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NTRODUCTION

The main goal of this paper is to nse wumbral calenlus to obtain several new and interesting
identities of Sheffer polynomials. Umbral calculus has been used in numerons problems of
applicd mathematics, theoretical physics, approximation theory. and several diverse arcas
of mathematics, like analysis, combinatorics, statistics and topology. Di Buechianico and
Loch? present more than five hundred old and new findings related to the study of Sheffer
polynomial sequences. For example, applications of umbral caleulus to the physics of gases
can he Tound 0™ and wmbral techniques have been used in group theory and quantiom
mechanics by Biedenharn et al.™0. Other instances of the relation hetween nmbral calenlus

and physics can he found in (sce also the references therein), where Geyl linked nmbral

calenlus (o the Hamiltonian approach in physics and quantum mechanies, and in***", where
Morikawa presented application for mbral caleulus in statistical physics. Umbral calenlus,
in particular Sheffer sequences, has also been applied to the normal ordering of expressions
involving bosonic creation and annihilation operators™.

In this paper, wmbral caleulus is considercd for some special Sheffer polynomials (to be
defined in Section I1) such as Frobenius-Fuler polynomials, Bernoulli polynomials. Changhee
polynomials, Dachee polynomials and Bessel polynomials.

Thronghout this paper, we assume that A € € with A # 1. For o € R, the Frobenius-Euler

polynomials are defined by the generating function

1-A " Jrh ()t s " (
<7_A> e =" HY (X, (1)

) n=0

see! 1022y iy the special case @ = 0, H,(,"\"(()‘)\‘ = I'ly(,"\') M) are called the n-th Frobenius-
I : (OfA)
Fuler numbers of order a. Writing the left-hand side of (1) as a product of a series in /
2 { I
{involving HEY(A)), that represents the left factor, and a power series of the exponential
function (that represents the right factor), and comparing with the right-hand side of (1),
we get
/n
HY ) =3 ( /.;) HS, (k. (2)
e=()
The Bernoulli polynomials of order o are defined by the generating function
pory ;
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(see®™ 209 and the Fuler polynomials of order o are given hy
5 o o 4
. 2 E,,(,"”(,’)‘)—-., “)
et +1 n!
nz0

(seet). The Changhee polynomials of the sceond kind are defined by the generating function

(1) o
—_— Cly (| A)—. 5
T A1) ,Z:’ (g ®
where [\ < 1 (see®™™). The Dachee polynomials are given by
L=AHil+2) (1Y #
e e = Dp(x|\)— G
TSN (14> 2 WA ®)

V. The Poisson-Charlier sequence is given by

Culwsa) =) (/) (0" (@ ~ (Y afe! 1)) , (7)

h=0

(for the notation ~ see the next section) where a # 0, n ¢ Z, = NU {0} and (1)), =

ale — 1) (o —k+ 1) 1t follows that

(sec?2LA0A0 T from (7)) and (8), we derive the generating function of Poisson-Charlier

polynomials:

(9)

9

(s0e? L3080 S Wa ghall also need a solution of the Bessel differential equation
w2+ Dy ol + Dy =0

given by
" )
4 (n+ k) rank )
Yplx) = —_— <—,— . 10)
i) Z(w E)E! 2) (
E=0 ’
The aim of the present paper is to deduce some new identitics hetween some particular

cla of Sheffer polynomials by using umbral caleulus techniques. Move precisely, for two

en sequences of Sheffer polynomials { R, () },>0 and {S,(a}},20. we are interested in
finding constants ¢, ;. such that

T

Bultr) =Y CupRile] (11)

F—0
holds for all o ¢ My, In this context, such an identity will he called the (S,; R, ) ~identity
and the ¢, will be called conmection constants. The most famons example of such an
(Sy; Ry )-identity is connected to Sa(n, k), the Stirling munbers of the second kind. The
deseription given by James Stirling on how to compute these values makes it clear that he
did not use the recirrence relation of the Stirling mumbers of the second kind which Saka
obtained in 1782, To read more about how James Stivling used the falling polynomials for

ferentialis

accelerating the convergence of series, see the English translation of Methodus Di

with annotations by Tweedle™. Despite Stirling’s carlier discovery of the values of Stirling
numbers of the sccond kind, Saka deserves credit for being the first one to associate a
combinatorial meaning to these values, which are now named after James Stirling.  James
Stirling showed

