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Mourad E. H. Ismail* and Dennis Stanton?
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ABsTRACT. Classical orthogonal polynomials as moments for other classical orthog-
onal polynomials are obtained via linear functionals. The combinatorics of the Al-
Salam-Chihara polynomials is given, and three classification theorems for generalized
moments as orthogonal polynomials are proven. Some combinatorial explanations
and open problems are discussed.

1. Introduction

The symbolic method consisted of manipulating power series in z, and mapping
" to a,, where {a,,} is a sequence of combinatorial numbers. This was used by
Kaplansky, Mendelsohn and Riordan [K, KR, M] to treat a variety of combinatorial
problems. In a beautiful series of papers [RHO, RR, JR], Rota’s ideas put the um-
bral and symbolic calculus on solid foundations and his techniques were applied to
study several combinatorial and analytic problems. The purpose of this paper is to
use these ideas to consider moments of orthogonal polynomials as other orthogonal
polynomials. We thank Gian-Carlo for his insight into these problems and for being
the driving force behind the modern theory of the umbral calculus.

In [K2] and [IS2] several families of orthogonal polynomials are shown to be the
moment sequences for other orthogonal polynomials. The proofs in [IS2] are by
brute force, using the explicit form of the measures. In this paper we motivate
and generalize some of these results (Theorems 1, 2, 3 and 4), by evaluating linear
functionals on appropriate bases of the vector space of real polynomials. We also
combinatorially study the Al-Salam-Chihara polynomials in §5-6. Three character-
izations of generalized moment sequences as specialized Al-Salam-Chihara polyno-
mials are given in §7. Some open problems are discussed throughout this work.

The Rotafest, which resulted in these Proceedings, had two components, one
on enumeration and a workshop on the umbral calculus. We are pleased that this
work overlaps with both components since on one hand our study of functionals
is umbral in nature but on the other hand our results on Hermite, Meixner and
Al-Salam-Chihara polynomials are combinatorial in nature and use enumerative
techniques.

I'This work was supported by NSF grant DMS-9625459 and a research fellowship from the
Leverhulme Foundation.
2This work was supported by NSF grant DMS-9400510.
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We set some notation. If {p,(z)} is a sequence of monic orthogonal polynomials
with real coefficients, it is known [Ch] that they satisfy a recursion relation

(11) pn+1($) = (.’E - bn)pn(x) - Anpnfl(x)u n 2 07

for some real b, and A, with po(z) := 1 and A\op_1(z) := 0. We refer to (1.1) as
the three term recurrence relation for p, (z). We let L denote the linear functional
on the vector space of real polynomials for which orthogonality holds,

(1.2) L(pnpm) =0 if n # m.
The moments pu,, are defined by
pn, = L(z™).
We note that if p,(z) satisfies (1.1), and
(1.3) L(p,) =0 for n > 0,

then (1.2) holds.
We shall also find the value of L at polynomials of degree n, other than z” and
pn(z). We shall consider

(14) Lo+ay) =3 () mwa

k=0

(1.5) L((%59)n),
where »
and

(1.6) L(¢n(z;a)),
where

bn(x;0) = (ae”;q)n(ae™";q)n, = = cos.
For many of the cases considered one can find an explicit expansion

n

(17) en(xvy) = chpk(x)snfk(y)u

k=0

where e, (z,y) is some elementary homogeneous polynomial in z, y of degree n (for
instance (z + y)™), the ¢ are explicit constants, the p; form a class of orthogonal
polynomials and the s; form another class of polynomial special functions, often
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expressible in terms of some class of orthogonal polynomials. The assumption
L(py) = 1 and the expansion (1.7) imply

(18) CnSn(y) :L(en('uy))'

This also shows that occurrence of orthogonal polynomials as moments is only
a special case of occurrence of orthogonal polynomials as expansion coefficients.
Indeed the set up in (1.4), which is used in this paper is just one instance of the
more general set up in (1.7) and (1.8).

In some cases, formula (1.7) can be obtained by multiplication of a generating
function for pg(x) with a generating function for s;(y). It may be possible to
obtain (1.7) from (1.8) by substitution of a Rodrigues type formula combined with
integration or summation or g-summation by parts. Sometimes one can recognize
(1.7) as a degenerate addition formula.

