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We study expansions in polynomials {P,(x)};° generated by Z:-a P ()t =
A(L) dxt*0(2)), 6(0) + 0, and oo, Pt = Zl.;,l ALt) §(xte;), € ,..., & being
the & roots of unity. The case & = 1 is contained in a recent work by Fields and
Ismail. We also prove a new generalization of Vandermond’s inverse relations.

Notation. We use the contracted notation

ap _ < (@) z_l‘
oFo (bo ‘"‘) = & (o) A

for the hypergeometric function

F,

ay ..., 4,
q

by .., b, z) ’
where (ap); = [Ti1 (@) , With (@), = I(a + B)/I'(x).

D

1. INTRODUCTION

Polynomial expansions of analytic functions and obtaining generating functions
are old subjects that have attracted several mathematicians lately. Fields and
Wimp [6] expanded hypergeometric functions in terms of Jacobi and Laguerre
type polynomials. They essentially proved

ap, €R
prrFass (bo ds z-w)

5 (2p)n (—=)" n 4 ap
= LBt Al e (G toms yon +bo ’ s) (L
—n,y + n, cp
+’F( ds w)
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via Laplace transform and induction, and derived

ap, Cr _ & (ap)y (—2)" m + ap (—MN, Cr
prrFars (bo, ds zw) RN TR (s 1+ by z) e w)
(1.2)
from (1.1) by confluence. Verma [14] generalized (1.1) to
Y aba(zw)
n=0
< (—=)" < o bty rz E (—n)s(n + ¥)s -
~ LT B T D, s
(L.3)

and obtained a result corresponding to (1.2), also by confluence. He also estab-
lished a basic analog as well as a two-dimensional analog of the above formula.
However, these analogs and extensions did not shed any light on the structure
behind these expansions. Later, Verma [15) generalized a result of Niblett to

0

a5 o
n! n—0

n!

i (‘;!‘)k [k 4 k(1 — o)) @

n=0

: gz (k + cU)ernAk (h + k + 1 - "a)s+n-k bs+n %
Lg—0 H

(1.4)

which, at first sight, seems to be unrelated to (1.3). Later, Fields and Ismail [7]
observed that (1.3) and (1.4) are formal expansions of the form

0 =1

S aba(zw)t = 3 27P.(w) R.(3), (1.5)

n=0 n=0

where the R, (2)’s are power series and the P, (w)'s are generated by
Y, Pu(w)tr = A(t) $(wH(t)), (1.6)
n=0

where A(t), H(t), and ¢(t) are formal power series with 4(0) H'(0) # 0. They
also used a different approach based on orthogonality relations or inverse
relations. For other related results see [1, 3-5, 12, 17]. For finding generating
functions of the form (1.6) for orthogonal polynomials see [8].

The present work is a continuation of Fields and Ismuail’s. We start, in Sec-
fion 2, by establishing a generalization of Vandermonde’s inversion relations and

409/57/3~16
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use it to obtain a new generalization of (1.2). In Section 3 we study expansions
in polynomials generated by

k

P) =Y At dlatey), (1.7)

0 i=1

s

ki3

il

where ¢, , €, ,..., €, are the k-roots of unity. This includes, in particular, expan-
sions in the Euler polynomials {S,(2)} and {C,(2)} generated by

sinh iz —cosh#(l —2) & o, .
cosh ¢ - HE::O Sn(2) 1 (1.8)
and
cosh tz — sinh #(1 —2) i Co(2) 1 (1.9)

cosh ¢ o

These polynomials were studied by Bernstein [2]. Expansions in polynomials
generated by (1.7) when ¢(x) is the exponential function have also been inves-
tigated; for example, see [9, 10]. The last section, Section 4, is devoted to
studying expansions in polynomials {P,(x)}; generated by

€0

Y. Py(x) v = A(t) p(xt*0(2)), (1.10)
n=0
where A(2), $(¢), and 6(¢) are power series with 4(0) 6(0) # 0 and £ is a positive
integer. It is obvious that (1.6) is the special case & = 1 of (1.10). A generating
function of type (1.10) appears in [13].

2. A GENERALIZATION OF VANDERMONDE INVERSION RELATIONS

A sequence {c,}; is called [16] a fundamental sequenceif ¢, = 0 and ¢, % 0
for n > 0. We follow Ward’s notation and write [#] for ¢, and define factorials
[#]! and binomial coefficients [;] by

[l =0 i n=0, ] =0 if e

=[1][n] if n>0 :—ﬁ]!— if j<n
' (][ — 71! T
respectively. A fundamental sequence is called normal if 3. [3}(—1) is 8,0 -
Clearly Z;Lo ["(—1)/ vanishes for n odd since [}] = [,*;]. Therefore the
restriction of being normal is only a restriction on ¢, ¢4,..., while ¢, ¢;,...
remain arbitrary.
We now state our generalization of Vandermonde’s inversion relations.
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Tueorem. If {[n]}g is a normal sequence then

2 [n . . 2 iy
fo-3 e dandonyit g =Y [T =1y,
J=0 -’ j=0 ]
The proof follows by substitution from one relation into the other and using
the normality requirement.
Let

Pow) = i [’]’] . 2.1)

Then, by the above theorem we get

n

g =Y [']’] (— 1) P,(a). (2.2)

j=0

Multiplying (2.2) by b,2" and summing over # == 0, 1,..., we obtain

i [n +]] buyse’ .

oW

> by = 3 (|3 [[] am

n:=0 l=0

(2.3)

Formula (2.3) generalizes Fields and Wimp’s formula (1.2}, and is self-dual; see
[7]. Note that the polynomials P,(w) of (2.1) do not, in general, have a generating
function of type (1.6).