2" = Sa(n, k) (12)

k=1

which is the (" (), )-identity. Identity (12) has been considered, extended and generalized

by many rescarchers (see™ ). For instance, in’ (see also®), Identity (12) has heen presented
as normal ordering of the operator (X D) (here X and 1) are defined as (Xp)(s) = apla)
and (Dp)(x) = :;—l/)(ﬂ' for any formal power series pla)):

(XD)" =Y Sa(n, k) XD, (scc” (Ba. (25))).
b=

Note that to intepret (12} in a divect fashion as a relation for normal ordering operators. one

sets o = XD and nses the velation (X D) = XD(XD —1)(XD—-2) - - (XD —k+1) = X*DF

alrcady known to George Boole in the 1860s. In the present paper, we briefly consider a few

vzl

related consecuences of (115 for normal ordering, see, e.g., Theorem V.1,
The ain of the present, paper is to present several new (9,; Ry, )-identities by the nse of

notation

umbral calculus. At first, in the next section, we present the necessary definitions

)
and results from umbral algebra and wnbral calenlus. Then, in Section 3, we present several

(Sy; Ry, -identitios where S, and R, are related to the above polynomials. Finally, in Section



L. we establish o connection hetween oy (8,: B, -identitics and the problem of normal

ordering.

IT. UMBRAL CALCULUS

Let IT be the algebra of polynomials in a single variable 2= over € and let II* be the veetor
space of all linear functionals on I1. The action of a linear functional L on a polynomial

play is denoted by (Lip(2)), and the vector space structure on 1T* is defined by
{eL+ ¢ Upla)) = o(LIp(a)) + (L p(r)),

where ¢, ¢ are any fwo complex constants (see?253035) o H denote the algebra of formal
power series ina single variable £
‘ ‘ s _ )
A= {f(_/») =% gy |lapeC}. (13)
k20

The formal power serics in the variable ¢ define a linear functional on 11 by setting
(f(D)]2") = a, for all m >0, (sce?-2L3031) (1)
By (13} and (11), we casily got
{2y = 0o, 1, for all n,k > 0, (secP2livaty (15)

where 9, ;. is the Kronecker’'s symbol.

Let fro(t) = Z,‘_;“(I.‘[.r"')—;—,‘;‘ From (15), we have (fy(f)[+") = (L"), So. the map
L= [r(t) is a vector space isomorphism from TT* onto H. Henceforth, H is thonght of as
set of hoth formal power sevies and lnear functionals. We call H the wmibral algebra. The
umbral calculus is the study of umbral algebra.

The order O(f(1)) of the non-zero power serics f(#) is the smallest integer & for which the
coefficient of " does not. vanish (sec?™2L3030) If O f(1)) = 1 (respectively, O(f(£)) = 0),

then f(1) is called a delta (vespectively, an invertable) serics.

Suppose that O(f(£)) = 1 and O(g(#)) = 0. then there exists a unique sequence Salit) of

polynomials such that (g(£)( f(£)¥|S,.(2)) = nid, . where n ke > 0. The sequence S, (1)
is called the Sheffer sequence for (g(t), f(1)) which is denoted by Sp(x) ~ (g(t), fF(#))

(H(\(‘Q')'ﬁ 1,30,31 )

S5

For f(t) € H and p(x) € 11, we have

() = ply). Bl = (GO Ope), (16)
and
3 b Bt o B -
(0 =3 U@l ple) =3 p) 77 (17)
10 20
(8ec™2L3080) - Erom (17), we derive
(Flp)) = M),  (Up®(2)) = pM(0), (18)
where p#{0) denotes the k-th derivative of p(r) with respect to - ab 2 = 0. Thus, hy (18),
we have
tp(a) = p(a) = & (1), for all k > 0, (sce? 2220 31 (19)
plx) = p(x) = ;7,—1/1 ! all >0, (s : {
Let Sy{a) ~ (g(£), f(£)). Then we have
! o) Zs,,(,,)i, (20)
= ) |
for all y € C, where f(#) is the compositional inverse of f{1) (see20 2229 31y

For S, (a:) ~ (g(#). f(1)) and B, (a) ~ (h(t), ((£)). let

Salz) = easBile), (21)

k=)

then we have
e = <M(’”( “'(f>>’)"'\-r“> ., (22)