For instance, the Hermite case considered in Section 5 can be obtained by mul-
tiplication of the two generating functions

) oo H (.T) Zk ‘ ) oo il H( )Zl

20z—2z" __ E k 2iyz+2z" _ E n\y

¢ N B © N no
=0 =0

The result is

(19) it = 3 (7) it Hy () H(y).

k+l=n

Motivated by identities such as (1.9), W. Al-Salam and T. Chihara [AC] char-
acterized all triples {px(x)}, {sn(y)}, {en(z,y)} satistying (1.7) such that {px(z)}
and {s,(y)} are orthogonal polynomials and {e, (z,y)} are orthogonal polynomials
in z for infinitely many values of y. In addition to some classical polynomials,
Al-Salam and Chihara [AC] identified what has become known as the Al-Salam-
Chihara polynomials and their weight function was found recently, see [AT].

Polynomials depending on parameters are orthogonal when the parameters lie
in a certain domain. If these polynomials are represented as moments, the integral
representation of the functional with respect to a positive measure restricts the
parameters to outside this domain. The reason is that an orthogonal polynomial
of degree n has n real and simple zeros. One must use other techniques to extend
the validity of the results to the domain of orthogonality.

We use the standard notation for hypergeometric and basic hypergeometric series
in [GR]. We also use the notion of basic numbers

and the g-binomial coefficients

[n] _ (4 9)n

k (@ @)k (05 Dn—r
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2. Meixner polynomials as moments

Here we obtain the Meixner polynomials as moments of the translated beta
measure. We will see that the moments can be found directly from the orthogonal
polynomials via (1.3), without knowledge of a representing measure.

First consider the normalized beta integral on [0, 1], and define the associated
linear functional L by

MNa+p+2)

(2.1) L) = s A+

)/0 p(x)z®(1 — z)?dx.

The monic orthogonal polynomials for L are constant multiples of the Jacobi poly-
nomials,

(a+1),

PA(1 —2z) = '
n.

oFi(—n,n+a+p+ La+1;z).

Clearly from (2.1) and the beta function evaluation we have

(a+ 1)y

(2.2) HE = m-

Thus (1.4) implies

ny __ - n (O4+1)k anfk
(23) L((z +a) )‘;)(k)i(aww)k ok

which is a Meixner polynomial under an appropriate choice of a and . This says
that the measure for which the Meixner polynomials are moments is a translate of
the orthogonality measure, for Jacobi polynomials, which is stated in [IS2].

Note that (2.2) implies that

1), )
L(qua’m(l —2z)) = 7(01_'_, ) sFi(—n,n+a+ 0+ La+8+2;1)=0ifn >0,
n!
from the Chu-Vandermonde evaluation of a terminating o F; at x = 1. So we could

obtain (2.2) from the explicit formula for Prga’ﬁ)(l — 2x) without knowledge of an
explicit measure. We shall use this method again in the next section.

3. Three ¢-versions

In this section we consider three different g-versions of the functional L of §2.
These three functionals will be denoted by L;, Ls and L3. They act nicely on z”,
(2;q)n, and ¢, (x;a), respectively (see Theorems 1, 2, and 3). The corresponding
three sets of orthogonal polynomials are the little g-Jacobi, big g-Jacobi, and the
Askey-Wilson polynomials. We use the explicit formula for these polynomials to
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find the value of the linear functional L, in order for (1.3) to hold. Then we change
the bases to find orthogonal polynomials as generalized moments.
The little g-Jacobi polynomials are defined by [GR, (7.3.1)]

n+1.,

pn(3a,b5q) = 21(¢” ", abg" " 5 aq; q, 2q).

For (1.3) to hold, we should try

k)zw

(3.1) L (abg?;q)1’

analogous to §2. In this case the g-analogue of the Chu-Vandermonde evaluation
[GR, (I1.6)] does imply (1.3). Thus we have found the moments without explicitly
knowing any representing measure.

We next obtain the analog of translating the measure by a constant.

