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We denote as usual by S� the extended Selberg class and recall that F ∈ S� if (s −
1)mF(s) is entire of finite order for some non-negative integer m, F(s) is representable for
σ > 1 as an absolutely convergent Dirichlet series with coefficients aF (n) and satisfies a
functional equation of type

γ (s)F (s) = ωγ̄ (1 − s)F̄ (1 − s) (1)

with |ω| = 1 and

γ (s) = Qs
r∏

j=1

Γ (λj s + µj) ,

where Q > 0, �µj ≥ 0 and λj > 0. Here f̄ (s) = f (s). We also write dF = 2
∑r

j=1 λj

for the degree of F(s), σa(F ) for the abscissa of absolute convergence and

AF(x) =
∑
n≤x

aF (n) = ress=1F(s)
xs

s
+ RF (x) ,

say. Moreover, the Selberg class S is the subclass of S� of the L-functions satisfying in
addition the Ramanujan conjecture aF (n) � nε and having a general Euler product of type

log F(s) =
∞∑

n=1

bF (n)

ns

with bF (n) = 0 unless n = pm with m ≥ 1 and bF (n) � nϑ for some ϑ < 1/2. We
refer to Selberg [9], Conrey-Ghosh [1] and our survey papers [4], [3], [6], [7] and [8] for
the basic properties of the classes S and S�.

The following Ω-theorem for RF (x), for any F ∈ S�, is due essentially to K. Chan-
drasekharan and R. Narasimhan

RF (x) = Ω(x1/2−1/2dF );
see our paper [5] for a simple proof based on the properties of the standard twist of F(s)

(see below). According to the current expectation, this essentially settles the problem of
Ω-results for L-functions. In this paper we consider Ω-results for the difference of the
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coefficients of two functions in S�. Given F,G ∈ S� we define

δ(F,G) = lim sup
x→0+

log(1 + ∑∞
n=1 |aF (n) − aG(n)|e−nx)

log(1/x)
.

Based on the ideas in Kaczorowski [2], dealing with the Fourier coefficients of modular
forms, we prove the following general result.

THEOREM. For distinct F,G ∈ S� with dF , dG > 0 we have

δ(F,G) ≥ 1

2
+ 1

2
min

(
1

dF

,
1

dG

)
.

The Theorem has the following geometric interpretation. Let A denote the set of the
arithmetic functions f (n) with polynomial growth, and for f, g ∈ A let

δ(f, g) = lim sup
x→0+

log
(
1 + ∑∞

n=1 |f (n) − g(n)|e−nx
)

log(1/x)
.

Then δ is a pseudo ultrametric in A, since for f, g, h ∈ A one can easily check that
δ(f, f ) = 0, δ(f, g) = δ(g, f ) and δ(f, g) ≤ max(δ(f, h), δ(h, g)). Hence the The-
orem may be expressed by saying that the subset of A formed by the coefficients of the
functions in S� with positive degree is a discrete subset of A, in the topology induced by δ.

From the Theorem we deduce by a standard argument the following

COROLLARY 1. For distinct F,G ∈ S� with dF , dG > 0 we have

∑
n≤x

|aF (n) − aG(n)| = Ω

((
x

log x

) 1
2 + 1

2 min( 1
dF

, 1
dG

))
.

We believe that the “min” in the above results can be replaced by “max”. Moreover,
we believe that the following stronger Ω-result holds.

CONJECTURE 1. For distinct F,G ∈ S� with max(dF , dG) > 0 and ε > 0 we have∑
n≤x

|aF (n) − aG(n)| = Ω
(
x1−ε

)
.

In the case of L-functions in S we can say something more by elementary considera-
tions, thanks to the following

LEMMA 1. Let f (n) and g(n) be distinct multiplicative functions satisfying the Ra-
manujan conjecture and suppose that∑

n≤x

|f (n) − g(n)| � xθ+ε

for some θ ≤ 1 and every ε > 0. Then for every ε > 0∑
n≤x

|f (n)| +
∑
n≤x

|g(n)| � xθ+ε .

Clearly, the opposite implication holds as well, without assumptions on f (n) and g(n).
Recalling that the only Dirichlet polynomial in S is the identically 1 function, an

immediate consequence of Lemma 1 is
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COROLLARY 2. The Conjecture holds in S if and only if σa(F ) = 1 for every F ∈
S, F �= 1.

Actually, it is expected that σa(F ) = 1 for every F ∈ S, F �= 1.
Given f ∈ A we consider the associated Dirichlet series

L(s, f ) =
∞∑

n=1

f (n)

ns

with (finite) abscissa of absolute convergence σa(f ). Then from Lemma 1 we immediately
get

max(0, σa(f − g)) = max(0, σa(f ), σa(g)) (2)

if f, g ∈ A are multiplicative and satisfy the Ramanujan conjecture. Now we recall that for
every F ∈ S�

σa(F ) ≥ 1

2
+ 1

2dF

dF > 0

since the standard twist

F1/d(s, α) =
∞∑

n=1

aF (n)e(−αn1/d)

ns
d = dF , e(x) = e2πix

has, for suitably chosen α’s, a pole on the line σ = 1/2+1/2dF . See [5], where the notation
Fd(s, α) is used instead of F1/d(s, α); see also below, at the beginning of the proof of the
Theorem. Therefore from (2) and Lemma 2 below we have

COROLLARY 3. For distinct F,G ∈ S with dF , dG > 0 we have

δ(F,G) ≥ 1

2
+ 1

2
max

(
1

dF

,
1

dG

)
.

Note that the lower bound in Corollary 3 is sharper than the lower bound in the Theo-
rem.

