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Abstract

In this paper, we consider the g-analogue of lambda-Daehee polynomials
and we give some new identities of these polynomials which are derived from
p-adic invariant integral on Z,
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1. INTRODUCTION

As is well known, the lambda-Daehee polynomials are defined by the gener-
ating function to be

= t" Alog(1+1) .
> Dusle)y = {1y o0 oo ) ()
Let p be a fixed prime number. Throughout this paper, Z,, Q,, and C,
will, respectively, denote the ring of p-adic rational integers, the field of p-
adic rational numbers and the completion of the algebraic closure of QQ,. The
p-adic norm | - | is normalized as |p|, = 1/p. Let UD(Z,) be the space of
uniformly differentiable functions on Z,, the p-adic invariant integral on Z,.
For f € UD(Z,), the p-adic invariant integral on Z, is defined to be

=0

By (2), we easily get
Io(f1) = Io(f) = f7(0), (see [8, 10, 11]) (3)

where fi(z) = f(z +1).
From (3), we have

n

[ enla) = o = 30 B, (see [1:8), (1

el —1 n
n

where B,, are called the Bernoulli numbers.
In particular, the Bernoulli polynomials are given by

By (4) and (5), we get

B(z) = Y (”)ngn—ﬂ, (see [10-18]). (6)
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The Stirling number of the first kind is defined by the falling factorial sequence
to be

(@) =2(x—1)---(z—n+1) ZSlnf . (n € Zsy). (7)

As is known, the Stirling number of the second kind is given by

0 ¢
(e —a) =n!' S Sl n)%, (see [8, 16)). (8)
l=n

In viewpoint of (1), we consider the g-analogue of lambda-Daehee polyno-
mials and investigate some properties of those polynomials which are derived
from the p-adic invariant integral on Z,.

2. SOME IDENTITIES FOR THE HIGHER-ORDER q-BERNOULLI
POLYNOMIALS OF THE SECOND KIND

In this section, we assume that ¢,t € C, with |¢|, < ]pp |, and A € Z,, with
A # 0. For f(z) = (1+ qt)**, by (3), we get

Alog(1 + qt)
1+ qt)" ™Mdp,(y) = —=>———=
/Zp( qt)" Y dp (y) 1+ gtp

In viewpoint of (1), we define the g-analogue lambda-Daehee polynomials as
follows:

(1+qt)". (9)

Alog(1 + qt)
(1 +gt)*
When © = 0,BD,,4(\) = BD,,(0|\) are called the g-analogue of lambda-
Daehee numbers.

Remark. Note that lim, ,; BD,, ,(x|\) = D, \(z).
From (9) and (10), we have

[e. 9] tn
> BDua(oN) T = [ (L4 )" v)

— ! Zp
n!

=> ¢ /Z Ay + 2)ndp, (y)i

Therefore, by (11), we obtain the following theorem.

(1+ qt)" ZBan:L’P\ (10)

Theorem 2.1. Forn > 0, we have

. / (& + Mg)udpto(dy) = BDg(x]A).

p
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By replacing gt by e — 1 in (10), we get

= -n (et — 1)” At tx
Z q "BD,, 4(x|)\) oy = 16
T\ ("
=25 (3) 5
and
- -n (et B 1)” G —-n > tm
> g BDy g N)——— = Zq BDpg(z[A) ) Sa(m, n)%
n=0 n=0 m=n (13)
Therefore, by (12) and (13), we obtaln the following theorem.
Theorem 2.2. For m > 0, we have
S " 4" BDyy(x|A)Ss(m,n) = A" B,, (;) .
n=0
From Theorem 1, we have
q "BD,, 4(z|)\) ZSl n, ) / (z 4 y\)'du, (y)
z ‘
e DL (N CE W (14)
=0 7p A
N tg (*
_;sl(n,m B, (A) .

Theorem 2.3. Forn > 0, we have
g BD, o (z|)) = ZSI n, ()\'By (A)

Let us consider the g-analogue of lambda-Daehee polynomals of order k£ € N
as follows:

B = [ - [ <)\Zflfz+x> duy(en) - dpy (). (15)

=1

Thus, by (15), we get

4
DY) = 3 s o [ - [ (zxz —) i)+ i),
/=1 Lp Ly

(16)
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Now, we observe that

.
=> BV (@) 5
n=0

where B (x) are called Bernoulli polynomials of order k.
By (17), we get

B (z /Z,, /Z <Z x; + x) dpsg -+ - dpy (). (18)