Theorem 1. For the little g-Jacobi functional L1 we have

Li((cz;q)n) = 201(¢7", ag; abg®; g, cq™).

Proof. Apply the ¢-binomial theorem in the form

(ct;q)n = M(cqnw)k

= (@9
to (3.1). O
The big g-Jacobi polynomials of Andrews and Askey are defined by [GR, (7.3.10)]

n+1

_Pn(.’ll‘;(l,,b,(l;q) = 3¢2(q_naa‘bq ,m;aq,cq;q,q).

As for the little g-Jacobi polynomials again if we put

(aq; q)k(cq; q)x

Lalwsae) = —pz o,

then the g-analogue of the Chu-Vandermonde sum [GR, (II.6)] implies (1.3). To
find the moments we expand z" in terms of (z;q)x, by a limiting case of the above
mentioned 5¢; evaluation

no N @D

Theorem 2. For the big q-Jacobi functional Ly we have

Ly(z™) = 3¢2(q7", aq, cq; abg®, 05, q).
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By appropriately choosing the parameters, the moments in Theorem 2 are Al-
Salam-Chihara polynomials. Theorem 2 is proven from the explicit big ¢-Jacobi
measure in [IS2, Theorem 3.1].

Finally we consider the Askey-Wilson polynomials, [GR, (7.5.2)]

Dn (’I’, a, b, C, d|q) = 4¢3 (q_", (J,b(jdqn_l, aeia, ae_w; (Lb’ ac, (ld; q Q).
This time b d
L (2, a)) = (2 Dk (acia)i (adi @)y
(abed; q) g

works. By expanding ¢, (z; f) in terms of ¢, (z;a) [I, (2.2)]

n

o _ ("™ @)rd” _
¢n($u f) - (af7 f/a: Q)n kZ:O (q’ (J,f, aql_"/f; q)k ¢k(x7 a)

we obtain the following theorem.

Theorem 3. For the Askey- Wilson functional Lz we have
L3(¢n (7": f)) = (a’fa f/(l, q)n 4¢3(q7n’ a‘ba ac, a‘d; (lb()d, a‘f’ a‘qlin/f; q, q)

Note that the explicit form of p,(z) was crucial to determine the appropriate
polynomial of degree n, R, (x), and the value of L(R, (z)) which factored. In §4
we show that this idea can applied even if the explicit form of p,, () is not known,
but the measure is known.

4. Al-Salam-Chihara polynomials revisited

Theorem 2 gives the Al-Salam-Chihara polynomials as the moments of the mea-
sure with respect to which the big ¢-Jacobi polynomials are orthogonal. In this
section we give another measure whose moments are multiples of the Al-Salam-
Chihara polynomials. As before we find a polynomial R, (z) of degree n such that
L(R,(z)) factors. However, we do not know an explicit formula for the orthogonal
polynomials {p,(z)} with respect to L, nor do we explicitly know the recurrence
coefficients given by (1.1).

We consider a measure which is purely discrete with two infinite sequences of
jumps,

Liple) =44 Z e (D AB) bl +
(D/B,D/A)s Z Aq/D Bq/D; q)x
(0. D/q)o = (¢.4°/D;q)n

If we let ¢ = ut, e = cq, in [GR, (II1.33)], and consider L(1/(1 — zt)), we have a
sum of two 3¢s’s which is a single infinite product. The result is

(qut/D) o (qut/B)
(qut/A) oo (ut) 0o

(4.1)

(Dq/AB)"p(ug"*' /D).

(4.2) L(1/(1 - at)) =
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Clearly (4.2) is equivalent to a generating function which implies

L(Ry(z)) = U"M
(@ 9)n
if
1=0 aq)

We also easily obtain from (4.2) the following theorem, first obtained by Suslov [S].

Theorem 4. The moments for the linear functional given by (4.1) are

(D/A)x
(¢:9)n

L(z™) = (qu/D)" 201(q" ", q/B; Aqg' " /D; q, A).

Clearly we could rescale and put u = 1.
Note that [GR, (II1.6)] implies

L(z") = (Bu/D)”%

which is multiple of the result in Theorem 2. Thus Theorems 2 and 4 give two
possible interpretations for the Al-Salam-Chihara polynomials as moments. There
should also be a companion theorem for Theorem 3, but we do not know such a
result.

