l- abg® M1 —acg® (1 — adg® ")(1 — abedg®™?) .
* a (1 — abedg®™ *)(1 — abedg™ ")

Similarly, replacing A4,A,u,v,p,o in (2.20) by (bcdzq)l/zq“,
ag®(bed/zq)''*, (dzq/bc)'*, (czq/bd)'*, (bzq/cd)'?, and (bedz/q)'* re-
spectively, we find that (2.20) can be rewritten as
(3.4)
(z+ P alqg—qla+ A; + C;)g;(z)
A (1 - bedzg**™)(1 - bed zg™ ) '
=24, a+l a+l a+l a ga+1(2)
(1=bz¢"" )1 ~czq® )1 —dzqg®" " )(1 — bedzq®)
(1= b2¢*)(1 - czg®)(1 —dzq®)(1 — bedzqg™™")
201 2a ga—l(z) ’
(1 —bedzq™ )1 — bedzg™™)

+z
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where
(3.5)  g.(2) = W,lbedzg™; beq®, bdq®, cdq”, ¢™*', zq/a; q, az).
If we set

a+l a «
(36) filz) = Ll [ (4 )

(abcdq®™', azq®) \az

(abedq™, bzg®*', czg**', dzq**', bedzg®) (qZ)a ¢ (2)
—_— Z )
(abq®, acqg®, adq®, abcdq®™", bca’zqz"““)Oo a *

then it can be shown that both f (z) and g (z) satisfy the same functional
equation, namely,

(3.8) (z+z '-a/g-qla+A +CHh(z)=AN, (2)+C.h _ (2).

a fat+l a ‘a—1

(3.7) &(2)=

To deduce the functional equation (1.11) we observe that

(3.9) A;+C;—a/q—q/a=A0+Ca—a~a_l,

where
~1(1 — abg®)(1 — acq®)(1 — adq®)(1 — abedq™™")

3.10 A =a )
(3.10) ¢ (1 — abedg® "Y1 — abedg™)

and

a1 ¢ =gllzbea” D1 —bdg" (1 - cdg™ (1 -4")
“ (1 — abedq® *)(1 — abedg™™")

If we now define

@ a @ a—1 2\ ¢
(3.12) h(z) = (abq”, acq”, adq”, abedq ), (“ ) h.(z),

(beq®, bdg”, cdg®, ¢**"), \ 4

then it follows that (3.8) reduces to (1.11). Multiplying f (z) and g (z) by
the coefficient of h;(z) in (3.12) we find that r_(z) and s5,(z) definedin (1.12)
and (1.13), respectively, are indeed solutions of (1.11).

4. THE ASSOCIATED ASKEY-WILSON POLYNOMIALS

Let n be a nonnegative integer and let
(4.1) pax)=p,(x;a,b,c,dlg)=L,r . (2)+Ms, (2),

a a+n

be a linear combination of solutions of (1.11) with a replaced by a + n. The
initial conditions to be used are

(4.2) pi(x)=0, py(x)=1.

These initial conditions force the linear combination in (4.1) to depend on z
only through the combination (z + z_l) /2 = x and hence to be a polynomial
in x.
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From the functional equation (1.11) it clearly follows that
1 1

(4.3) L=W"s, (2, M =-W_r_,,
where the Wronskian-type function W, is given by the Casorati determinant
(4.4) W, =r/(z)s,_(2)—s,(z)r,_,(2).

The nonvanishing of W, provides the guarantee that r (z) and s (z) are
linearly independent. To compute W we find from (1.11) that
(4.5)
W, =AW, /C,
—2(1 —abg®)(1 — acqg®)(1 — adq®)(1 — abcdq"‘ ¢
(1-beg® ") (1 - bdg*™")(1 - cdg®™")(1 - ¢%)
Hence, for V = a“z"Wa , we obtain
(4.6)
_ (1 —abg®)(1 — acg®)(1 — adq®)(1 — abcdg®™")(1 — abedg™*?)
" (1-beg® (1 - bdg™")(1 - cdg® ') (1 - ¢°)(1 — abedg™) T

which, on iteration, gives

1 - abedg®™™?)
(1_abcdq2a) a+l”

a—2

@7 V= (abq®, acq®, adq”, abedq™™ l)
’ * (beq® ', bdg®", cdg® ', 4%,

From (1.12), (1.13) and (4.4) it follows that
~2(n+a)
{

0 (] — abcdq

) i, Ve

r

nll»nolo Vain = nlingo a atn(28ain—1(2) = Toin_1(2)80,n(2)}

=q! n&rgo{z‘lsuQ(bcd/zq; b/z,c/z,d]z,abedq" ™", 7" % q, zq/a)
(4.8) g W7(bcdzq2n+2d-—2; bcqa+n—1 ’ ba,qa+n—l X cdqa+n—l ’ qa+n—1 , zq/a; q, az)
- zgWy(bed[2q; b/z,¢/z,d/z, abedg™ ™ gl g, zq/a)
W7(deZq2n+2u; beg™™" | bdg™*" , cdg™™" , ¢**", zq/a;q, az)}.
Now, for fixed B, the limiting relation

lim W(bcdzq2"+2p bcq"” bdq"ﬂg, cdq"“g, q"+ﬂ, zg/a;q,az)

n—»oo

(4.9) (g2 )

- (az).,
follows from the g-binomial theorem [27, IV.11], or [13, I1.3, p. 236], while

the limiting relation
(4.10)

Jim (W (bed/zq:b/z,¢/z,d/z, abedg""™", 47" q, zq/a)

_ bed/zq, q(bed]zq)'*, —q(bed/zq)' ", b)z,¢c/z,d]z

A (bedzq)'*, ~(be/zq)'*, cd , bd, be ’

_(bed|z,bz,cz,dz)
(cd, bd, bc, zz)oo

, laz| < 1,

q,z

, |z| < 1,
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follows from the (¢, summation formula [27, IV.7] or [13, I1.20]. This yields
the limiting relation

(bz,cz,dz, bcd/z)

-1

. imV K& =
(4.11) A0 Vorn = e, bd, o, az). %Y
Thus,

Wa _ a2aV;

(4.12) _a%-l(bz,cz,dz, bed/z, abq", acq”, adq”, abcdqo‘_l)oo

. z (az, bc, bd,cd, beg®™", cdg®™", bdg®™ !, %) o

(1 — abedg™™?).
The associated Askey-Wilson polynomials are then given by the explicit formula
(4.13)
P:(x) za

- (1 — abedg**™?)
_(be,bd,cd, beg®", bdg*™", cdg*”!, g%, az),
(abg®, acq®, adq®, abedq®~ ", bz, cz,dz, bed/z),,
(abcdq™ %, bzq®, c2q®, dzq®, bedzg®~", abg™*")
’ { (beq™ L, bdg™ ", cdg™ ', ¢, bedzg® ", beg™™)
. (acqa+n i adqa+n i deanr"/Z)oo -
(bdqﬂ+n , qu0+n , azqﬂ+n)
. 8l’l/'7(bcdzqza_2;
-gWilbed/zq; b/z,¢c/z,d/z, abedg™" ™", 7" q, qz/a)
(abcdq2a+2n , bzqa+n+l , Czqa+n+l)
(bcqa+'l s bdqﬂ+'l , qua+n s qu+n+l )oo
(dzq®™"" bedzq®™" , abg® ', acq® ', adq® ", bedg® "'/ z)
. (bedzg®* ™" beg®™', bdg®™", cdg®™!, azg® ")

. z"+18W7(bcdzq2°+2"; bcqa+n ; bdan , qua+n , qa+n+] , zq/a; q,az)

[o.9]

beg® ', bdg®™", cdg®™"', 4%, 2q/a; q, az)

0

x

1

~sWilbed/zq; bz, c/z,d]z, abedg® 2, 4" ™ gq, qz/a)}.