{see® L33 P he equations (21) and (22) are important to derive onr main vesults in this
paper.
IIT.  TDENTITIES AND SHEFFER SEQUENCES OF POLYNOMIALS

In this scction, we present several (S,; R, )-identitics based on (22), where {R,, b and

{5, bazo are two sequences of Sheffer polynomials.
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A. Bessel function

The solution of the Bessel differential equation o) is called Bessel function. 1t is well

known that

4,_77‘[/7,71(1/’:1.') Ao (1" f - f“’/;’)., (S(.(\J%U,(H). <23)‘)

By (20) and (23), we gt ZI‘- " vi'}”fll,-_l(l/-r‘)% = U)oy 4 A (1) and 2™y, _, (1) vo

(1Lt —2/2), lot

n

7" z(‘”./,»-'"}"!//c (/). {21)
k=0
Then, by (22). we have
] 2 je s 1 I 4
Coe H((/#-,/Z)"\;r Y = 77( —£/2)¥| 2"
y n\ 22X ¢
T ) /)/\ n—k :771/‘-(> ~ 'k
()46 - 212 = (-1 WhI
= f(’(f’-") )
B / i\ iz 0 :
=8
0y ek n—k
— (/)Z y/v_(/»;z)< . ’)( Syt
=0

where Cy.(4:2) is the Poisson-Charlier polynomial. Thevefore, hy (21). we obtain the follow-

ing result.

Theorem TIT.1 Forn > 0,

n —k

- Z (£ 2) <A> (‘”; A")"‘}‘.!/l,»—l'\/]/"'>'

For an arbitrary b € R, the Abel polynomials form a polynomial sequence, the n-th term

of whicliis given by A, (4;b) = a(a — bn)"' ~ (1, {2, (502180813 T g
n
o ﬁr,,';‘.A/,.(.z': hy. (25)
=0
Then, by using that 2 ~ (1,#), (16) and (22), we obtain

| 1 i S i 1. o
T 1 <(/(w>/ ‘]7/> . _/__(/1 In/‘ '7r> . (/) <(‘/l>/‘.,_n—/,> - (/)(!}/ﬁ)” I“

Therefore, by (25), we can state the following result.

=1

Theorem TI1.2 forn > 1.
o Z (/”) Erhph (g _ pryEL,

B. Laguerre polynomial

Laguerre polynomials are defined by

) ol fn—1 - t Y
=320 ) 1)
=1

Let

n

ah = Z(‘”'/"LI"“;.}'

k=0

Then, by using that o ~ (1,1), (16) and (22), we obtain

1 EN D\ D R -1,
G = A—’ <(7_—l> 1.« > = '—}'}v! ZU( ¢ > " >
; f 1 55 [ ot
CES (1 o= o () (1))

Thercfore, by (26), we can state the following result.

Theorem IT1.3 Forn > 0.

C.  Bernoulli polynomial

Consider P, () ~ <('f—7|> J), € R, then by (3) and (20) we get

1

oo -
,Z 7:—./,—1),-“ ZB W

k>0

Hence, P,(x) = B (x) ~ (( __') f) Let

n

B = 3 o (1),

k=0

(26)



Then, by (16), {22} and (23). we obtain

1 £ N LW e DA TR ) T
Co ke 1 <(~———[) (£ — /‘/'_’)’\‘.’r//) - \T <f/‘ = / “;I(’ )(".)>
(‘l; ) /(t— 5
/f! < B) u)n——l( ‘ >

n—k

q ’_l
(4’;"‘(',{) }:(’(( 2 1B (x — 1))
"= '
=l
1 —k
“/(1>Z(M( ))< ¢ )I‘BHI)I /( - [)>
*/ =0

n—k

—k ,
= { </) N o 2\(“ . )li,‘,’f,“ (-1}
“/ =0

Therefore, by (27), we can state the following vesult.