3¢2(qinaq/BvD/BaDq/ABa0:qaq)a

5. Combinatorial applications

In §2-§4 we found that moments of classical orthogonal polynomials may be
other classical orthogonal polynomials. There has been much work on combinato-
rial models for both orthogonal polynomials [FO,FS] and their moments [V]. So if a
given orthogonal polynomial is also a moment, these two possibly different combi-
natorial points of views should be reconciled. In this section we make some remarks
in this direction.

The Hermite polynomials, H,,(z), are the simplest limiting case of any classical
polynomial. In [IS2], (or from a limiting case of (3.2)) it is shown that a rescaled
version, fIn(a) are the moments for a translate of the Hermite measure by a. Thus
the Hermite polynomials are the moments for any translate of their own measure.

We give the combinatorial reason for this phenomenon. Consider the set S =
{1,2,--- ,n}. A matching m of S is an involution on S. We refer to the 2-cycles of
m as edges, and the 1-cycles (fixed points) of m as unmatched vertices.

It is well known [Fo] that, with the proper rescaling, the Hermite polynomials

(5.1) H,(z):=2""2H,(z/V?2)
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have the representation

(5.2) I;[n(x) _ Z(_l)#edges in mx#ﬁxed points of m
They are the generating function for all matchings m on a set {1,2,--- ,n}, with
edges weighted by —1, and unmatched vertices by x. It is also known that the
moments p,, are the number of complete matchings on {1,2,--- ,n}. Thus

n/2

ny __ n n—2k

(5.3) Lz +a)") =) <2k>ﬂ2ka

k=0
is the generating function for all matchings of {1,2, - ,n}, with edges weighted by

1, and unmatched vertices by a. The right-hand side of (5.3) is i~ H,, (ia), hence
is just the rescaled Hermite polynomials rescaled again.

Although there is an a priori combinatorial interpretation for Meixner polynomi-
als [V], and another interpretation for moments of general orthogonal polynomials
[V], for the Meixner polynomials we do not have a combinatorial reconciliation, as
we gave for the Hermite polynomials.

Another example is the Laguerre polynomials, a limiting case of the Meixner,
for which there is well-studied combinatorial model [F'S]. There are two possible
interpretations as moments, corresponding to the limiting cases of Theorems 2 and
4. This would lead to two new models.

6. Combinatorics of Al-Salam-Chihara polynomials

The Al-Salam-Chihara polynomials are a special case of the Askey-Wilson poly-
nomials. Theorems 2 and 4 give linear functionals whose moments are these poly-
nomials. In this section we give the combinatorial interpretations for these polyno-
mials and their moments.

The monic form of the Al-Salam-Chihara polynomials [AI, (3.2)] have the three
term recurrence relation

(6.1) Prs1(x) = (& — ag")pa () — (c + bg" ) n]ypu_i ().

An explicit representation for the p,’s as multiples of a 3¢o function is in Chapter
3 of [AIl

To combinatorially understand these polynomials and their moments, we con-
sider matchings m of {1,2,--- ,n}. A 2-bicoloring C of a matching m is a 2-coloring
of the edges of the matching (say with colors b and ¢), and an independent 2-coloring
of the unmatched vertices (say with colors x and a). We let b(C), ¢(C), z(C), and
a(C) denote the number of these colored edges and unmatched vertices.

If only the edges are 2-colored, and not the unmatched vertices, we call such a
coloring D an edge 2-coloring of m. We denote by a(D) the number of unmatched
vertices, and by b(D) and ¢(D) the number of edges colored b and ¢ respectively.
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Theorem 5. The Al-Salam-Chihara polynomial p,(z) is the generating function
of all 2-bicolorings C of all matchings m of {1,2,---  n} with weight w(C)

where
w(C) = Scﬂc(c‘)(_a)a(c’)(_b)b(C)(_C)c(C)qs(C)7

S(C) = Sl(C) + 32(0) + 233(0),

s1(C) = Y [z:z<im(z) <i}l,

a—verticest

s9(C) = Z Hz:i<z<j,m(z) <j},

all edgesi<j

s3(C) = Y H{z:z<im(z) <j}.

