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SOME IDENTITIES FOR BERNOULLI POLYNOMIALS
INVOLVING CHEBYSHEV POLYNOMIALS

DAE SAN KIM, TAEKYUN KIM AND SANG-HUN LEE

ABSTRACT. In this paper we derive some new and interesting identities for
Bernoulli, Euler and Hermite polynomials associated with Chebyshev polyno-
mials.

1. INTRODUCTION

The Bernoulli number are defined by the generating function to be

o0

t _ Bt __ B”L n
(1) pra il ;Ht ,  (see [3,13,14]),

with the usual convention about replacing B™ by B,.
As is well known, the Bernoulli polynomials are given by

(2) Bu(z)=(B+a)" =) (7) B, ', (see [1-8]).

1=0
From (1), we note that the recurrence relation for the Bernoulli numbers is given
by
By=1, (B+1)"—-B, =01, (sce[6-8]),

where d,, ,, is the Kronecker symbol.
By (2), we get

n—1
B, -1
(3) da'l—b(x) = nz (n ; >B,,L11xl =nB,_1(z).
* 1=0
Thus, by (3), we see that
(4) / By (z)dx = T’;ﬁ (1 @) C, (see [3]),

where C' is a some constant.
The Euler polynomials are defined by the generating function to be

2 Tt E(J,)t trb
(5) et + 1 e % En ' ’

with the usual convention about replacing E™(x) by E,(z), (see [1,2,4,10,11]).
In the special case, x = 0, E,(0) = E,, are called the n-th Euler numbers.
1
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It is well known [6,15] that Hermite polynomials are given by the generating
function to be

2at—t? _ _H(x)t _ S t_n
(6) e =e = Z H,(z) o

n=0
with the usual convention about replacing H"(x) by H,(z).
From (6),we have

(7) dHé—;;(x) — H,y 1 (x), Ha(z) = (—1)" Hy(—2).
By (1) and (2), we easily get
® Ba@) = 32 () B, (oo 115D,
kA1
n n El L
(9) Erb(-r) = _22 <Z>H_+1Erbl(-r)»
and
. ; . B e 1 " /n+1 -
(10) . _n—i-l(B”'H( +1) = Bua( ))_n—i-l;( l >Bl( -

The Chebyshev polynomial T, (x) of the first kind is a polynomial in x of degree n,
defined by the relation

(11) T,(x) =cosnf, when z =cosf, (see[9]).

If the range of the variable z is the interval [—1,1], then the range of the cor-
responding variable € can be taken as [0,7]. It is known that cosné is a poly-
nomial of degree n in cosf, and indeed we are familiar with elementary formulas
cos 30 = 4cos®  — 3 cosf, cosdf = 8cos*# —8cos2B@+1, ---

Thus, by (11), we get

To(x) =1, Ty(x)==m Ty(z)=22%>-1, Ty(x)=42>— 3z,
Ty(r) =8x* —8x? +1,---

The Chebyshev polynomial U, (z) of the second kind is a polynomial of degree n
in x defined by

(12) Un(z) =sin(n+1)8/sinf, when x =cosf, (see [9]).
Thus, from (12), we have
Us(z) =1, Ui(x) =2z, Us(z)=42>—1, Us(x)=28z>—4da, .

By (11), we see that T;,(x) is a polynomial of degree n with integral coefficients
and the leading coefficient 27! (n > 1) and 1 (n = 0). It is not difficult to show
that Uy, (z) is a polynomial of degree n with integral coefﬁcients and the leading
coefficient 2™ (n > 0). ,L( ) is a solution of (1 — 2?)y” — zy’ + n’y = 0 and U, (z)
is a solution of (1 — 22)y” — 32y’ + n(n + 2)y = 0. It is well known [9] that the
generating functions of T, (x) and U, (z) are given by

1—xt
Tn trb
(13) 1—2xt+ 1—2xt+12 nz%
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and

1 = ,
n=0

From (11) and (12), we have

1 0, ifn#m
(15) /Mdmz 5, ifn=m>0,
-1 Vi-z m, ifn=m=0
and
1
(16) /(1—x2)1/2un(x)um(x)dx=gan,m, (see [9]).
1

The equations (15) and (16) are used to derive our main result in this paper.
The Rodrigues’ formulae for T),(z) and U, (x) are known as follows:

