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SOME IDENTITIES ON THE BERNSTEIN AND
¢-GENOCCHI POLYNOMIALS

Hyun-MEE KiMm

ABSTRACT. Recently, T. Kim has introduced and analysed the g-Euler
polynomials (see [3, 14, 35, 37]). By the same motivation, we will con-
sider some interesting properties of the g-Genocchi polynomials. Further,
we give some formulae on the Bernstein and ¢-Genocchi polynomials by
using p-adic integral on Z;,. From these relationships, we establish some
interesting identities.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, Z,, Q, and
C, will denote the ring of p-adic rational integers, the field of p-adic rational
numbers, and the completion of algebraic closure of Q,, respectively. Let N be
the set of natural numbers and N* = N U {0}. The p-adic norm is normally
defined by |p|, = 1/p. As an indeterminate, we assume that ¢ € C, with
|1 —q|p, <1 (see [1-43]). Let UD(Z,) be the space of uniformly differentiable
functions on Z,,. For f € UD(Z,), the fermionic p-adic integral on Z, is defined
by T. Kim as follows:

I(f) = / F(@)dps (x)
(1) = lim Z f@)p-1(z +p"Zp)

0<z<pnr—1

(z)(=1)*, (see [1, 21, 22, 25]).
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From (1), we can derive the following integral equation on Zy:

(2) I_1(f1) = —1-1(f) + 2£(0),
where fi(x) = f(z+ 1) (see [1, 21, 22, 25]) .
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As is well known, the Genocchi polynomials are defined by the generating
function as follows:

(3) 2t

et +1

S m
ezt — eG(z)t — E Gn(x)_V
n.

n=0

with the usual convention about replacing G™(z) by G,,(z) . Taking = = 0 into
(3), we get G, (0) = G, is called the n-th Genocchi number (see [1-4, 11, 12,
20, 24, 28, 33, 34]). From (3), we have the following recurrence relations of
Genocchi numbers as follows:

(4) GO =0 and (G + 1)” + Gn = 2511»”,

where 1 ,, is the Kronecker symbol and n € N* (see [2, 28, 36]).
As is well known, the Frobenius-Euler polynomials, H,(u|z), are defined by
the generating function as follows:

"t = ZHn(u|:E)
n=0

t’n

n!’

1—u

(5) ueC, with u#1 (see [6, 16, 25, 32, 39]).

et —u

In the special case, z = 0, H, (u|0) = H,(u) is called the n-th Frobenius-Euler
number (see [6, 16, 25, 32, 39]). For n,k € N* with n > k and = € Z,, the
Bernstein polynomials of degree n is defined by

©) Bunlo) = )at -yt = (" )@ -0t = Byl -a)

(see [19, 32, 33, 35, 37]).

In this paper, we investigate some identities for the g-Genocchi numbers
and polynomials by using p-adic integral on Z,. From these relationships, we
establish some interesting identities in the next section.

2. Some identities on the Bernstein and g-Genocchi polynomials

In this section, we assume that ¢ € C, with |1 — ¢|, < 1. As is well known,
the g-Genocchi polynomials are defined by the generating function as follows:

2 > tm
DY Gnql(®)
n=0 :

get +1
with the usual convention about replacing Gy (z) by G, 4(z). In the special
case, = 0, then we have G, 4(0) = Gy, 4 is called the n-th g-Genocchi number
(see [1, 4, 11, 20, 24, 33, 34]). From (7), we have the following recurrence
relations of ¢g-Genocchi numbers as follows:

(8) Goqg=0 and ¢(Gq+1)"+Gpqg =200

(7)

From (8), we easily see that

2 . 22
W, ;l_}H% Glﬁq = Gl, and Gqu = 7_(]
q

9 Giq= 27
Y | 2,
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where [z], = 11:‘1; and z € Z, . By the definition of ¢g-Genocchi numbers, we
note that

n

(10) Grglz) =" <7> G g2~

1=0
From (8), we get

(11) @Gy +1)" + Gpg = qGrg(1) + Grg = 261 1.
From (10) and (11), we have
4Gnq(2) = q(Gq+2)" = q(Gg+ 1+ 1)"

(12) :qzn:(g‘) Gy + 1) qZ( )Gl,q
=0

By (11) and (12), we can derive the following equation:

Gnqg(2) = (G +2)" = *(Gy + 1+ 1)"

- (o 1/ (o

1=0

S5 Gt so[ o]

~ n
= —qz <Z>Gl1q +ng(2 — Gi,q)