b—edges i<j

Proof. We verify (6.1) by considering n+1 in a 2-bicoloring C on {1,2,--- .n+1}.
First ignore the power of ¢q. If n + 1 is unmatched, then we have an arbitrary 2-
bicoloring on {1,2,--- ,n}, with n+1 colored either z or a. These are the two terms
multiplying p, (z) in (6.1). If n 4+ 1 is matched, there are n choices for m(n + 1),
what remains is an arbitrary 2-bicoloring of {1,2,--- ,n} —{m(n+1)}. The colors
for the {(n + 1),m(n + 1)} edge are b or ¢, agreeing with (6.1). So it remains to
check the the power of ¢ given by s(C') agrees with (6.1). If n 41 is unmatched and
colored z, then n+1 does not contribute to s(C). If n+1 is unmatched and colored
a, then (6.1) contributes n to s(C), and n is the number of vertices i to the left of
n + 1 such that m(i) <n+ 1. Any i < n+1 with m(i) > n + 1 is inserted after
n—+1. This gives the term s1(C). If n+1 is matched to m(n+1) < n+1, we choose
a monomial ¢~!, 1 < j < n, from [n], to weight the edge. If the edge is colored
b we additionally weight the edge by ¢"~!. We can choose j from left-to-right or
right-to-left. For a c-edge {n — j + 1,n + 1}, choose ¢’ 1, for the b edge {j,n + 1}
choose ¢"~**7~1. The term ¢’ ~! contributes to s5(C) for the c-edges, and to s3(C)
for the b-edges. The term ¢"~! contributes to so(C) + s3(C) for the b-edges. [

It is clear from the proof that several other versions of Theorem 5 could be
given, with slight modifications of s(C). For example, if the b-edges are read in the
opposite direction, so(C) and 2s3(C) would be replaced by

5,(C) = Z Hz:i<z<j,m(z) <j},

all edgesi<j

HBC)= Y Hziz<gm(z)<j}

b—edges i<j

(6.2)

Note that by taking a = b = 0, and ¢ = 1, we obtain the continuous ¢g-Hermite
polynomials H,,(x|q), which are defined by (1.1) with
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In this case we have only matchings, and Theorem 5 (with (6.2)) becomes Propo-
sition 3.3 in [ISV].

The moments of the continuous ¢g-Hermite polynomials are the generating func-
tions of the crossing numbers of complete matchings [ISV, (3.6)],

cross(m) = [{edgesi < j,k <l:i<k<j<I}.

or also the generating functions of the nesting numbers of complete matchings [ISV,

(3.9)],
nest(m) = [{edgesi < j,k <l:i<k<l<j}|

For the Al-Salam-Chihara polynomials, we need a ¢-statistic on edge 2-colorings
generalizing either of these two statistics.

Theorem 6. The nth moment for the Al-Salam-Chihara polynomials (6.1) is the

generating function for all edge 2-colorings D of matchings m of {1,2,--- . n} with
weight w(D)
Hn = Z w(D),
D

where
w(D) = a* P D)D) D),

t(D) = ci(m) + c2(D) + c3(m),

c1(m) = Z {edgesi < j:i<a<j},
a—wvertices

c2(D) = Z Hedgesk <1:k < j<l},
b—edgesi<j

and c3(m) is either the crossing number cross(m) or the nesting number nest(m).

Proof. We follow the proof of [ISV, (3.6)]. If a = b = ¢ = 1 and ¢ = 0, the
bijection from Motzkin paths of length n gives matchings on {1,2,--- ., n}. We
must weight the unmatched vertices by a, the edges by either b or ¢, and also an
appropriate power of q. This gives Theorem 6, up to the power #(D) of q. An
unmatched vertex a has weight aq™ if there are n uncompleted edges preceding a,
this contributes the term ¢;(m) in Theorem 6. A similar argument applies for the
b edges of weight bg" ', yielding c3(D). The remaining term c3(m) appears from
the term ¢7, 0 < j < n — 1, chosen from [n], for any edge, b or ¢. This contributes
either cross(m) or nest(m). O

Again by reading the inserted the edges in the opposite order we may find other
versions of Theorem 6.