3. ExpansioNs 1N PoLyNomiaLs GENERATED By (1.7)

Ozegov [11] proved that a polynomial set {P,(x)}y satisfies D*P,(x) = P,_,(x),
D = dldx, P(x) -= 0 if j < 0 if and only if (1.7) is satisfied with #(x) = ¢® and

k
Y A4,0)er:40, n=0,1,2,..,k—1. (3.1)
i1

Given any fundamental sequence {[n]};, we associate a linear operator 2
defined on formal power series by Zx" =: [n] x* 1, n = 0, 1,... . It is easy to see
that D*P,(x) = P,_,(x) if and only if (1.7) and (3.1) are satisfied with ¢(x) =
Yoo 2" ],

Consider polynomials {P,(x)}; satisfying (1.7) and (3.1). Set (%) == 3o b,x",
Ay(t) = ¥m_o @5 52" Tt is clear that

Py(x) — Z Sl e (3.2)

—0
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where

k
Mp,p—r = Z € (33)
=1

Relation (1.7) implies, upon choosing ¢; = exp (2wiff),
© k
Y. Pu(x) (He)" = ). Aftle) dlxte;y), [=01,.,k—1. (3.4)
n=0 =1

If we denote 3,_, P,(¥) t* by G(x, t), then (3.4) can be written in the matrix
form

G(x, 1) A(t) Aty Ai(t) B(xt)
G(x, t/ey) _ Ay(t/e) Aytle) Ay(te) P(xtey)
G(x, tley_y) Altle ) Aty - Aralt/er) P(wtey_y)

3.5)

We make the additional assumption that the above & X % matrix formed from the
A’s is nonsingular at ¢ = 0. Thus we can express ¢(x¢) in terms of P,(x)’s. The
resulting relation is an inverse to (3.2) and of the form

DX = i Ap nrP(%). (3.6)

It is clear that A, ; # O since p, o ¥ 0, by (3.3). Now multiply (3.6) by 4, y"
and add for n = 0, 1,..., to get

> ’\n.s‘/’n—m‘yse . 3.7
=0 )
Relationship (3.7) is the sought expansion. Note that because the inverse

relations (3.2) and (3.6) are essentially inversions of infinite triangular matrices
we can interchange the X’s and p’s. This leads to the dual expansion

Z Pppaty® = Z yr giﬂ Brnrbr”

n=0 n=0

n

Z ‘pn?sn(xy)n = Z yn %Z ’\r,n—rqsrxTE Z f"n.s‘/’n+sy32 . (38)
=0 r=0 8=0 )
Exampre. Consider the case k=2, A,(2) = (1 + e )/(et + ¢7%), Ag(t) =
(1 — et)/(et | e*). This contains the Euler’s polynomials {Cy(x)}y generated by
(1.8) as the case ¢, = 1/al. In this case the matrix

[Al(o) Az(o)]
A4x(0)  44(0)
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is not singular and we have

o) =2 () T Pao) =2 () . Pule) (=1

=0 7=

In this case (3.2) and (3.6) will be

iy O(fixr).[ e+ Y (M) By~ 1)
(3.9)

and
¢"x”:éo§2F""+“ +=) nilEl( ) (n“*Pi(xz)!’ (3.10)

respectively, where E, , E, ,... are the Eulerian numbers generated by

2/t +et) = i E t7j(nl).

n=4¢

From (3.10) one may derive (3.7) in the present special case as well as its dual
(3.8).

‘We would like to emphasize that the key in the above expansions is the inverse
relations (3.2) and (3.6). However, generating functions provide a rich source
of these relationships.

4. PoLyNomiALs GENERATED BY (1.10)

Let {P,(x)}; be a sequence of polynomials generated by (1.10). Set

4) = Yt @
and
AW WHOP = 3. 1 997, g 0. “2)

From (1.10), (4.1), and (4.2) we get

[n/x]

Py(x) = Z, Bithy, n—res®’ 4.3)
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On the other hand, performing the change of variable #%0(¢) == « so that ¢ =
% f(u), $(0) -4 0, we obtain

(A Fp(u))] Z P(x) w5 (u) = d(au). (4.4)
Let
(U Y AIR) = 3 Ay i (4.5)

From (4.4) and (4.5) we get

kn

pum = z ’\j‘kn—ipi(w)' (4.6)

Multiplying (4.6) by b,2*" and adding for n == 0, 1,..., we obtain

Y, baa(hw)r = Y P,(w) 25" Ry(2), 4.7
n--0 n=0
where
Ry (2):= Z 3m)‘n,km’~/‘m+1+[(n-1)/k] . (4.8)
m=0

An example of this type is the main result of [13; see formula (11)]. This
is indeed the case

a - bn -+ n‘) (—n)il(1 + a + b7y, .

n J

A(t) _ tﬂau

T B (_1)1»(

It is easy to perform the aforementioned operations to get
Ay = (@ + b+ bj)a -+ 1)/

Therefore (4.7) reduces to

- L L a-bn Ldd (—1)s 3
,éo ¢n'r/’n(zkw) o EO _a‘ ( n ) j=0 mﬁ’_ o %
(4.9)
L m, - k bk
‘ % y, 2t (a(;”)’m - """“*“"‘1””% ’
\m=0 ’

which obviously contains Eq. (11) of {13] and seems to be new. Furthermore

its dual expansion also seems to be new.
For known special cases of (4.9) and applications of these generating functions

or expansions we refer the reader to [7, 13].
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