(17) T,(x) = %(1 _ x2)1/2 (jr_nn(l . x2)"1/2>,
and
(18) Un(-r) = %(1 _ x2)71/2 (%(1 i x2)n+1/2>-

The equations (17) and (18) are also used to derive our result related to orthogo-
nality of Chebyshev polynomials.
From (11) and (12), we can easily derive the following equations (19) and (20):

(e 4 V)" + (2 = V)"

(19) S : |
and
(20) Un(x) _ (13 + \/ﬁ)n-‘rl . (x _ m)n_H-

V2 —1

By the definitions of T),(z) and U, (x), we easily get

From (21), we have
(22) /Un(.r)d.r = %l(lx)’ /Tn(-f)d.r _ nzg+:(f) B x:’:(‘?

In this paper we derive some new and interesting identities for Bernoulli, Euler and
Hermite polynomials arising from the orthogonality of the Chebyshev polynomials
for the inner product space with weighted inner product.
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2. SOME IDENTITIES FOR BERNOULLI, EULER AND HERMITE POLYNOMIALS
INVOLVING CHEBYSHEV POLYNOMIALS
Let P, = {p(x) € Q[z] | deg p(z) < n}. Then P,, is an inner product space with
the weighted inner product

o), o) = [ Z%d% where p(x),q(z) € P,

From (15), we note that {Ty(z),T1(z), - - ,T(x)} is an orthogonal basis for P,,.
Let us assume p(z) € P,,. Then p(x) is generated by {Ty(x),T1(z), -+ ,Tn(z)} to
be
n
(23) pla) = CpTi().
k=0

By (15) and (23), we get

. O ! Ty (x)p(z) N O (_1)k2kk! Lodk 2\k—1/2
oy T E o= e [ (@0
1, ifk=0
where 0, = { 2. ifk>0.

Let us take p(xz) = 2™ € P,,. From (24), we have

(_1)k2kk!5k /1 d 2\k—1/2 .
= _— 1 — n
25) = —mmr ) \art ) v
—1)k2kk! n! 1 12 e
- 7r()2k;)! (D /1(1 -
It is easy to show that
(26)

1
/ (1 _ x2)k71/2xnfkdx _

—1

1+ (-1 n—k 1 - n—k+1
( (2 ) )/ (l—y)k 1/2y 5 ldy
0

(1+ (=1)"*) Tk + 1/2)0(2=F+L)

1+ (=)™ %) (n—k)(2k)x

2 F( k+g+2)

By (25) and (26), we get
(27)
From (27), we note that

(28) = ; CrTi(@) =

where n =1 (mod 2).
For n =0 (mod 2), we have

0,
Ck = nldy
2 (N

n

2 IR

ifn—k=1 (mod 2)
ifn—k=0 (mod 2).

— "
1<k<n (nT)'(nT)|
k=1 (mod 2)

n_ nl ] Ty(x) Ti(x)
29 ’ _2_"{<<%>!>2+2k (Z ﬁ%!(%!}'
=0 (mod 2
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Let us take p(x) = B, (x) € P,,. Then
_(=1)k2kELG, /1 d k. ovke1/2
Crp = 2R B (dx) (1—27) B, (z)dz

—1)kok n! !
(30) - 1)(22k)17!6k (-1)" (n —'k)! /,1(1 — )2 B, y(x)da

2kk'6k n! ! k—1/2,1
7’],— |Z< > nk,l/il(l—li) d.l?

Now, we compute f71(1 — )12l gy

[ a1t = 1) [t
0

—1

(31) 0, ifl=1 (mod 2)
= 1(2k)!w . _
m, 1fl:0(m0d 2)

By (30) and (31), we get

_ 2FElG, n! (2k)!m n—k !
Ce= 2o X ok ¢ A 2. ( l )B‘”’”W

l
0<l<n—k N2
=0 (mod 2)

n!oy, 3 (" ") Byl

2H(n — k)t 0<i<n—k 2(ZEI(H)!
=0 (mod 2)

Therefore, by (32), we obtain the following theorem.
Theorem 2.1. For n € Z,, we have
O (" F) B!
Bl =t 2 <2k<n—k>! Ay )

0<k<n 0<l<n—k 2
=0

l (mod 2)

By the same method, we can derive the following identity:

5 (" FYEn gl
En(.f) = n' Zn <2k(n—k_k)' O<gik m) Tk (-r)
N 1=0 (mod 2)

Let us take p(z) = H,(z) € P,,. From (24), we have
(—1)F2" k16, /1 d* 2\k—1/2
= ek 21— H,
Ci e ), a7 (z)dz

—1)kok n! 1
22kpls !l S ik e k1/2,0
—_° MURT H,_ 12 (1- ) dx,
(2k;)!(n—k;)!7r;< ! ) ! /71

where H,,_j_; is the (n — k — [)th Hermite number.
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By (31) and (33), we get

Hy
Ck = n'ék Z n i .
ooty =k =DIEEE(S)!
=0 (mod 2)

(34)

Therefore, by (34), we obtain the following theorem.