We note that the L?-norm can be considered as the generating function for the
length in Weyl groups of type B,,.

Proposition 1. Let L be the linear functional for the Al-Salam-Chihara polyno-

mials. Then .

L(pppm) = On.mnly H (c+bq").

=0
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Proof. Since L(1) = 1, the L?-norm is always given by A, - -- A1, so (6.1) gives the
stated constant. Another method is to use the general theory of Viennot [V], giving
an involution which proves orthogonality. In this case the fixed points will be all
edge 2-colorings of complete matchings of {1,2,--- ,n} to {n+ 1,n+2,--- ,2n}.
There are no a-vertices in this case, and Theorem 6 also gives the stated constant.
The edge (m~1(2n — i),2n — i) contributes ¢ or bg’, 0 < i < n — 1. The crossing
number contributes n!,, independent of the coloring. [

It is of interest to consider the g-analog of the Hermite polynomials, which were
moments of their own translated measure. If we put ¢ = 0, b = —1 in (6.1)
the Al-Salam-Chihara polynomials become Al-Salam-Carlitz (I) polynomials [KS,
p. 87]. Then Theorem 6 implies that the moments are the continuous g-Hermite
polynomials [ISV, (2.10)].

Corollary 1. If L is given by b, = aq", X\, = —q" " *[n],, then

L(a") = Hy(alq).

Proof. If we apply Theorem 6 with ¢ = 0, the edges are colored only b = —1, while
the unmatched vertices are weighted by a. Thus the moments are some g-version
of the Hermite polynomials in a. In Theorem 6, co(D) = cross(m) + nest(m). If
we choose ¢3(m) = nest(m), then the g-statistic is t(m) = ¢1(m) +c2 (D) +c3(m) =
c1(m) 4 cross(m) + 2nest(m). If we apply Theorem 5 to H,(alg), (a = 0, b = 0,
¢ =1, z = a), again we have just matchings m, with edges weighted by —1. The
power of ¢q is s(m) = 33(m) = t(m). O

Another g-analog is given by the discrete g-Hermite, [GR, p. 193] H,(z;q),
which have
b, =0, \,= q"fl[n]q.

The next corollary says that the discrete g-Hermite are the “shifted moments” for
the discrete ¢~ '-Hermite.
Corollary 2. If L is given by b, =0, A, = —q~"[n]y,q, then

L(dn(*x/d; q)n) =H, (d§ Q)'

Proof. Clearly

n

(63) L(d™ (= /d; g)) = [ k] oG F ().
k=0 q

We appeal to Theorem 6 to find L(z*). The choices given for b, and )\, correspond
toa =c¢ =0, b= —q, and then ¢ replaced by 1/¢q in Theorem 6. Since a = 0 the
matchings must be complete and k is even. As in the proof of Corollary 1, the ¢-
statistic can be taken to be t(m) = 2cross(m) + nest(m). Moreover the generating
function for complete matchings is [SS, (5.4)]

Z g2eross(m)+nest(m) _ [114[3]4 - [k — 1],

m
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so that [GR, p. 193]

L afdia)) =3 | ] F DB k- 1], = ).
k=0 q

0

Corollaries 1 and 2 are special cases of Corollary 3 (A = —a, B =1, ¢ — 1/q,
and A =0, B = 1/q, respectively). It says that the shifted moment of an Al-Salam-
Carlitz (I) polynomial is an Al-Salam-Carlitz (II) polynomial [KS, p. 87].

Corollary 3. If L is given by b, = —A/q", Ay = —Bq' "[n]i,, then
L(d"(—=z/d;q)n) is an Al-Salam-Chihara polynomial in d of degree n with a = A,
c=0, and b = Bq.

