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UMBRAL CALCULUS ASSOCIATED WITH FROBENIUS-TYPE EULERIAN
POLYNOMIALS

TAEKYUN KIM AND TOUFIK MANSOUR

ABSTRACT. In this paper, we study some properties of several polynomials arising from umbral
calculus. In particular, we investigate the properties of the orthogonality-type of the Frobenius-type
Eulerian polynomials which are derived from umbral calculus. By using our properties, we can
derive many interesting identities of special polynomials associated with Frobenius-type Eulerian
polynomials. An application to normal ordering is presented.

1. INTRODUCTION

It is well known that the Euler numbers have a long history (see [7,8,13]). They are of fundamental
importance in several parts of mathematics and mathematical physics (see [5-8]). In the last decades,
several interesting extensions and modifications were considered along with related combinatorial,
probabilistic, and statistical applications (see [9-12,16]). One of the well known extensions it is
the Frobenius-Euler numbers and polynomials [5,6,13]). The aim of this paper is to study several
properties of the orthogonality-type of the Frobenius-type Eulerian polynomials which are derived
from umbral calculus (see [22,23,30,31]). Note that umbral calculus has an application in the physics
of gases (see [35]) and in the group theory and quantum mechanics (see [1,2]). Umbral calculus, in
particular Sheffer sequences, has also been applied to the normal ordering of expressions involving
bosonic creation and annihilation operators [3,4].

In this paper, umbral calculus is considered for some special Sheffer polynomials such as Frobenius-
Euler polynomials, Changhee polynomials, Daehee polynomials and Bessel polynomials. Let I1 be the
algebra structure of polynomials in a single variable z over C and let IT* be the vector space of all
linear functionals on TI. The action of a linear functional L on a polynomial p(x) is denoted by
(L|p(z)). We note that (L|p(z)) satisfies (cL + ¢’ L'|p(x)) = ¢(L|p(x)) + ¢ (L'|p(x)), for any ¢, € C
and L, L' € TT* (see [22,23,30,31]). Let

(1.1) H = f(t):ZakZ—k!mke(C

k>0

For f(t) =3 >0 ak% € H, we define a linear functional on II by setting

(1.2) (f(®)]|z"™) = an, for all m > 0, (see [22,23,30,31]).
By (1.1) and (1.2), we have
(1.3) {t*|2™) = nlé, x, for all n,k >0, (see [22,23,30,31]),
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where d,, 1 is the Kronecker’s symbol. Let us assume that fr(¢f) = Zk>O<L|xk)%. Then by (1.2),
we easily obtain that (f7(t)|z") = (L|z™) and f1(t) = L. So, the map L ~ fr(t) is a vector space
isomorphic from ITx onto H. Henceforth, H is thought of as both set of formal power series and set of
linear functionals. We call H the umbral algebra. The umbral calculus is the study of umbral algebra.

As is definition, the order O(f(t)) of a non-zero power series f(t) is the smallest integer & for which
the coefficient t* does not vanish (see [22,23,30,31]). If O(f(t)) = 1 (respectively, O(f(t)) = 0)
then f(t) is called a delta (respectively, an invertable) series. Let us assume that f(t), g(t) € H with
O(f(t)) =1 and O(g(t)) = 0, so there exists a unique sequence S,,(z) of polynomials with

(1.4) (g&)(f()*]Sn(x)) = nldnk

for all n, k > 0. The sequence S, (x) is called the Sheffer sequence for (g(t), f(t)) which is denoted by
Sn(z) ~ (g(t), f(t)) (see [22,23,30,31]). Let f(¢t) € H and p(x) € II, then we note that

(1.5) (€ [p(x)) = p(y), (fB)g®)Ip(x)) = (f(B)lg(t)p(x)),
and
k o
(1.6) f(t) = Z<f(t)lx’“>%, p(z) = Z<t’“lp(x)>ﬁ,
k>0 ) k>0 )

(see [22,23,30,31]). From (1.6), we see that
(1.7) ({t*[p(x)) = p™(0) and (1p™*) (x)) = p*)(0),

where p*)(0) denotes the k-th derivative of p(z) respect to  at 2 = 0. From (1.7) we can derive the
following equation t*p(z) = p*® (z) (see [22,23,30,31]). For S, (z) ~ (g(t), f(t)), we have

b i _ t
(18) e = oS

for all y € C, where f(t) is the compositional inverse of f(t) (see [22,23,30,31]). For S, (x) ~ (g(t), f(t))
and Ry, (x) ~ (h(t),£(t)), let us assume that Sy (z) = > ,_, Cn k. Ri(2). Then we see that

(19) Cus = 15 { SR ()" ).