Theorem 1T1.4 Florn > ().

noon—k

—k ;
Bm 9 ZZ =1 ( )( 4 >( (6 JB:/I b Dy (1)
k=0 (=0
D.  Changhee polynomial

Consider Q, () ~ (14 X', ! — 1), then by (5) and (20) we get

Y Qi) = £ Z(/ V%
S B I v ) w7

k=0
Henee, Qu(2) = Chy (] A) ~ (L+ et ¢! —1). Let
" =3 el ). (28)
=0
Then, by using the fact that 2" ~ (1, 1), (16) and (22), we obtain
1 1+ A " A : ,
= g0+ 266 = 1y = LER et apepany 4 ey,
Using the fact that &0 71 =3 >0 ((:H/} ,I)l’ ". where Sy(im. k) is the Stirling number of the
sccond kind, we «)I)mm
Soll 4k k) oinr o So(l+h+1,k+1), 0 i
P e (T AN 1) S 2R T T
Gt = {1 “/Zj Er L ),‘; sy G
ok g T - \
/+/. i . So(b+E+1.E+1), ..,
= P Lty A+ 1) 3 2R LERD) ey
"\’; G o /Z) sy ")

= (L+ N)Saln, kY + Ak + 1)So(n, k -+ 1).

Therefore, by (28) we can state the following resnlt.

Theorem TTL.5 Forn > ().

n

2" =(1+ A Z So(n, KYChy (| N) 4 /\Z(/.' + DS, b+ D)Chy (| A).

k=) k=t
Let,
n

BO(x) =3 ennClhy(|X). (29)

k=0

Since Chy, (| A} ~ (14 Ael, et — 1) and ])’,(,l‘}(:l"i ~ (('/—_1> V.f) we obtain, by (16) and (22),

{

! E N st \B[
Cnk = 77<((—;—TT) (L4 Ae’)(e' —1)"|a >

Using the fact that & _U = 3 >0 W/" owhere Sy(im. k) is the Stirling number of the

that

second kind, we nl)i‘nm

Soll+ k. k) 2R LN
Coniks Z Y ((("' 71) (L4 Ae" )t ™*|a

=0 ) * \

5o (0 + k. k ; E N
. Z ——5‘,(,‘ J 1. ] >((_l + A B (1))

v (74 k)

) (O K K) gy (r)( "l!/':/(,,
Z(u/ (#HF B umz ¢ [BO (1))
>0 =0
n—k " n—k

(0 b (0 1.

Y‘M(/’ HIBEO (1) 4 ,\Z ' 1 (R BEN (- 1))
= (£+ k)t =0
n—h

=D S+ M(, . />(Pf,"?/,‘4+ABI‘,"’M(IU-
=0

Therefore, by (29), we can state the following result.

Theorem TI1.6 Forn > (),

n n—k

BO(x) =33 Sull+ k. k) (/ ‘ A)(B”, ¢+ ABY, (1)) Chy (] X).

k=) =)
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E. Daehee polynomial

Comnsider T;,(27) ~ J,—\ % then by (6) and (20) we get
;' ' ! h

de E L= A A) (L4t
T Sl Di
; e i VT ( ) ; i

Henee, T, () = D,(r]A) ~ (2%, 578). Lot

X

i

HO (| X) = Y enpDill).

k=0

L f A\
Then, by using the fact that £ () ~ (< =

(30)

Tj) /> {16) and (22}, we obtain

{2 ()
e )

Using the fact that ]‘[/(y/V)<>./"/)\ = ¥ il 7')#/}/’, (A", we get

o o r/+l g =1 " i
Co ke 7/—2 H. ( TET \,1'
[ d—1 2 \* )\
7-2() “/ _ )<(_:’—(/F]> ‘_f,f/.
Since S , @)k

grest .
2.k20 \,1]77/ m—)—-f_l U'(_TW'—'T we have B0 (4 )~ (S 5 3

the fact that (b — 1) = );/ ”< =176t we get

k 7 )/
Coe = W’ Z }_4\71 ( >< )”f, OOV ED G,

=0 j=0 ‘/

Thevefore, by (30}, we can state the following vesult.

Theorem TIT.7 Forn > 0.

¢

Z ZZ ';J, 5 < > (l > HEO ) ES () Dyl

k=0 =0 j=0

11

) Thus, by

Teiner Clyes Fape (¢ =1F Sales +//
Using the fact that 77— =

the second kind, we obtain

(J+k, /' (D) 3y g+ )
Cuk = 51 E E (/ s (,;) Hy 7 () 87 ()
=0 >0 .

7

FEE 0 k0 (() (e

=0 j=0
Thercfore, by (30), we can state the following result.

Theorem TTL8 Forn > (0.