Proof. The choices of b, and A, imply C = 0 in (6.1), thus force no C-colored
edge in Theorem 6. We apply Theorem 6 to (6.3) (with the matching m replacing
the edge 2-coloring D) to obtain

(6.4)
L(d"(—z/d;q)n) = Z [’Z} q(g)dn_k Z (fA)A(m)(fB)B(m)q—t(m)‘

k=0 4q mon {1,---,k}

The desired conclusion of Corollary 3 also forces ¢ = 0 in Theorem 5, so we must
show

(6.5) L(d"(—z/d;q),) = Z (— A)A0D) (_ Bg)B(m) gdm) gs(rm)

mon {1,---,n}
Given a subset S = {l; < --- < I} of {1,---,n}, and a matching m on
{1,--- ,k}, define a matching m on {1,--- ,n} by letting the d unmatched ver-
tices be {1,--- .,n} — S, and m(l;) =1; if m(i) = 5. If we show that
(6.6) s(m) + t(m) + #edgesinm = (Iy — 1) +--- + (Il — 1),
then Corollary 3 is established, because

b+l

is a integer partition into k distinct parts, whose largest part is < n. It is well-known
that the generating function for these partitions is

mqu:l)_

The following observations verify (6.6).

(1) If I; € S is an A-vertex, then each point z < [; appears exactly once in the
I; contribution to c¢1(m) + s1(m).
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If {I; <;} is an edge, we show that all points z < [; are counted twice, all points
l; < z < lj are counted once, in the {l; < [;} contribution to the left side of (6.6).
This gives a total of (I, — 1) + (I; — 1).

(1) If z < l; and m(z) < l;, then 2s3(m) counts z twice.

(2) If z < I; and m(z) > I;, then z is counted once in cy(m) and once in
c3(m) = nest(m). (We count the nesting when {l; < ;} is inside the other
edge.)

(3) If z =1;, then the edge {l; < [;} in (6.6) counts z exactly once.

(4) If I; < z < lj and m(z) < l;, then z is counted once in sy(mm).

(6) Ifl; <z <lj and l; < m(z) < l;, then z is counted once in s3(7m) and not in
nest(m). (We do not count the nesting when {l; < [;} is outside the other
edge.)

An interested referee has pointed out that one can prove Corollary 3 from
the following pair of generating functions for the Al-Salam-Carlitz polynomials,
(U3 (2:0)} amd {Vi”(2:9)}, [Ch, KS]

(2,@) 00 (02;@) 00~ ZF
(6.7) o0 z::
and
(6.8) (Y21 @)oo i ) g D2V () 2

(2;0) 00 (023 ¢) 0o (a;9)

=0

Clearly multiplying (6.7) and (6.8) and using the g-binomial theorem implies

(69)  (Wogea"= 3

k+l=n

n — a a
l} (=)' ¢ D2 U (50) Vi (y:.0)-
q

Then (1.8), (6.9) and rescaling imply Corollary 3.
It is perhaps worth noting that |g| < 1 is necessary for the generating function
expansions (6.7) and (6.8). This restriction is removed when applied to Corol-

lary 3. Combinatorially the two Al-Salam-Carlitz polynomials {Ur(la)(m;q)} and
{Vn(a)(x; q)} are identical, because

U (z:q7 ") = V¥ (21q),

The combinatorial proof of Corollary 3 requires no assumption on q.

7. Remarks

In [IS2] several applications of Theorem 2 are given to generating functions.
All of the techniques given there apply, in particular new generating functions for
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Al-Salam-Chihara polynomials may be given via Theorem 4. A more elementary
example is given by applying the linear functional given by Corollary 1 (the Al-
Salam-Carlitz measure [Ch, p. 197]), to the generating function for the continuous
g-Hermite polynomials. The result is the g-analog of Mehler’s formula, [IS1, (2.2)].

One may ask if it is possible to characterize which orthogonal polynomials are
moments. Since any sequence is a moment sequence [Ch, p. 74] (possibly not of
a positive definite measure), we must put a restriction on the types of functionals
which are available. We give two such results, below, motivated by Corollaries 1
and 3.

Proposition 2. If b, = aq™, and A, is independent of a, then L(z™) is an orthog-
onal polynomial in a of degree n only when X, = q"~[n],A\1.