1

From (16) and (18), we have
—n k )4
¢ "BCH (x| \) = E:SlanB (A) (19)

From (15), we can derive the generating function of BDn’fq(x])\) as follows:

ZBD x|)\ / / (1 +qt)>‘zl VIR (1) - - dpy (7))
Zp Z,

(20)
Alog(1 + qt)
p— —_— 1 t x-
((1+qt)A—1 (L+at)
by replacing gt by e’ — 1, we get
At
Zq"Bka])\) (et —1)" :( )
~ (21)
tn
=380 ()5
n=0
and
-n -n t
Zq BDk :1:\)\) (e - 1" Z (Zq BD(k (z|A)S (m,n)>%
(22)

Therefore, by (21) and (22), we obtain the following theorem.

Theorem 2.4. For m > 0, we have

ZBD’“ (2|A)Sa(m, n)g™™ = A" B® <A>
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For n > 0, the rising factorial sequence is defined by

M=z -1)-(z-—n+1)=(-1)"(~2),
=Y _ISi(n, D], )
=0

where |S1(n,1)| = (=1)"71S;(n, £).
We consider the g-analogue of lambda-Daehee polynomials of the second
kind as follows:

BDalal) =" [ (<Xy+a)adpo(y). (02 0), (24)

Zp

From (24), we have

¢"BD,,(x|)) Zsl n, ) /Z (—; +y)éduo(y)

:Z Si(n, 0)(—1)' A By <_§) .

When z = 0, ET)W(/\) = ET)M(OM) are called the g-analogue of lambda-

Daehee numbers of the second kind. The generating function of ﬁ)nvq(xp\) is
given by

(25)

o 4 - i
> BDa(alN) i = [ (15 at) ™ di o)
n=0 ’

? : ) (26)
Alog(1 + gt A
= (14 qt)""".
T+gp -1t
By replacing gt by e — 1, we get
-n m A+ "
Zoq Ban(I|/\) (el —1)" Z)\ B, ( ) — (27)
and
o0 m o . tm
ZBan x|)\ (e - 1" = Z_O (ZO BD,, ,(z|\)Ss(m,n)q ) puk (28)

Therefore, by (27) and (28), we obtain the following theorem.
Theorem 2.5. For m > 0, we have

X

0" BDng(al)) = > $1(m, () (~) N B, (-5
=0
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and

m At T n
A Bm( 5 )z%Bqu(xM)SQ(m,n)q )

For k € N, let us consider the g-analogue of lambda-Daehee polynomials of
the second kind with order k£ as foHWOS'

—(k
BDEM)I(xp\) = q”/ / ( /\ZxZ + x) dpg (1) -+ - dpy (zr), (29)
Zp Lyp i=1

where n > 0.
From (29), we have
& T
¢ " BDw @\ =3 Si(n, 0)(—1)BY <_X> A (30)
=0

——(k
The generating function of BDEL )(x|)\) is given by

ZBD oo = [ [k a) R (0) (o)
n: ZP Zp

(31)
Alog(1 + qt) ke
= ——=) (L+gt)™™.
((1+qt)’\—1 (1+4t)
By replacing gt by ¢! — 1 in (31), we get
Z BD (x|/\) ( — 1) = (m) p(Akta)t
I N A
> "B (k+3)
and
= —-n n tm
Z BD (x|/\) (e - 1" Z (Z BD x|/\ )Se(m,n)q~ ) pk
n=0 m=0
(33)
Therefore, by (32) and (33), we obtain the following theorem.
Theorem 2.6. Form > 0, we have
@ x
(~0)"BDpyfald) = 3 [S:m, DINBP (=5) (34)
=0

and

A B <k+ ) ZBanx])\)Sg(m n)g" (35)
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Now, we observe that

-2t e (i

n! n

Ay—xr+n-—1
)duo(y)

( (36)
(o ) ()
-3

n— 1) ¢ BD, (| \)

I
:N\..

m

3

— \m — m!
and
_BD,(z]A) & [n—1\BDy,(—z|\) _
_1 n n n,q — m,q m' 37
(=1 n! 7nZ:1 (m— 1) m! ¢ (37)

Therefore, by (36) and (37), we obtain the following theorem.
Theorem 2.7. Forn > 1, we have

) BDyy(z]\) = (n—1\ BDypo(—z|)) _
n(_1\" q — q m
oy PRt o 5 (07 ) P R oy
and
_ BD (x| \) " /n—1\BD (—z|A) _
ni_1)" n,q — m,q m
oy PRt = S (17 ) PR (39)
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