1" i

,,\11/\)72227’(%/ {7)%(,4/1//7’“&) D

k=0 (=0 j=0

F. Hermite polynomial

The Hevmite polynomials H, () ave given by H,(a) ~ (r"wl.t/E). Let

7"

Ha(r) = Y cost s (1/2).

k=0

Then, by (22), (16) and (23), we obtain

1, s s
g = = (™0 (2 — 262)F |1

Using the fact that

e /(f*l ZZ ]U(m f/”r"’/

Jz0 620
[m/2]
Z z {(—1) ’(; m f_/ 1>lmz
/7/
m=0 j=0 )

12

1A

0 =T /‘ owhere Sy(m, k) is the Stirling number of



we get,

[/ N
( 1’(;\1:1 27:1) ’
Bk = (—1)F0¥ —_— 1 =t b
o= Cp () 55 G20
mz0 =0
[m/] o
" —C0m —25:1)
(=1)kok __——_—/qu 2 — 1))
() 30 3 LG 2D gyt
m=0 j=0
A _
=)= (m — 24 1! (o —k
</'> Z:u Z“ A —25)! mo )
o

Thevefore, by (31). we can state the following result.

Theorem TIT1.9 Forn > ().
n n—k [m/

B —1)*="IC (m — 25; 1)mi2¥ (mN fm—k\ :
tn() ZZ jtm — 25! k) N\ m T - (1/2).

k=0 m=0 j=0

G.  Chebyshev polynomials of the second kind

sin(r-+1)6 fi

Y oxr =~

The Chebyshev polynomials of the sccond kind ave defined by U, (cos0) =
0. Evidently, U, (2} is a polynomial of degree » in o with integer coefficients. l'ur example,
Uo(r) = 1, Uy(x) = 2a, Us(r) = 42 — 1, and in general, U, (x) = 22U,_ () — U,_a(x).
Chebyshev polynomials were invented for the needs of approximation theory, but are also
widely nsed in various other branches of mathematics, including algebra, combinatorics, and
number theory (see®).

Let oo = o+ VT — 1, B = o — Va2 —1 and v = 27 — 1. From the above recurrence

relation it is not hard to see that

i ae™ — Be® e e
N U ()= = ot
ﬁ " ! a—4
which implics that U/, (2:) ~ (W /).
By (23) we have that o™y, _,(1/2) = 17/2). Assume
Un(2) = Z oty (1)), (32)
k=0

13

Then, by (22). we have

| ko "') 4 € ;
={ I)IC(;')Z(I”(/»{!M <“ )AJ /l{le“:rn—/r>

=0
7
D /Y < o fn—k (i) 5 et
_ = - ) (1> § Ci(4:2) ¢ (el — gem (i gn=k=ty
Z "
i (=0

which, by (16), implics

n—k / h—t n—h—t
n ety o (P EY ol —7)" ~ {1 +4) 41
Gk (l) g (=1) Q-(ﬁ-’)( p ) 7 . (33)

=0

By a simple induction, we have

“ ‘y)m - (1 ’ 7,‘):”
2y

)

which leads to

U.U 7,4!,')m o 1( 1 4 \m

Theorem TTT.10 For all n > 0,

i n—k
. . j ) ] IAWAATS X P
Un() =3 [3 (=1 “‘(',w:z)(” p )(,_)\,H,‘._m Py (1/2),
k=0 | =0 E

where V,, () \/ﬁm—l (

TV. NORMAL ORDERING

Since the seminal work of Katriel' the combinatorial aspects of normal ordering arbitrary
words in the creation and annihilation opevators af and a of a single-mode hoson having the

usnal commmutation relations

{ft,ul‘ =aa' —ala =1, [a,al =0, [u‘,u"‘ =il (35)

11



have been studiod intensively, seeT-$ 111628 2083 o peferences therein. Recall that normal
ordering N(F{a, al}) is a functional representation of an operator function #(a, al) in which
all the creation operators stand (o the left, of the annihilation operators.  For instance,

Katriel™ showed that normal ordering of (ata)” is given by

(ala)"] *ZS n. k) (aha®

Using the propertics of coherent states (for example, see” (Appendix A)), we obtain

itk 2t = ;
<;Jr‘“’"’\;> 'Z(:\((:‘N)“\:)m — ol =B (see” (Eq. 35)).

n=>0

1, the right-hand side is the exponential generating function of
: g I8

Choosing z
g

the Bell numbers B,,. Thus. one directly obtains (2| N"|z)

= B,,, where we have introduced
the number operator N = ala. This connection between Bell numbers and expectation valies
of the number operator with respect to coherent states was also observed by Katriel™.