Using (4.1), (4.3) and (4.4) in (1.11) one can also show that pf,’(x) satisfies the
three-term recurrence relation

(4.14) (z+z ' —a-a"'+4,_,+C 00 (x)= A, p0 () +C,, Pe (X).

a+n a+n

Although (4.13) is the more useful form of p;(x) it is far from clear that it is a

polynomial in (z+2z~ : )/2 . It is possible, in principle, to use the transformation
theory of basic hypergeometric series to derive an explicit polynomial form of
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p:(x) from (4.13), but we shall use a simpler approach in §6 to show that

n -n 2a+n—1 2a—1
o (g ", abcdq ,abcdq™ " ,az,alz), &
py(x) = £

= (q,abq", acq®, adq®, abcdq"™"),

. lO%(abcdq2a+k_2; qa’ bcqa—l ’ bdqa—l ’ qua—l ’

qk+1 : abcdq2a+n+k—l ’ qk—n; q, a2) ‘

For |z| < 1, thatis x € C/[-1, 1], and |a| < 1, we can deduce the following
asymptotic formula for p~(x) from (4.13):

lim (E)np:(x)

n—oo \q@

(4.15)

(abedg®™ ™", az, bzq®, czq®, dzq", bedzq™™")

— e8]

(4.16) (abedg®™"', abq®, acq®, adq®, bedzg™* ", %)
 Wylbedzg™ * beq® ™ bdg® ™ cdq™™", 4%, zq/as q, az),

__ (az)"(az, beq"" bdg™" cdg"),, ()
(1 — abcdg® ) (abq®, acq®, adq®, abedg®™') o177
When we set a = 0, (4.16) agrees with the asymptotic formula for the Askey-
Wilson polynomials p,(x;a, b, ¢, d|q) obtained in Ismail and Wilson [17]
and Rahman and Verma [24], when we set a = 0 in the above formula.

The asymptotic formula (4.16) enables us to evaluate the Stieltjes transform
of the measure of orthogonality of the associated Askey-Wilson polynomials
using (1.25). Let
(4.17)

[T anwan=1, [ posoduse =0,  m#n.

[o0]

o]

The reason we used 1 in du(t; «, 1) is that we will introduce a second family
of associated Askey-Wilson polynomials and will denote the measure they are
orthogonal with respect to, by du(t; a, 2). Applying (1.25) and (4.16) yields
(4.18)
/°° du(t; a,l)
oo X —t
_ 2z(1 — bed2g** (1 — bed z¢™)
(1=b2g%)(1 — czq®)(1 —dzq®)(1 — bedzq®™")
o (bedzg™ ; beq®, bdq”, cdq®, ¢°"', zq/a; q, az)
Wy(bedzg™ ?; beg™™ ', bdq®™", cdq®™", ¢°, zq/a; q, az)’

provided that x is in the complex plane cut along [-1, 1].

This relation can also be obtained from the theory of continued fractions
in the following manner. The functions R, (x), S, (x), R, (x) = r,_  (x),
S,(x) :=s,,,(x), are linearly independent solutions of the three term recur-

rence relation of the associated Askey-Wilson polynomials. When |z| < 1,
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S, (x) is the minimal solution of the above-mentioned recurrence relation, since
S,(x)/R,(x) — 0 as n — oo. When |z| =1 it is clear from the explicit repre-
sentations of , (x) and s,  (x) that both are oscillatory and their recurrence
relation will have no minimal solution. We then apply Pincherle’s Theorem,
Jones and Thron [18], and conclude that the left-hand side of (4.18) must be a
constant multiple of S§(x)/S_,(x). The constant is then computed by letting

x — oo and noting that the left-hand side of (4.18) is x ™' +0(x—2) as x — 00.

From (4.18) one may invert the Stieltjes transform of du(f; «, 1) and find
the measure du(t; o, 1) explicitly. The isolated points in the support of
du(t; a, 1) coincide with the poles of the right-hand side of (4.18). Note
that the (W, ’s in (4.18) satisfy the same three term recurrence relation and it
is possible to use this fact to prove that the (W, ’s in (4.18) have no common
zeros. We conjecture that the (W, in the denominator of (4.18) has no zeros
for |zl <1, a >0, and —¢*? < a,b,c,d < ¢q*’*. We have been able to
prove this conjecture when o > 0 and -1 < a,b,c,d < 1. The proof is
given at the end of this section.

We now compute the absolutely continuous components of du(z; «, 1). Re-
call that the Perron-Stieltjes inversion formula implies

(4.19) Wit a, ) =[F(t—i0") = Ft+i0H))/2nri),

where F(x) denotes the right-hand side of (4.18). Since F(z) is single valued
for |z| < 1 then one can see from (4.19) that 4’ is supported on [—1, 1].
Observe that as we cross [—1, 1] from the upper or lower half planes the roles
of z, z7" are interchanged. Note that

(4.20) / d“ Lo, 1 = Cs,(2)/s,_,(2),
C being a constant. From (4. 19) and (4 20) it follows that
Znisa_l(e )[ i (cosf; a, 1)

_ C{sa(eio)sa_l(e~w -io)sa_l(eie)}.

Using (1.13), (1.20) and the fact that the left-hand side of (4.18) is x~! +0(x—2)
as x — oo, we get

(4.21)
) — S, (e

2(1 — abedg™ *)(1 — abedg™ ™)

(422) aC = a—1 a—1 a—1 ay ’
(1 —bcg® ) (1—bdq® )1 —cdq” )1 -4°)

since z ~ %x_l .

We now evaluate the right-hand side of (4.21). It readily follows from (1.11)
that
(4.23) AAh (Dh,, (2) = h(2)h,, (2)}

. = Ca{ha_1(7)ha(z) —ha_l(Z)ha(f)}.
Set
(4.24) U, (x):=h (2)h(Z)-h,,  (Z2)h,(2).
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The above functional equation when expressed in term of U (x) is

(4.25) U(x)=4U. (x)C

a aa+l a’

which, when iterated, leads to

a a a a—1
U (x) = (abg 44 ,afllq ,abC_aiq )°°(1—abc 48
(4.26) (beg® ", bdgq® ", cdq®™", 4%,
- lim a U, x).

provided that the limit exists. When A _(x) = s_(x), then in view of (1.13), we

have
nll'nl.lo a—2n—2¢1 Un+a (x)
= lim (@z)”" M aZ2) " T 502801 (D) — Sy a(B)Spiai (2)}
(4.27) _ (az g2, q7%) ( )—1(422, a7’)
= (a7) (az, az)_ az (az, aZ)_
_ 2y |2
_z-7|(q2)
a|z|* | (az),,
This implies that
2i6, |2
(4.28) Tim a” U, (x) = -a** " '(2isin @) ((‘Z;o))w

where z = e, x = cos§. We now combine (4.28) with (4.21), (4.22) and

(4.26), and find the absolutely continuous component of the spectral measure
to have the form

(4.29)
du(cosf; a, 1)
de
_ (abq®, acq®, adq”, beq”, bdq®, cdq®, abedq®”", ¢°*")

2n(abcdg®™ !, abca’qz"‘)oo
(aeie , bqaeie’ cqaeiﬁ, dqaeiﬁ, bcdqa—leie)oo

|gW,(bedq™*2e" s beq™™" , bdg™ ™" cdg®™', 47, qe” Ja; q, ae”) 2.