=2

" (n
fqz <Z>Gl’q +2ng = —q(Gq +1)" + 2ng

1=0
= —qGpq¢(1) +2ng = =201, + Gn g + 2ng.
From (13), we have the following theorem.
Theorem 1. Forn € N*, we have
q2Gn,q(2) = Gn,q + 2ng — 201 5.
Corollary 2. Forn € N with n > 2, we have
QQGnyq(Q) = Gn,q+2nq.
By (7) and (8), we can derive the following equation:

[eS) m [eS) Gn+1 gt
14 =) Gpgl = Gnqg— = s
(14) qet—i—l Z al ; ) 7;0 n+1 nl

Also, we note that

2t 2t 1+¢7 'Y\ .+ 2 — gy
15) ——e"' = = = NH, (—¢Y) —,
(1%) gel +1° (1+q) (et+q1)e [2],;7;) (=a7) n!




1292 HYUN-MEE KIM
where H,, (fq’l) are the n-th Frobenius-Euler number.
Thus, by (14) and (15), we have

Gritg 2 .
16 4 2 (g,
(16) nt+1l 2, (=a7)

Therefore, by (16), we obtain the following proposition.

Proposition 3. For n € N*, we have

Gritg 2

n+1l EH" (a7

where H,(—q~ ') are the n-th Frobenius-Euler number.
Let us take f(z) = ¢%e®'. Then, by (2), we get

G "
x xt _ n+1,q
(17) /Z g“etdp_q(x) = g il nl

P n=0

From Proposition 3 and (17), we have the following theorem.

Theorem 4. For n € N*, we have

Gni1g 2 .
) _ _ Zntlaq _Hn _ .

n
l)x /qydul
) G

By (2), (7), and (17), we have
(
> ()
5

/z ¢ (r +y)"du-1(y) =
n ntl— lGl,q
11):”

l
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~
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(18) =1
n+1

n+1\ .
n+1z< l >z ey

=1
1 n+1

n+1\ ,11_
:n+1z( l )w +1 lGl,q

=0

—_

1
n—HGnJqu(SC).

From (18), we obtain the following theorem.

Theorem 5. For n € N*, we have

[ @ 0 ) = g Ganale) = Bt ).
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Now, we consider the symmetric property for the g-Genocchi polynomials
as follows:

> tn - 2qt (17z)t
q;c;nyqu )= e
S
1 + q—le—t
(19) - (
—t)"
= 77;0(;71,1171 (1') n'

=3 Gy (o) (1)1 L
n=0

n!

From (19), we get

q>  Gng(l- 7)== > G (@)(-1) HE'
n=0 n=0

Therefore, we have the following theorem.

Theorem 6. For n € N*, we have
gGn (1 —1z) = (—1)”+1Gn7q71(x).

For n € N* with n > 2, by Theorems 4, 5, 6, and Corollary 2, we have

/

(1 — 2)" Ny () = (~1)7 / (@ — )" dp_ ()

P ZP

_ (71)7171 Gn,q;; (_1)
_Goa® _ 1

(Gn,q + 2n4).
n ng

1
— (G, 2
nq( ,q +2nq)

1G,
=9 49

qg n

1 z, n—1

- ¢ 2" du—q(z) + 2.

q.Jz

P

Therefore, by (20), we have the following theorem.

Theorem 7. Forn € N* with n > 2, we have

/Z ¢ (1 —2)" tdu_1(z) = l/ ¢ " rdp_ () + 2.

P ZP
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Now, let n, k € N* with n > k. Then, by (6) and Theorem 5, we see that

1= / Bn(®)q"dp1 ()

:/Z <Z>xk(1—x)"kqmdu—1($)

yy

(21) _ (Z) nz% <” ; k) (—1)”7'“71/Z gt dp_y (x)

=0 P

n—k
n n—k k1 Gkt
— -1 n—k—l1 »q .
(k) ; < l ) (=1) l+k+1
From the same method, we have

I= [ Basnll= o) dpa(z)
7

P

= [ (") a- ot

P

(22) ( ! k) li: ( ) )k l/zp(l — )" g dpu_(z)

-(3) i () [ 5 q_lw"_ldu—l(w)]
-(B (e ety

Thus, by (21) and (22), we obtain the following theorem.

|

Theorem 8. For n,k € N* with n > k, we have

n—~k k
n—k i1 Gkt k _ Grit1,4-1
_1nkl ++1q: _1kl 2 +1,q9 .
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