In" (sce also®), it is shown that il S, (x) ~ (g(Z), f(£}), and if the action of M and P
on S, (x) satisfy (MS,)(x) Sppi(x) and (PS,) () = nS,—((x), then P f(D) and

M= (\' = ‘;(ISD 1)), where D is the derivative operator, X s the multiplication operator,

namely (Dp)(x) %‘_(.H and (Xp)(a)) = aplx), and f'{t) denotes the derivative of f(1)
respect to £, The operator M is also called Sheffer shift and the above formula is a well known
result of umbral calenlus™ (Theorem 3.7.1). Note that we can formally write S, () = M7 -1
(where Sy(a) = 1), ic., the sequence S, (x) is generated snceessively by application of M.
For instance, if M =2X — D and P = %I), then S, (1) = H,(x) (Hermite polynomials). As
another example, let M = —XD?+ (2X —1)D— X + L and P = 7%,- = f}:/‘_,l D7, then
S, (@) = nlL, () (Laguerre polynomials).

The operators M and P define an action on the index n of the quasi-monomial S, (). This
resembles the property of the operators al and a in Fock space given by a[n) = /it 1jn+1)
and aln) = /ln — 1), This suggests the following correspondance P« a, M« al and
S, (x) «

Let My (. y) (q - f&%) - Then the above correspondence with P = D, M = X

ny for all n > 0 (for more details, we vefer the reader to” (Scction 5.2.3) or").

J'{x)
and S, () = 2™ shows that in general S, (@) = [My (D). X}]" - 1. hence,

(M, r(a,aD)]"|0) = S, (aD)|).

As a relation for coherent states one obtains, therefore,
(z|[My s (a, al ™0y = S, (2)(z]0). (36)

Exponentiating Al, r(a.a') and using (20) for the generating function of the S,(2), one

obtaing

<:|("\M'I~"“‘“’)i()) r':‘f(‘\)(:!()). (37)

. 1
~g(fY)

- . ’ 1
This result can be extended to a general matrix clement (z[eMMorteeti|27)

by using |z')

/9 stgt o
e P20 giving after some tedions algebra (7 (Section 5.3))

N
(2] MM slaa) |y __9(&) o VORI (38)
g(fF(A+ f())
where (z[2') = o' =HE =3 g fhe coherent, states overlapping Tactor. Let s retien to (36).
If S, () ~ (g{t), f(1)) and R, (x) ~ (h(#),0(£)), then the identity Sp(x) = Y05 o)
with ¢, given in (22) can he written as

n 7

p(a,al)P[0) = Su(2)(210) = 3 enpRi(2){210) = > cnl2

k=0 k=0

D),

which shows that owr identitics can he interpreted as a transformation  hetween

(2|[M, (a,al)]"0) and

la.at) o), or, hetween the operator functions [M, p(a., at)]”

and [M), ((a,a')]* themselves. Let us state this relation explicitly in the following theorem.

Theorem TV.1 Let the two Sheffer sequences Sp{x) ~ (g(t). (1)} and R, (a} ~ (h(t). (1))
be related by Sp(w) = 375 conila). Then one has
(M, f(a, al Z < BT o eyt > (M e(a,ah)] + O, (39)
=0 (f(t )
where [ denotes the compositional inverse of f and O denotes an operator satisfying O[0) =

0. Conscquently. when cvaluated between the coherent states (2| and [0). this implics
(2|[M, s(a,al)]"|0) = i ' < W \')( (f(l)))/"|'z"'> (2|[My o(a, a)]"|0). {(10)
T (f(1) o ’

Let s consider the particular case where Ri(r) = o, ic., S,(x) Yy o™, For
Ry =, one has a" ~ (1, 4), i.c., h{t) = Land £(1) = ¢. 1t follows that ;\1/,‘,‘((/4(/‘\) = af,
thus

(2| [Mp.e(a,aD)]F10) = ()" (z[0).

16



The coefficients ¢, ;. arc given in this case hy

(al[Myp(a, al)]"10) O~ (2
&

k=0

BTN ) = & (T,

<fl f(/n"'{.r“>.