The above weight function du/d@ is symmetric in the parameters a, b, c, d
but this symmetry is not manifested in the expression on the right-hand side of
(4.29). In order to exhibit the symmetry in a, b, ¢, d we apply the transfor-
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mation formula [13, (2.10.1)]
Wiasb,c.d, e, f1q,a’q [bedef)
_ (aq,aq/ef,a’q’ [bede, a*q’ [bedf),,
(ag/e, aq/f, a’q’[bed , a*q*[bedef),,

2
-gWo(a"q/bcd; aq/bc, aq/bd , aq/cd e, f; q,aq/ef),
and establish the symmetric representation

(4.30)

(4.31)
du(cosf; a, 1)
do
o a o a a a a+l
_ (abg”, acq”, adq”, beq”, bdq”, cdq”, q )w(l_abcdqza_z)

2n(abcdq™) (1 — abcdq® ?)(abedq®™?)
210 _atl 208 2

2a—2 (e"7,q e)
(abedq™ 7)), . . . oo .
(aqaele’ bqaelﬁ’ anelG, dqaele’ quIG)Oo
sWy(a%e™ s qe” ja, g€ b, qe” ¢, g’ 1d, 4% 4, abedg™ )| 2.

We conclude this section by showing that the discrete spectrum is empty.
Since 4, , B,,, and C,,  of (1.11) are bounded, the support of du(x; a, 1)

will be bounded, Chihara [12, Theorem IV 2.2], and the moment problem is
determined. Therefore a point x = { supports a discrete mass if and only if

(4.32) S lopr /e,
n=0

converges, Shohat and Tamarkin [26], where ¢, isasin (1.7), (1.18) and (1.19).
To show that x = +1 do not support masses we need to show that the series
(4.32) diverges at { = +1. To determine the asymptotic behavior of ps(il)
we use the Birkhoff-Trjitzinsky theory of difference equations, Wimp [32]. We
assume

(4.33) Pl & {1+ yn” 6077+ 0(n 7},

then substitute for p, (1) from (4.33) in (4.14) and equate coefficients. The
result is r = +a at x = £1 and the possible values of k are kK =0, 1. This
shows that there are two linearly independent solutions of (4.14) at x = 1 and
as n — oo they are O(a") and O(na"). The solutions at x = —1 have the
same orders of magnitude. In the case under consideration, ¢, = Ca*" , for
some C # 0, and the series in (4.32) will diverge at { = +1.

It now remains to show that there are no masses outside [—1, 1], i.e. the
true interval of orthogonality is [—1, 1], Chihara [12, p. 29]. Recall that for
{p,(x)} of (1.7), an interval [r, s] contains the true interval of orthogonality
ifonly if r<b, <s, n>0, and {/)’n(x)}‘l30 1s a chain sequence at x = r and
x =s, where

(4.34) B,(x)=a,_,c,/[(x-b)x-0b,_ ), n>0,
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[12, p. 108]. In our case of interest, namely, a, = 4, s bn =B, =C,.>
denote B, (x) by B,(x;a). The true interval of orthogonality of the Askey-
Wilson polynomials is [-1, 1], thus B, € (-1, 1) and {B,(£1; 0)} are chain
sequences. When a = k, B,(x;k) = ,,,(x;0) so B, , € (-1,1) and
{B,(x; k)}]° is a chain sequence when x = +1. Therefore,

1
(4.35) / pix;a, Ndx=1, a=0,1,2,....
-1

Since the left-hand side of (4.35) is analytic in w = ¢” for |{w| < 1, then (4.35)
will continue to hold for o > 0, by the identity theorem of analytic functions.
On the other hand, du is a positive measure normalized to have total mass 1,
s0 it cannot have a discrete component. This proves the first part of Theorem
3.

Bustoz and Ismail [10] studied the associated continuous g-ultraspherical
polynomials {C;’(x; Bla)}, which correspond to a = —-d = /g, b = —c =
B4, y=4q". They proved that the discrete spectrum is empty if 0 < f < 1,
O0<g<l1l,0<ax<l,orif q2</3<1, O0<g<1l, -1 <a<0. Observe
that our result concerning the absence of a discrete spectrum shows that the
discrete spectrum of the associated continuous g-ultraspherical polynomials is
empty when -1 < f <1, 0 <g<1,and a > 0. This extends some of the
results in [10] to much wider range of the parameters.

5. A SECOND SYSTEM OF ASSOCIATED ASKEY-WILSON POLYNOMIALS

Let us now consider the linear combination:

(5.1) g (x)=gq,(x;a,b,c,dlg)=Lr,, (x)+Ms, (),

a at+n
subject to the conditions

1

(5.2) go(x)=1 and ¢/(x)=1 +A;1(z+ z ' —a-a"y.

Use of (1.11) then gives:

L =-W'4'C,s,(z) =5, ,(2)),
(5.3) ’ 5o
M =w'4'C(r(2) -7, (),

where,

Wa = ra+l(z)sa(z) - ra(z)sa+l(z) = Aa+1 Wa+l/Ca+l
(1 —abg®*™"Y(1 = acg® "Y1 — adg®*")(1 — abedq®)(1 — abcdg™®)
(1 = beg®)(1 = bdg®)(1 — cdg®)(1 — ¢**HY(1 — abedq®*?)
-2
W

o+l "

(54) =
-a

As in the previous section we can solve this functional equation by iteration
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and obtain

2a+1
W = % (1 — abedg™)

(abq"‘+1 cq®*', adq®™', abcdq®, bz, cz,dz, bed/z)_,
(bcq®, bdq®, cdq®, ¢°™', be, bd, cd, az)

(5.5)

Hence we get

(5.6) gy (x) =W, \{[r,(2) = 7\ (2)15,0n(2) = [5,(2) = 5,y (D) on(D}

As for the asymptotics it is clear that for |z| < 1,

lim (2)" 4700

— _ a a(bed/z,bz,cz,dz)
(5.7) = W, s, 1(2) = 5,(2)1 () (e bd.od 7).

1—a (bcg®™", bdq®™", cdg®™", 4%, az) Is,_,(z) ~5,(2)]
(abq®, acq®, adq®, abcdg®™", zz)oo 1 —abedg® 2~

=(az)

We will now show that s, ,(z) —s,(z) can be expressed as a multiple of an
¢ W, function, namely,
(5.8)

S,-1(2) —5,(2) =

(abedg™ %, bzq", c2q”, dzq®, bedzg®™") a1

(beg®™ ', bdg®™', cdg®™", q*, bca’zqz"_l)°c>
W,(bcdzq™ %3 beq®™', bdq”™", cda®™', 4%, z/a; q, aqz).