Theorem 2.2. Forn € Z,, we have

H, )
oo 2 (0 % it o

0<k<n ocicn—r (M
1=0 (mod 2)

Let P; = {p(x) € Q[z] | deg p(x) n} Then P} is an inner product space with
the weighted inner product ( ), q(x) f V1 —a?p(x)q(x)dx, where p(z),q(x) €
P, . Then {Uy(x),U1(z),- - (x)} is an orthogonal basis for the inner product
space P},

For p(x) € P}, let
n
(35) pla) = CrUk(z)
k=0
where

T™J-

-1 k2k+1 k ! 1 dk , 12
)(2k+1()!: : /1<@(1—$ ey )p(x)dx-

Let us assume that p(z) = 2™ € P},. Then, by (36), we get

(DR R+ ) gt d 2k+1/2 \
R Y /,1 ) vde

Co=2(p(a). U@) = 2 [ (1=a®) 20 @p(o)da
(36) (

(37) (—1)F226+1 (K + 1)1 (=1)kn!

1
— 1— 2\k+1/2 n—k .
2kt Dl (n—k;)!/l( T e e

It is easy to show that

(38)
1 1
/ (1 — 2?)F 1 2gn ke — (14 (—1)"7’“)/ (1 — 2?1/ 2gn kg
1 0
0, ifn—k=1 (mod 2)
= n—k)!(2k T . _
2n+k+2((r;+2kz_g2)!(-é—)k)!(k+1)!, lf n — k = 0 (mOd 2)

Therefore, by (37) and (38), we obtain the following proposition.

Proposition 2.3. Forn € Z, we have

) n! k+1
= — ka(x).
7 R
k=n (mod 2)
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Let us consider p(x) = By, (z) € P;,. From (36), we have

—1)F2k+ (k1) [t/ dF o b1 /2

_1)kok+1 1kt 1
I T T AR A S

26+ (k4 1)! nl WX <n - k;) !
_ > B. 7]@7[/ 1— k+1/2 ldx
(2k + Dln (n—k)! lz:; l " ,1( z’)
It is not difficult to show that

/1 (- )k+1/2 ldx—( +(_1)l)/1(1 )k+1/2 Ldx
0

—1

1) 0, if 1=1 (mod 2)
= (2k+2)!llx o
oZhr 2l (LT ()11 if l=0 (mOd 2).

By (39) and (40), we get

(k + l)n' Bn—kfl
Cp=— 2" |
2 ogg,k (n —k — )12 (221 (L)1

1=0 (mod 2)

(41)

Therefore, by (41), we obtain the following theorem.
Theorem 2.4. For n € Z,, we have

k+1 Bk
Bu(z)=n! 3. (Ti > 2z<n—k—z>!<k2’“l+;“>'<%>)U'“()

0<k<n 0<l<n—k
=0 (mod 2)

By the same method, we can derive the following identity:

k41 o
En(z)=nl »_ (2% > 2l(n_k_l)!(kaliniQ)!(é)!>Uk(-ﬁ).

0<k<n 0<l<n—k
=0 (mod 2)

Let us take p(z) = H,(x) € P;. Then H,(x) = >__, CkUx(z), with

_1\kok+1 1 k
o = 1)(Qi+1(;:1)!/ <%(1x2)k+1/g>Hn(x)dx

22k+1(k+ 1 |n| n—k l 1 1
_ /2l
(42) (2k—|— 1 '7T n_ ' Z ( > ankfl/il(l ) dx

ankfl 1

=nl(k+1) E X :

0<i<n—k (n—k =Dl (352)1(3)!
=0 (mod 2)

Thus, by (42) and (43), we get

Hn(-r):n! Z ((k+1) Z _k [l{)r:(;-&-ll-&-Q)'(%) )Uk( )

0<k<n 0<l<n—k (n
1=0 (mod 2)
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