Let ns make contact with the normal ordering procedure. Above, we have denoted for a

s0 that

general operator unction F'(a, a') its normally ordered form N(F(a,a")) = F(a,al), which is
obtained by moving all annihilation operators a to the right, using the commutation velation.
We may additionally define the operation : G(a,al) : which means normally order G(a, al)
without, taking into account, the commmtation relation (i.c., treat a and al as commuting
objects). The normal ordering problem for F(a, al) is solved if we can find an operabor
Gla,al) for which F(a,al) =: Gia. al) : is satisfied. Now, it is a well known result that if
(2| F(a, a))|'y = G(z*, 2'){z| ), then N(#(a,al)) = Glal,a) . Thus, we can write {38) as
4

(scc” (Equation (5.23)) or®)

. AM )y (a) A ] \
N (e MMastaa = 4 o @) ] 1
' (T fla)) HL)

By (39) and the results in the previons sections, we can obtain several nice normal ordering

identitics. In the following, we present several examples.

Example V.2 Let (g, f) = (Lt) and (b, 0) = (1t —12/2), so M, (a.a)) = al and

My a,al) =al(1 — )™ = al Yool Then, by Section 3.1 and (39). we oblain
s
(_u')’:Z()Z(,(( W( ) 1" (al(1 — a)™)"
=0 —0

The capression on the vight-hand side looks rather complicated. When coaluated between the
states (2| and [0). the cxpresssion (2] (al(1 ”\)—I) 10 reduces to p{z*)(2]0). where py is a
polynomial of degree k. For caample. if k = 1. then {z{al(1 — a)Y0) = (2]al|0) = 2*(2|0)
due to a"|0) = 0 forv > 1. Similarly, if k = 2. then (2| (a1 7“)—1)3‘\“/\ = zlat{l -
a)~tal|0) = (zla' (1 + ayal (0, where we have used that a™a'|0) = 0 for v > 2. 1t Jollows that
(z] (a’(1 — a) ’J)"’ [0) = (%) + 2) (|0). In the same fashion one determines for b = 3 that

<~"\‘ (” (1 =a) 1) [0y = A 3(;"‘)2'\ 9™ <:[0>. In general, the above equation, qives
n—k "
()= Z( )Z( < p '>(_ )" (7).
h=0 k =0

Comparing this with Theorem I L, we sce that pe(2®) = () *y (1/2%) where g,y denotes
the Bessel function defined in (10).

l*)x;nnp]e V.3 Let (g f) = (Lt} and (h,0) = (L, t/(1 — ). so0 M, pla,al) al and
My, la,al al(l —a)™? = L/ ol FNats Then. by Scction 3.2 and (39), we obtain,

() =3 (1w /l’(/’) (;l 71) (a'(1-a) %" + 0.

k=0

Example IV.4 Let (g, [) = (1,£) and (h, () = (14 el et — 1), so M, (a,al) = ab and
My (a,al) = ale=e - 17\\—, Then. by Section 3.4 and (39), we obtain

n

- N & \E
{alye Zm + A)Sa (. k) + Ak + 1)So(n, k + 1)) <,,hv"' ﬁ> FO.
T

k=0
Example IV.5 Let (g, f) = (/1 £/2) and (h,0) = (1.1 —£2/2), s0o M, p(a,al) = 24t —a
and My (a.al) = al(l —a) ' = ('1‘ >—:/ @ Then, by Section 5.6 and (39). we obtain

0 n—k [m/2)

7] \i—r— /( ) — ] tok o 1.7 e
(24 —a) ZZ Z { i (Ij[“, ’)j')!/ Jm:2 (/ﬁ) <H"” ) ((If“ — (l)fl)/ + O.

k=0 m=0 j=0

When, coaluated between, the states (z| and |0). the left-hand side becomes (z|(2at — a)?]0).
According 10" (Section 5.4.1), this can be simplified to H,(z*}{(z]0), where H, denotes
the m-th Hermite polynomial.  Using from the first example that (=] (a'(1 - a)~1) ‘m

(Vg (1/29)(2)0), this yiclds

n n—k [n/2)

. Y= Ch(m — 255 Dmt2k //) (u - /;) I il
Hy,(z e 2" Y Yo 2",
) Z Z Z e — 250 k) \ m (Z) g-1{1/27)

k=0 =0 j=0

which is the contents of Theorem 1119,
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