(az)”

After we prove (5.8) we will show that {¢(x)} are orthogonal with respect to
an absolutely continuous measure du(x; a, 2) supported on [—1, 1]. We will
also find 4'(x; a, 2) explicitly.
To prove (5.8) observe that (1.13) implies
S,-1(z) = 5,(2)
B (abcdq®™ %, bzq®, czq®, dzq”, bcdzq“_l)oo (az)°
(bcqa—l , bdqa—l , cdqa—l , qa, bcdquQ—-l)oo
53 (abca,qza«o-k—l,bzqo:+l+k,a,zqa-v—l+k,bcdzqa+k)c>o
kzo(bcqa+k,bdqa+k,cdqa+k’qa+l+k’bcdzq2a+k—H

a+k

-1

(5.9) (1- bcdzqza”k)(zq/a)k”(az)
(q)k+1
abcdq2a+k bzqﬂ+l+k , czqa+l+k , dzqa+1+k , bcdzqa+k)

bcqa+k, bdqa+k, qua+k, qa+l+k’ bchqZ(H-k)

o 2ask (24/0)(az)"
(1 —bcdzq ) @) .

o0

o0
k=0 00
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Since
(abedg™**™") (z4/a),,, (abedg™*") (zq/a),
(bedzg™ ) (@),  (bedzg™*F)_(q),
_ (abedq™™*")_(zq/a),
 (bedzg™ ) (@)
. {(1 _ ab(:quoz+k—1)(1 _ quH/a) _ (1 _ qk+1)(1 _ de2q2a+k_l)}
(1 - abedq™ ?)(abed g™ )  (z/a),,,
- (bedzg™™* ) _(q),,, ’
we find that

Se—1(2) - 5,(2)
B (abedq™ %, bzq®, czq®, dzq®, bcdzq"_l)w
- (beg®™ ", bdq® !, cdq®™', q°, bcdzqz"‘_l)oo
{1 . i (1- bcdzqz"’jk 22)(bcdzq2° 2 beq®™t, bdg®! cdq"'_l , qza, ;z/a)k
o (1 =bcdzq™ “)Nq, bzq", czq®, dzq”, bedzg®™ ", Y abcdg® Dk

: (an)k} )
which immediately leads to (5.8).
We now proceed to find du(x; o, 2) explicitly. It is easy to see that (g, (x)*
= (p,(x))", hence

1

(az)"”

du(t; 2 a a
(5.10) —A / " =2 = lim p)"(x)/g; (%),
which follows from (1.23), (1.24) and (1.25). Using (4.16) and (5.7) we find
that

du t; a, 2 D, (z2)
5.11 = 2 ;
5.1 / " 5 (25,2
where,

D, =2/C,

(5.12) _ 2(1 — abedg®™ (1 — abedg™™?)

a(l —beg® " )(1 - bdg*™")(1 — cdg® ) (1 - ¢%)
Now the Perron-Stieltjes inversion formula, as in (4.19), implies

2nip' (x; a, 2)

=D, - TN i i9
(5.13) Seq(€7 ) =5 (e77) s, (e7) —s,(e7)
_ D {s,(e7)s, (") —5,(e")s, (e}

a—1

0 0y 2
Is,— (") —s,(e™)]

b
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with x = cos @, as usual. Recall that in §4 we proved that

U (x)=5,(e™)s,_ (") —s,(e)s,_ (7"
=— 2 (1 —abcdq

(abq®, acq”™, adq”™, abedq®™")
(5.14) (beg®™', bdqg* ™", cdg®™", %)

2

2a0-2, 2a0-1

Ja
(quiB)
(ae')

[e.9)

-2isin @

Applying the transformation (4.30) on the (W, series on the right-hand side of
(5.8) we then obtain from (5.12), (5.13) and (5.14) that

(5.15)
du(cosf; a, 2)
do
_ (abq”, acq®, adq”, beq®, bdq”, cdq”, "),
27t(abcdq2")oo

(abcdqz“_l)oo (1 - 2axq™ + a*q™)
(czbcdq"“l)Oo (1-2ax +ad?)

| (20, g1 e20) 2
|(aqae19, bqaei(), aneie’ dqaeie, qe2i0)|§o

a 2i6 -2

NsWi(ge™ s e ja, g’ b, g’ fc, qe” 1d, 4% q, abedq® )]
Finally we prove that du(x; «, 2) has at most one discrete mass if 0 < g < 1,
a>0, -1<a,b,c,d< 1. Nevai’s theorem, Theorem 1, shows that (-1, 1)
is free of discrete masses. It can be shown, as was done for {p,(x)}, that
X = +1 do not support discrete masses. If the zeros of polynomials are arranged
in increasing order then the jth zero of g, (x) lies between the jth zero of

p,(x) and the jth zero of p:fi(x), since (p,(x))" is a constant multiple of
p;’:}(x) . Thus, with at most one exception the zeros of q;" (x) liein (—1,1)
for all n in the appropriate range of the parameters. This proves the part of
Theorem 3 concerning the W, in (5.15).

Finally we note that if a > 1 or a < —1, the du(x; o, 2) will have a mass
at (a+a_1)/2 . This is the case since q:((a+a_1)/2) = 1, which can be proved

by induction, implies the convergence of the series Y °[q, ((a + a_l) /2)]2 /&, -

6. PROOF OF (4.15)

We shall now give an inductive proof of equation (4.15). Recall that
py(x;a,b,c,d|q) satisfies the recurrence relation
(6.1)

—a (1 —az)(1 —a/z)p%(x;a, b, c,d|q)

=A,(a,b,c,d)p, (x;a,b,c,dlq)-p,(x;a,b,c,d|q)}

n+l1

—C . aa, b, c,d){p,(x;a,b,c,dlg)—p,_(x;a,b,c,d|g)},

at+n
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where p® (x) = 0, py(x) = 1, and the coefficients are defined in (1.14) and
(1.15). Using (6.1) it can be easily verified that

(bdq™, cdq”), (a/d)np:(x; d,b,c,alg).

(62)  py(x;a.b,c.dla) = Tpm e mE

The proof of (4.15) depends heavily on the use of the following transformation
of Sears [26]:

n
qg ,a,b,c

PN d,e, f ;Qa‘I]
_(d/a,ela), ,a, fIb, flc
_—(d’e')n 4¢3 [f,aql_n/d,aql_n/e,q’q:l ’

where defq" = abcq, (see for example, equation (2.10.4) in Gasper and Rah-
man [13]), Watson’s formula,

W7(de/cq;a,b,d/c,e/c,q_";q deq" [ab)
(6.4) _ (de/c, de/abc) 5 [ g ", a,b,c ]
" (de/ac,de[bc),*"3 |d, e, abcq1 "/de’q 1

(equation (2.5.1) of [13]), and the expansion,
wWla; b,c.d,e, [, 8, q_m; q, a3qm+3/bcdefg)

(6.3)

_ (ag,a49/18),, Z ", f.8,aq/de);
(6.5) ~ (aq/f, aQ/gm] ~(q, aq/d agle, fgq™"/a); 1
,d,e,aq/bc
[ agtn, aare dea1a? 9]

see Exercise 2.20 in [13].
Assuming (4.15) to be true one can verify that

Py (X) = p,(x)
a(z+z ' —a—a "1 - abedg®™ ") (1 - abedg** " )g "
(1 - abg®)(1 — acg®)(1 — adg®)(1 — abcdg®™")

(6.6) Z (¢7", abedq™"", abcdq™, aqz, aq/z), &
pors (q achH-l qa“,adan,adeqa)k
. 10I/Vg(abcdq2a+k—l : q ; bcqa——l ’ bdqa—l , qua—l ’
k+2 2a+n+k k—n 2
, abcdq .4 39,q94").