The above results are special cases of the following general problem. Let F1, ..., Fm ∈
S� have positive degree and let L(x1, ..., xm) be a linear form such that L(F1(s), ..., Fm(s))

does not vanish identically. Prove that there exists a θ = θ(dF1, ..., dFm) > 0 such that∑
n≤x

|L(aF1(n), ..., aFm(n))| = Ω(xθ) .

The supremum of such θ ’s may be called the measure of linear independence of
F1(s), . . . , Fm(s). Our results solve the problem for n = 2.

Proof of the Theorem. The proof is based on the properties of the nonlinear twists

Fλ(s, α) =
∞∑

n=1

aF (n)

ns
e(−αnλ) ,

with 0 < λ ≤ 1/dF and α > 0, of the functions F ∈ S�. Namely, Fλ(s, α) is an entire
function for every α if 0 < λ < 1/dF , while if λ = 1/dF it has a simple pole s0 on the line
σ = 1/2 + 1/2dF for the α’s such that nα = qFd

−dF

F αdF is an integer with aF (nα) �= 0 (if

nα is not an integer we let aF (nα) = 0). Here qF = (2π)dF Q2 ∏r
j=1 λ

2λj

j is the conductor
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of F(s), and the value of the residue at s0 is c(F )aF (nα) with c(F ) �= 0. For a sketch
of proof of the first assertion we refer to the remark after the proof of Lemma 4.1 in [5].
We will treat the general case of nonlinear twists of a given F ∈ S� with leading exponent
λ ≤ 1/dF in a future paper. For the second assertion we refer to Theorem 1 of [5].

Suppose first that 0 < dG < dF (or, analogously, 0 < dF < dG), which is the simpler
case, and consider the twist

L(s, α, F − G) =
∞∑

n=1

aF (n) − aG(n)

ns
e(−αn1/dF ) .

By the above results we have, choosing α appropriately, that L(s, α, F − G) has a simple
pole on the line σ = 1/2 + 1/2dF . Hence the abscissa of absolute convergence σa(L) of
L(s, α, F − G) satisfies

σa(L) ≥ 1

2
+ 1

2dF

= 1

2
+ 1

2
min

(
1

dF

,
1

dG

)
.

Recalling the definition of A given above, the Theorem in this case follows then from the
following

LEMMA 2. Let f ∈ A. Then

δ(f ) = max(0, σa(f )) .

Proof. This is Lemma 3 in Kaczorowski [2]. �
Now we turn to the more delicate case of dF = dG, and prove that also in this case the

twist L(s, α, F − G) has a pole on the line σ = 1/2 + 1/2dF for a suitable α > 0. The
Theorem will then follow by the same argument as before.

Writing d = dF = dG > 0, we may consider without loss of generality only the point
s = 1/2 + 1/2d . Suppose, by contradiction, that

0 = r(α) = ress=1/2+1/2dL(s, α, F − G)

= ress=1/2+1/2dF1/d(s, α) − ress=1/2+1/2dG1/d(s, α)

for every α > 0 and choose α = αn = dq
−1/d
F n1/d with any integer n ≥ 1. Therefore

r(αn) = c(F )aF (n) − c(G)aG(qGn/qF )

and hence
aF (n) = γ aG(qGn/qF ) γ �= 0 . (3)

This implies that qG/qF ∈ Q, otherwise aF (n) = 0 for every n, a contradiction. We write

qG/qF = a/q (a, q) = 1, a, q ∈ N . (4)

Hence from (3) we get that
aF (n) �= 0 ⇒ q|n , (5)

and reversing the roles of F(s) and G(s) we also get

aG(n) �= 0 ⇒ a|n . (6)

From (3) we further deduce that for every n ∈ N

aF (qn) = γ aG(an) .
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Thus, writing

H(s) =
∞∑

n=1

aF (qn)

ns
= γ

∞∑
n=1

aG(an)

ns
, (7)

from (5) and (6) we deduce that

H(s) = qsF (s) = γ asG(s) . (8)

Since F(s) satisfies a functional equation of type (1), thanks to (8) the function H(s)

satisfies

(Q/q)s
r∏

j=1

Γ (λj s + µj )H(s) = ω(Q/q)1−s

r∏
j=1

Γ (λj (1 − s) + µ̄j )H̄ (1 − s)

and hence its conductor qH equals qF /q2. Similarly, we may use (8) and the functional
equation of G(s) to compute the conductor of H(s), thus getting qH = qG/a2. Recalling
that the conductor is an invariant we deduce

qG/qF = (a/q)2 . (9)

Comparing (4) and (9) we conclude that a = q = 1 and therefore by (8)

F(s) = γG(s) .

But then
L(s, α, F − G) = (1 − γ )F1/d(s, α)

which has no poles only if γ = 1. Hence F(s) = G(s) and the result follows. �
Proof of Lemma 1. Let q0 = p

k0
0 be a prime power such that f (q0) �= g(q0). Then

for the integers m ≥ 1 such that p0 � m we have

f (q0m) − g(q0m) = f (q0)(f (m) − g(m)) + g(m)(f (q0) − g(q0)) ,

hence
|g(m)| � |f (m) − g(m)| + |f (q0m) − g(q0m)|

and consequently ∑
m≤x
p0�m

|g(m)| �
∑

m≤q0x

|f (m) − g(m)| � xθ+ε . (10)

But ∑
n≤x

|g(n)| =
∑

0≤k≤[ log x
log p0

]
|g(pk

0)|
∑

m≤x/pk
0

p0�m

|g(m)| � xε
∑
m≤x
p0�m

|g(m)| , (11)

hence from (10) and (11) we obtain∑
n≤x

|g(n)| ≤ xθ+ε .

Analogously we have that ∑
n≤x

|f (n)| ≤ xθ+ε ,
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and the lemma follows. �
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