Proof. From Corollary 1 the stated choice of A\, works. It is easy to see from
[V] that L(z™) is an even function of a for n even, and an odd function of a for n
odd. The remainder, upon division of L(z?") — aL(z?**~!) by L(z?"?), is a linear
polynomial in A,, so A, is uniquely determined for n > 1. [

This raises the question of characterizing orthogonal polynomials of the form
L (—a/d; q)n).

Proposition 3. If A\, and b, are independent of d and |q| # 0,1, then
L(d"(—=z/d;q)n) is an orthogonal polynomial in d of degree n only when

>\n = q2_2n[n]q>\17 bn = q_nbO-

Proof. The proof is similar to the proof of Proposition 2. From Corollary 3 the
stated choices of b, and A, work. The two leading terms of L(d"(—x/d;q),) are

n

(7.1) L(d" (=2 /d;q),) = d" + [1

] bod™ -
q

The possible three term recurrence relation for p,(d) = L(d"(—=z/d; q),) is

(72) pn+1(d) = (d + bn)pn (d) + 5‘npnfl(d)'

Clearly (7.1) implies that b, = byg™. The remainder when p,,_1(d) divides p,41(d)—
(d+ q"bo)pn(d) as a polynomial in d must be 0. Note that [V] implies that po,,(d)
has a unique monomial containing A,,,

>\m>\m—1 e >‘1q(2;n)7

while po,,—1(d) and pa,m—_2(d) do not contain A,,. So A, will appear in the re-
mainder for n = 2m — 1 if A\,,,_1--- Ay # 0, which is the case since |g| # 0, 1.
This uniquely determines A, from {A,,_1, - ,A1,bm—1, - ,bo}. An analogous
argument on b, and pa,,+1(d), with monomial

2m+1)

bm)‘m)‘m—l)‘lq( 2 3
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shows that b, is uniquely determined. For n = 0,1 there is no remainder, so bg
and \; are arbitrary. [

Theorem 7. Suppose A\, and b, are independent of d, by # 0, a, #0, ag +--- +
a, # 0 for all n. L(H?:_Ol(d + a;x)) is an orthogonal polynomial in d of degree n
only when

a; =aoq’, bi=bo/q", XNi=q""[n]gA,

where ¢ = by /by.

Proof. Let p,(d) = L(H?:_()l(d + a;z)), so that

n

(7.3) puld) = eilan, -+ an_1)d" p,

i=0

where e; is the elementary symmetric function of degree i. By equating the coeffi-
cients of d"*1~% in (7.2) we have

Hi€i\ a0, ,0n) =Hi€i\A0, "+ ,Gn—1 +5n6’i—1 ap, - ,0p—1
- ( ) =piesl ) ( )

+ 5\nei72(a07 o 7an72)-

If i =1 in (7.4) we have

b, = pia, = boay,.

If i =2 in (7.4) we have

5\n :u2(e2((1‘07"' ,an) - 62((10,"' aan—l) *Mlbn€1(0‘0,"' aa‘n—l)
=ap A (ag+ -+ an_1).

If i = 3 in (7.4) we have

(7.5) an(ps —bopz)ea(ag+ -+ an—1) = boanA1(ag+- -+ an—1)(ag+--++an_2).
Since pz = b3 + 2bgA1 + b1 A1, o = b3 + A1, an # 0, Ay # 0, (7.5) implies

(7.6)  (bo + b1)ea(ag+ -+ +an 1) —bolag + -+ an_1)(ag+ -+ an_2) =0.

The coefficient of a,, 1 in (7.6) is by(ag + -+ + ap_2) # 0, so a, 1 is uniquely
determined from bg, by, aqg,- -+ , an_s. The solution is

bo
b

ai = ( )iao-
The values of b, and )\, are determined either by applying Proposition 3. or by

considering (7.4) for i =4. O

If the combinatorics of p,(z) and u,, are known, then the combinatorics of the
associated orthogonal polynomials is often easy to find. For the associated Hermite
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polynomials, b, = 0, A\,, = n—1+4c¢. To combinatorially interpret these polynomials
and their moments, we weight one the n choices for m(n 4+ 1) in the matching m by
c¢ instead of 1. An analogous technique can be applied to the associated ¢g-Hermite
polynomials (see [Ke]) and gives associated versions of Theorems 5 and 6.
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