By (6.5), the |, W, series in (6.6) can be expanded as
(abcdq2(1+k , aqu+1)n_k n—k (qk—n , qQ , bcqa—l , aqk+2/d)J
(abcdqa+k , adqa+k+l)n——k = (q, abqa+k+1 , acqa+k+l , q_"/ad)j

_ [q‘j, bdg*”', cdg™", g7 "
473 abcdq2a—2 , q—n , dq—k—]—l/a

J

4,4
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and the ,¢, series is, in turn, transformed to

a+l+k l-a— .
(abq'*+ . q (1"/bdb ¢ q_J,adeqhHm+k,abqa_l,bdqaf1.q .
(q"n , aqk+2/d)j 473 abcqua——Z , abqa+1+k , bdqa+n_l s Y

by (6.3). Denoting the series on the right-hand side of (6.6) by S, , we then
find that

B (abedg™, adq), Z":( " abcdg®™*"  aqz, aq/z), &
n (abcdq",adq"“)n poard (q adq abqa+l qa+1)k

. n—k (qk—n , qa bcqa—l . l—a——n/bd)' j

pors (q’ q Ol+k+1)

J (q—j abcdq20+n+k, abqa 1, bdqa—l) ;

i

—dq
(6.7) i=0 (q, abcdq2° 2 bqa+l+k’ bdq‘”'"”f)i

a n -n a a—1 l—a—n
(abedq® ,adq), Z(q .4 ,bcqg” ", q /bd); ;

n

- (abcdq®, adg®*"), ‘= (@,97",q7"/ad, acq
g, abedq™ ™, abq®™ "', bdq®™"y, |

J
!
. ~—q
; q abcquQ 2 b a+1,bdqa+n j)[

‘4¢3[

-n

,q4 "/ad, acq

M

a+l)

g abcdqz‘”"*" aqz,aq/z

adq abq0+1+l cqa+l+j ; q’ q] .

Applying (6.3) to the last ¢, series in (6.7) and simplifying the coefficients we

get

(6.8)
Ak

j—n abcdq2a+n+i aqz, aq/z » q]

a+l+l a+1+j

adq, abq acq

_ (aq>n (cdg”, bdq")n (abg”*', bdg™™" ™),
d (abqa+l qa+l)n (qua, ql—a—n/bd)j
' (acq™*", q_a_n/ab)j . [qj_” , abcdqz‘”f”", dz,d/z
(bdq",abq‘””"_j). 473 adq’cdqa+j’bdqa+l 4,49

1

Substituting (6.8) into (6.7) and interchanging the order of summation
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we obtain
a o4 2a
s = (bd? , ca'q+l, abcdq+I , adq), (aq/d)"
(abg®*’, acq®" , adq®"" , abcdq®),
i (", abedg™™" , dz, d/z), «
' (4, adgq, bdq®, cdq®)
(6.9) ko o _"
n—k(q —n’qa,bcqa ,q an/ab)j ]

‘= @.q7".q7"/ad, cdg™*),

[q—j , abcdq2a+n+k , abqa—l , bdqa—l
“4¥3

abcdq2a—2 , bdq0+k , abqa+1+n—j H] q’ q .

Incredible as it may seem we now have to transform the ,¢, series in (6.9) into
an (W, series by (6.4). Thus we have

—j 2a+n+k a—1 a—1
, abcd ,ab , bd
4¢3 1 2(1—(12 at+k 7 a+1+nq—j 4,4
abcdq ,bdq™™" , abg
(cdg™, 47",
(abcdq2a+k—l , q-—a—n/ab)j
. 8VV7(abcqua+k—2; abqa-l , acqa—l i qk+l :

abcdq20+n+k ’ q—j; q. dqj—n—l/a) )

(6.10) =

This leads to the following expression for S, :
(6.11)
(cdq®, bdq®™, abcdg™, adq),
(abq“*' i acq"“ ] adqa+1 ’ abcdq")n
" (q7", abedq™™",dz,d]|z), &
Z (q,adq, bdq®, cdq®), 1

S, = (aq/d)"

k=0

nik (abcdqza+k—2 , abqa—l , acqa—l , qk+l , abcdq20+n+k’ qk—n)l

= (a,cdg®™*, bdq®**, abcdg™?, ¢7", q""/ad),

(1 _abcdq2a+k—2)(abcdq2ﬂ+k“l)2i d
|:qi+k—n , qa-H" bcqa+i—l , qi—n—l

493

abcdq2a+2i+k—1 ’ qi—n, qi—n/ad 4, Q] .
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Since (6.5),

i+k—n a ati—1 i—n—1
q beg” L q X
4¢3 [abcdq2a+21+k+l ’ q ’ q'_"/ad » 4q, 4]
(6.12) _ @7 adg™) (a7, a"/ad) (. 6dQ)y 4 asneirr
(g, kqad‘ q) (:*‘,qu“+'),+k )
i+k—n at+n+K+1 a+i+
abcd , ad ,
: 4¢3 g 2a+21+kq1 atltk+i g a+1-+(—1k+1 4,4
abcdyq . q , adq
we find that
(6.13)
(bdg”, cdq abcdqz”’, N, i-a
S, = =y “(ag ""/d)"
(abg ', abcdq®, q),
Z": (dZ, d/z), (a+1)k
= (qa+1 , adqa+1 bdqa cdqa)k
. rf (abcdq2a+k =2 abqa—l , acqa—l , qk+l , bcqa—l , qa)i

par (q’ bdqa+k, qua+k, abcdqa+k, abcqua—Z’ qa+1+k, adqa+l+k)
. (1 _ abcdqza+k+2i—2)(qa+k+ld2)i

(1 __abcdq20+k—2)(abcdq2a+k—l)

. (_l)iqi(i—l)/z(q—n , abcdq2(1+n)

i

2i
i+k+1"

We now substitute the above expression into (6.6), use the definition of A

+a
and C,,  from (1.14), and (1.15), respectively, and simplify the coefﬁcient: to
get
Aa+n{p:+1(x) } C +n{p (‘x) (x)}
_ _ bdg® d ol
=(Z+21_a_a1 (bdq”, cdq, q )1
(abq®, acq®, abcdq®™ "),
. g “"(a/d)"
(6.14) (abedg), (1 — abedg*** " ")(1 - adg®)

. Z Z Z e (ql_n)i+j+k—1(adeqza_l)n+i+j+k/(q)n
k i

. {(1 _ adqa+n)(1 _ q_")(l _ abcdq2a+n+j+k+i—l)
_ (1 _ qn)(l _ bcqo;+n—l)(1 —qj+k+'_")adqa},

where the summands over k, j and { in (6.14) are the terms on the right-
hand side of (6.13) that are independent of n. The expression within the curly
brackets now factors into (1 — ¢~ ")(1 — abedq®* "™ ')(1 — adq®*/***') . This
converts the right-hand side of (6.14) into the following expression:
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(6.15)

(bdq®, cdq®, ¢"*', abcdqza_l)n
(abq®, acq®, abedq®™" | q)

(™", abcdg™*" ™' dz,d]2), (arik
(@7, adq®, bdq", cdq®),

(1 _ abcdq2a+k+2j—2)

) = (1 _abcdq20z+k—2)

—a ‘1 -az)(l -a/z) (a/dg™)"

n

M-

I
x O

(abcdg™™**™*, abg®™", acq®™", 4", abedg™ ™", g57T),
(a, cdg™", bdq***, abedq™ ™2, ¢***!, adg**),;
a a—1 i =12, 12 atk+l\j
(g, beq )j(_l)lql(l )/ (d*q +k+ )j

(abcdq2(1+k—l)2j

.

j+k— 2 k+j—1 j
JtK—n , E , a+n+K+j , a+J )
3 a+ j+ , a+ + +J b s

By the g-Saalschiitz formula [13, (1.7.2)]
i+k—n 2a+n+k+i—1 a+i
3¢2 |:q abc‘;;ﬁi‘jf—{k—l ’ qa+l+;(+i 34, 4}

_ (abcdqa+i+k—l , qi—n)n_i_k

(6.16) - (abcdq2a+2i+k—l , q_a_n)n—i—k
q*"(abedq"™', q), (abedq™ ™) (@5 @)
(abcdqz"'l , qa+1)n ", abcdq2“+"_1)i(q)k(abcdq"_l)

) (_l)iq—i(i+1)/2—a(i+k)—ik .

i+k

Substituting (6.16) into (6.15) we find that

Ay o{P1(2) = 2, (2)} = G o (P, (2) = P, (2)}
(bdqa, qua)n (g)n
(abq®, acq®),

1

=(z+z '—a-a™h

d
. i (", abedqg™™ ", abedq®™ ', dz, d/z), «
o (q,adq”, bdq®, cdq®, abcdq"_l)k
) 10W9(abcdq2a+k_2 4 abqa—l ’ acqa—l ’ bcqa—-l , qk+1 ’
abcdq2a+n+k—1 qk-—n_ q, dz)

(bdq®, cdg®), ra\" o«
m(z) P,,(X,d,b,C,akI)

(6.17)

=(z+z'—a-a"

= (Z-I— Z_1 —-a —a_l)p:(x; a, b, c, dlq)a
by (6.2). This completes the proof of (4.15).
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7. ASSOCIATED CONTINUOUS ¢-JACOBI POLYNOMIALS

Some special cases of the associated Askey-Wilson polynomials are worth
noting. One such case is the continuous g-Jacobi polynomials when we choose

(7.1) a=vq, b=q""? c=-¢""* d=-y7, a=1
in (4.15). Then (4.15) gives

A a+1/2 1/2
prx; va, ¢t - —vale)
n (q—n’ q2).+n+a+ﬂ+l i q2}.+a+ﬁ+l , ‘/‘72, \/a/z)qu

A A A A
(7.2) — 4, qa+1+ , _qﬂ+1+ , —q +1 . q +a+;9+1)k
. 10PV9(qM+Q+ﬂ+k . ql , __qa+ﬂ+/1 , _qa+). , qﬂ+). ’ qk+l ,
Q+a+p+1+k+n k-n
q 4 54,4).

The continuous g-ultraspherical polynomials of L. J. Rogers correspond to the
case a = B, A=0. When A > 0, a = § we get the associated continuous
g-ultraspherical polynomials [10]. By (6.2) we also have

b /2 p+1)2 @, gt
p,(x;va,q "7, —q ,\/?iIQ)=(q,1+a+l ~

n(_1 n
/1+ﬂ+1) ( )

n

q
. i (q—n , q21+n+a+ﬂ+l , q21+a+ﬂ+l , "\/EZ, —\/-(I_/Z)k X

(1.3)

P (q , qﬁ+1+,1 , _qa+1+/l , _qi+1 , q}.+a+ﬂ+1)k
: 10%(q21+a+ﬂ+k; q;‘. s —-qa+ﬂ+l > '—qﬁ+l s qa+A 3 qk+1 s
20+a+p+i+k+n  k-n
q 4 34,4).

In both cases the , W, series are terminating and balanced, and hence can be
transformed by Bailey’s formula, Gasper and Rahman [13, (2.9.1)]. Thus

(7.4)
7 2A+a k k+1 a+i A +A A
]OWQ(q arh ;q+ 5q+:_qa+ﬂ+ a_qﬂ >4
2+a+f+l4n+k  k—n ’
4 34,49)
_ (q2}.+a+ﬂ+l+k , _qa+l , _qﬂ+l+l , q}.+1)n
A A 1 2 1
(__qa+ +l’ q +a+B+ . q,—q +8+ )n
. (qi+a+ﬁ+l , _q/l+a+l ’ _q2/1+ﬁ+1 : q)k
22 A A+1
(g +a+ﬂ+l’ _qa+l’ —q +B+1, q + )k
22 k k+1- A +4 +A A
'10W9(_q e »—q " a,_q aqﬂ ’_qﬂ > q
2A+a+B+1+n+k  k-n
.4 34,4).
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Hence it follows from (7.3) and (7.4) that

A a+l/2 12
prox;va, ¢, "V —vale)

21 1 A 1 A+1
=(q +a+ﬂ+1’_q+’q+ﬂ+,q+)(—l)n
(qa+l+1’ ql+a+,8+1’ q, qu+ﬂ+1)n
n -n 2).+a+ﬂ+1+n 2/l+ﬂ+1
(7.5) (@ .q -4z, —f/z
a i
pard (qB+).+1 , _qﬂ+/1+l’ —q +1 , q/l+l , - +1)k
2A k k+l—a A +A A A
A LRI i S (R S AL
2+a+B+14+n+k  k—n
q 4 54,9).

The explicit representation (7.5) is a g-analogue of a formula Wimp [33] ob-
tained for associated Jacobi polynomials.

8. EXPLICIT FORM OF ¢,(x;4, b, c, d|q)

It is obvious that p,(x) and ¢ (x) both satisfy the same recurrence relation,
namely

(z+z-l—a—a_l+A 2t Co)Vo(x)

(8.1) -
=Aa+nyn+l( )+C+,,y,, 1( ), forn=0,1,

They, of course, satisfy two different initial conditions, namely

po(x)=1, pl(x)=
and
Gax)=1, gx)=1+4"'(z+z "' —a-a"").

We shall prove that
a a a o+l
(8.2) 4n(X) = 5, (x) = 29,2, (x).

It is clear that ¢;(x) = p{(x) ~ C,/A4,, so (8.2) holds for n = 0, 1. Since
p,(x) and p:fi(x) satisfy (8.1) it follows that the right-hand side of (8.2) is a
solution of (8.1) which agrees with ¢, (x) initially. Thus (8.2) holds.
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Hence, by (4.15)
(8.3)

g, (x;a,b,c,dlq)
" (g, abedg™" " abedg®™ !, az, alz), -

- =0 (g, abq”, acq”, adq”, abcdq""l)k
. 10W9(ab0dq2a+k_2; qa , bcqa—l , bdqa—l , qua—l . q
b 2a+n+k—1 k—n
abcdq .4 ;4,a

- ¢*)(1 — abcdg™) .

k+1

Ed

%)

(- beg®™ (1 = bdg® (1 - cdg® (1
(1 —abg®)(1 — acg®)(1 — adq®)(1 — abedq® " )(1 — abedg®*™?)

n—1

>

(¢'™", abcdg®™*" , abcdq™"", az, a/z), -
(¢, abg™"", acq**', adq**', abedq®),
g, beg®, bdg®, cdg®, 41,

k=0
2a+k
- 10Ws(abedq e
abcdq2a+n+k , qk—n+1 . q, az)’
for n =1, 2,.... We shall now combine the two double series on the right-
hand side of (8.3) and express g, (x) as a linear combination of | W¥;’s. First,

let us rewrite (8.3) in the expanded form

n =K (abedg®™ !, az, a/z)qu

X)) =35 o
J

k=0 j=0
(1 _ abcdq2a+k—2+2j)(abcdq2a+k—2 , qa , bcqa—l , bdqa—l , qua—l)
(1 - abedq™**™%)(q) (abedq®™" , abq®, acq”, adg®);,

‘ (qu)j(q_",abcdq2°+"_l)j+ka2j
(adeqza_z)v(q_", abcdqza-f-n—l)j

J

(8.4) k 2a+1 k
I Ll (abedg™t!, az, a/z)4q

P> (@)
1
j+1

1—
k=0 j=0
(1 _abcquQ)(l _abcdq20+k+2j)(abcdq2a+k’ qk+l)j(qa’ bcqa— )

J+k+1

(1 — abcdq®* 2)(1 — abedq®**)(q, abcdqz")j(abq", acq®)

-1 -1 1— 2
(bdg®™", cdq® '), (g ", abedg™™"), 204D
4

(adq”, abcdq“_l)j+k+l(ql"" , abcdg®*™)

The key step now is to separate the j = 0 term from the first term on the
right-hand side and combine the rest of the term with the second term. Thus
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we find that
i " abedg®™t™ !, abedg®™ !, az, a/z),
o (q,abq”, acq®, adq®, abecdq®™ l)k
(8 5) +n—ln - az a/z)kq (q bcqa 1 bdqa I’qua—l)j+1
. k=0 j=0 q),(abcdq®™ ' abg®, acq® »adq®); pp
‘ (ql— , abcdq2(1+n)1+k(1 _ abcdq2a+k+2]) 2j+2
(ql n abcdq20+n)] J.k?
where
B (abcdqz"'_l)k(abca'qz'm_2 ; qk+l),-+1
j.k (1 _abcdq2a~2+k)(q’abcdqza—Z)j+1

(1 — abedg®™ *)(1 — abedq™**)(q, abcdqz")j
_(abedg™ ™), (@Y, (abedg™) (6",

(¢, abedq™™) ., (1 - abedg™?)(g, abedq™);
Using the factorization
(1 _ qj+k+1)(1 _ abcdq2a+j—l) (1 _ )(1 _ abcdq20+j+k—l)

20-2

="' (1 - ¢")(1 - abcdg >,

it follows that

(abedg™ "), (@ )01 Jas

(8.7) e

‘,k =
! (q,abedq™ ),
Substituting (8.7) into (8.5) we obtain

(8.8)

_}”: ", abcdg®*"", abedg™ ', az, a/z),

= (q,abq", acq®, adq", abcdg®™"),
n *(az,a/2),q (abcdqz"‘_2 ,q ", abedg™™ )
k=0 j=0 (q),(abcdq®™', abq®, acq®, adq®)
« a—1 a—1 a—1 k
(g%, beg™ ", bdg™ 7, cdg” L q)
(¢™", abcdg*™*" ™", abedg™ ™', q)

J+k+1

JH+k+1

1 — abedg®™?)

el
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It is obvious that the single series on the right-hand side is the one that one
would obtain by setting j+ 1 = 0 in the second series. So, after replacing j + 1
by j in the second series we may combine the two terms to obtain the following
expression

g.(x;a,b,c,dq)
& (q7", abedg™™"", abedq®" , az,a)z), &
8.9 - q,abq", acq”, adq®, abcdq®™"
(8.9) k=0 k
. lou/g(abcdq20—2+k; qa : bcqa—l , bdqa—l ’ qua—l ’

qk , abcdq2a+n+k—1 : qk—n; q, qaz) )

When a = ql/ 2 the 10Ws series on the right-hand side of (8.9) is not balanced
and hence cannot be transformed directly into another , W, series as we did in
(7.4). However, we could use the representation (8.3) where both | W, series

are balanced when a = ql/ 2 and hence can be transformed in the same way as
in (7.4). It can then be shown by the same procedure as used in the previous
section thatas ¢ — 1,

A 172 _at+l)2 _qp+1/2,_q1/2

q,(x;9"",4q ; lg)

approaches the formula (3.4) in Ismail and Masson [16].

9. MISCELLANEOUS RESULTS

We mentioned before that for |z| < I, the (W, series in the expression
(4.13) for p:(x; a,b,c,d|q) are convergent provided 0 < g < |a| < 1. This
restriction can be weakened if we use the transformation

Wilbed/2q;b/z, ¢/z,d/z, abedg™" ™', q™*™"; q, qz/a)
9.1 _(bed/z, bz, cq/a,dq/a),
(®.1) "~ (bc, bd, qz/a,cdq/az)_

- Wilcdjaz;c/z,d]z, qlaz, cdg™™", " "/ab; q, bz),

which follows by applying (4.30). Since the left-hand side is symmetric in
b, c,d the right-hand side must have the same property, which means that
there are two other forms of the expression on the right-hand side with b, c, d
interchanged. The use of (9.1) gives the following alternative form of (4.13)
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ph(x;a,b,c,dlg)
_ (cd, cqla,dqla, beg®™', bdg®™", cdg®™!, %, az) zd"
(abg®, acq®, adq®, abedq®™", qz/a, cz,dz, cdgjaz),, (1~ abcdqz"_z)

[ (bedg™" 12) g —nei
(azqa+n) z

0o
(abcdg™ 2, bzq®, czq®, dzq®, bedzg®™", abg®™, acg®*", adq®*")

(beg®™ L, bdg® L, cdg® L, q°, bedza™ ", beg®™™, bdg®™™", cdg™*™)
. 8W7(bcdzqzu_2; beg™ ", bdg® ", cdg®', ¢, zq/a; q, az)
-yWylcdjaz;c/z,d]z, q/az, cdg*™*", a' "% "/ab; q, bz)

(abcdq2n+2n , bzqa+n+l , Czqa+n+1 , dzqa+n+l , bcdzq'”" , abqoz—l)oo
(bcq"“ , bdqa+", qua+", qa+n+1 , bcdzq2a+2n+l , bcqa—l , bdqu_l)
(acg™ ™", adg™ ™!, bedg™ ! /2), e

(cdg™ T, azg" "),

. 8W7(bcdzq2°’+2" . bcqa+n , bdqa-m , qua+n , qa+n+l , zq/a; q,az)

o]

[e o]

(9.2)

oo

- Wicdfaz; c/z,d[z, qlaz, cdg®"", & [ab; q, bZ)} .

Note that the W, series in (9.2) are convergent when |z| < 1 and max(|a|, |b])
< 1, and hence (9.2) constitutes an analytic continuation of (4.13).

Now we will show how to obtain a complete asymptotic expansion of
p,(x;a,b,c,d|g) from (4.13), when |z| < 1. The important step is to use
Bailey’s formula [9, 8.5(3), p. 69] that expresses a very well-poised ¢, series
in terms of two balanced nonterminating ,¢, series. Thus, we have
(9.3)

Wi(bed/zq; b/z,c/z,d]z, abedg™" ™, ¢ ", ¢, qz/a)

_(bed|z,bz,cz,dz) p [ b/z,c/z,d/z,q/az 4.4
T (be, bd, cd, 20 “°la/Z?, bedq™" )z, 7 T ez T
(bed/z,b/z,c]z,d]z,q/az, bcdzg®™", qu_"‘_”/a)oo
(cd, bd, bc, bcdq®™"/z,q""* " /az, qz/a, z7%)
bz,cz,dz,qz/a )
qz2 , bcdzqa+n , qu—a—n/a s q’ q ’

o0

: 4¢3

and
(9.4)

8W7(bcdzq2a+2"; bcqa+n , bdqa+n , cdqa+n : qa+n+l : zq/a; q, az)
(bcdzq20+2n+l , abcdqa+n—1 , azqa+n+1 , qZZ)
(bcdzqa+n , abcdq2a+2n ,az, Zan+n+2)oo

'8W7(zzqa+"+] ; zq/a, zq/b, zq/c, zq/d, " g, abcdq"+””‘)

[¢,9]

2
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by (4.30). Thus the left-hand side of (9.4) is given by

at+n a+n a+n
LHS. of (9.4) = —0¢4_,bdd . cdq oy
(bzg™™!, czq®™™*!, dzg®*")

o

(bcdzq2a+2n+1 , abcdqa+n—l : azqa+n+1 , qz2)oo

(bedzq®™™", abedq®**™", az, bedg®" ' /z)

.

b, Zq/c, Zq/d, az
9.5) : [ zq/ .
4¢3 qu , azqa+n+l , ZqZ—a—n/bcd ;4,4
+ (Zq/ba Zq/C, ZQ/d’ bcdzq2a+2n+l)oo

(bzqa+n+1 , Czqa+n+1 , dzqa+n+1 , qu—a—n/bcd)oo

. ¢ bcqa+n , bdqa+n , qua+n , abcdq(1+n—1 g
4¥3 bcdqa+n/z , bchqCH—Il , abcdq20+2n ’ » 4

Using (9.3), (9.4), and (9.5) in (4.13) and simplifying the coefficients we
obtain the complete asymptotic expansion
(9.6)

po(x;a,b,c,dlq)

3 (abcdg®™ ™", be, bd, cd, az, bzq®, czq®, dzq®, bedzg®™", bedq®/z)

 (abedg®™', beg®, bdq®, cdq®, azq®, bedzq* ', bz, cz, dz, bed/z)
(beq®, bdq®, cdq”, azq®),

" (abq®, acq®, adq®, bcdq®/z),

o Wo(bedzg™ 2 beg®™" , bdg® ', cdg®!, 4, zq/a; q, az)

. (bz,cz,dz, bed/z)_, p [ bjz,c/z,d[z,qlaz ]
(bC,bd,Cd,Zz)oo 473 q/zz,bcdqa+n’ql—a—n/azaqaq
N (b/z,c/z,d]z,bed]z, qlaz, bedzq™, zq'~%/a)
(bc, bd, cd, 1/22, bedq®)z, q' "% /az, qz/a),
(bedq®/z, ag"/2), o 5 { bz,cz,dz,qz/a
(azq®, bedzq®), 473 qz%, bedzg®*", zq¢" " Ja”’ 7.4
(1—abg* ")(1 —acqg" ")(1 —adg" ™)
1 — abcdg™™?
(bc, bd , cd, g%, abedg™, az)_,
(abcdg®™", beq®, bdq®, cdg”®, ¢°*', azg**")
(bzg"*', czq™', dzq**", bedzq®, bcdqo‘"/z)oo
(bz,cz,dz, bed]z, bedzg™™")
(bcqa, bdqa, qua, qﬂ+|) (bcdzqza+l)
n 2n
(bzg®*', czq®™, dzq®"', bedzq®), (abedq™)
n 2n

(a/z)"

[e.0]

n_n+2
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W,(bcd/zq; b/z,c/z,d[z, abedg" ", 4'™"; q, qz/a)
{ (beq®, bdq®, cdq®, abca’q"’_l,azq"‘“,bcdzqz"’“,qz?‘)oo

(abcdg®™ , az, bzq®™", czq®™*', dzq®*™", bedzq® , bedg® ) 2)
(bzq"+1 gt dzq"’+l , bedzq®, bca’qo‘"l)n(abcdqz")z,l
(beq”, bdq" ,cdq®, abedq®™!, azq"+1)n(bcdzq2"+1)2n

5 zq/b, zq/c, zq/d ,az
493 qZZ, azqa+n+l : Zq2—a—n/bcd 4,4

(zq/b, zq/c zq/d, bedzg™")
(bzqa+l qua+1 ql—a/bcd)oo

a+l)

o

(bzg™"", ', dzq
(bedgq® /z)n(bcdzqz"“)z"

.¢ bcqa+n,bdqa+n,qua+n,ddeqa+n_l.q ‘
4¥3 abcdq2a+2n, b(,’dzqa+n, bcdqa+n/z s .

(_ )n n(n+1)/2+naz—n

We conclude this section by proving a theorem concerning the positivity of
linearization coefficients for a special family of associated Askey-Wilson poly-
nomials.

Theorem 4. If a = —b, ¢ = —d then the linearization coefficients

¢ L W(=b,b,~d, d)

in (1.29) are nonnegative when —q <b,d <q and o >0.
Proof. We apply Askey’s theorem, Theorem 2. In the present cases, a, and 8,

of (1.30) are o, =0, B,=4,, ., ,C,. ., with 4 ,C asin(1.14) and (1.15).
We have
1 —y)(a+b*y) (g +d° )" - bd* nta
ﬂn=( Y)(g+by)a+dy)g R

(q - b%d*y*)(q* - b*d*y?)
To show that g, increases with n we show that §, decreases with y for 0 <

y<1.Let D and N be the denominator and numerator of f, , respectively.
MACSYMA was used to prove that

N D
D(fl,—y—NZ—y=Ay6+By5+Cy4+Dy2+Ey+F,

with
A=bd%g-b)g-d"), F=-¢"q-b))g-d"),
B=2bd*H, E=-24°G,
G=-b'd’¢ +d’¢’ +b°q’ —20°d’q + b'd* + d’b* — b'd’,
C=qb*d’H, D=-¢vVd’H,
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H=q"-® +d*)+3¢ +q°b’d* - 3¢°(b* + d°)
+q" +3qb’d* —q(b® + d*) + b’
Simple manipulations lead to
G=b'(1-d*)(g* —d) +d (1 - b)) (" - b*) + B*d*(1 - ),
H=(q-b)a-d)1+3q+4),
and we find that d?gyﬂ is a negative multiple of the positive quantity
(¢-b")g—-d")g" - b°d’y")+y'qb’d’H(g" - y’b"d’) + 29qG(q" - b*d'y"),

since 0 <y < 1. This shows that §, increases with n and Theorem 4 follows
from Theorem 2.

Remark. We believe that the coefficients c:!n,n,k(—b ,b,-d,d) in (1.29) are

nonnegative in the region —ql 2 <p ,d < ql/ 2 and a > 0 but the method of
proof of Theorem 4 does not seem to be sharp enough to prove this stronger
result.
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