For all n,k > 0 (see [22,23,30,31]).
Throughout this paper, we assume that A € C with A # 1. The Frobenius-type Fulerian polynomials
of order r are also given by

1-x \" . , tn
(1.10) <m> et = Z A%)(xp\)m (see [7,8,14,15,19, 20)),
n>0

where 7 is a positive integer. In particular case, x = 0, Ag)(0|)\) = Ag)()\) are called the n-th
Frobenius-FEuler numbers of order r. As is well known, the Frobenius-Euler polynomials of order r are
defined by the generating function to be

(1.11) (%) et =" Fﬁ”(xu)i—n' (see [23-25]).
n>0 )
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In the special case, x = 0, Fy)(0|)\) = F,gr)()\) are called the n-th Frobenius-Euler numbers of order
r. The Hermite polynomials are defined by the generating function to be

tn
(1.12) e2rt—t* = ZHn(x)m (see [21,22,30,31]).
n>0 )

In the special case, z = 0, H,(0) = H,, are called the n-th Hermite numbers. From (1.12), we note
that Hy,(z) =37 ;2 (?) H,_;a7. 1t is well known that the Poisson-Charlier sequence is given by

S n n—k —k a(et—1) t tr t—a\" t
Cp(z;a) = Z L ()" Fa " (x)k ~ (e ya(e® —1) ) and ZC k;a) i - e’,
k=0

k>0

(see [22,23,30,31]), where a # 0, n € Zy = NU{0} and (z)y = z(x —1)--- (z — k + 1). The solution
of the Bessel differential equation x?y" + 2(x + 1)y’ +n(n+ 1)y = 0 is given by

(1.13) zn: "+k'k| (f)k
k:O

The Stirling numbers of the second kind is defined by the generating function to be

(1.14) (et —1)" 771'23 (4,n)—=( see [22,30]).

jizn

In this paper, we present some properties of several polynomials arising from umbral calculus. In
particular, we investigate the properties of the orthogonality-type of the Frobenius-type Eulerian
polynomials which are derived from umbral calculus. Finally, in the last section, we establish a
connection between our results and the problem of normal ordering.

2. UMBRAL CALCULUS ASSOCIATED WITH FROBENIUS-TYPE EULERIAN POLYNOMIALS
From (1.8), (1.12) and (1.10) we note that

(2.1) AT (2] ~ ((%)t) and H,(z) ~ (e!"/4,t/2).

Let us assume that

(2.2) AW (z|N) = ch wHi(z
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By (1.9) and (2.2), we get that

1 et’/h 1 (n 1-x \" p
_ i D O /4, n—k
Crk = k! <<ef(>‘1>)\)r 2k = > 2k <k> <<6t(k1) - >\> e >

1—X
()% () )
2(1) BH(5) i)
()% S

(

Anfk72j ()‘)

=n! Z 2j+kk!(]q}5;7(7j1 —k—=jb

j=0, j even
Therefore, by (2.2), we obtain the following result.
Theorem 2.1. Letr € Z,. Forn >0,

ST ol B Ay ;)
AW =) | D SR 2 — k= | e

j=0, j even

Now, let us assume that

(2.3) Hy(z) =Y Cop AL (2|0,

k=0
Then, by (1.9) and (2.3), we get

1 ) Y
anm<<ﬁ> 2%t"e |l
_ k(" (nfﬂ (=1)7(n — k)2; e2t=1) _ A\ " k2
T \k = 4! 1—X

(n=k)/2 , i(n — k) s o
(2.4) %(Z) 3 %«e (A )_)\) gk J>'

Jj=0

From (1.14), we note that

T

(ezt(k,\) B )\)7’ _ (ezt(k,\) 141 )\)7’ _ Z (Z) (1— )\)rfd(<62t(>\71) B 1)d

d=0

2m+d( )()\ )r+m
|

N (=1
- :Omzz:o (m +d)!

So(m + d, d)t™
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which implies
<62t(17>\) B )\)Txnfk72j
r dd|2m+d( )()\ )r+m
(2.5) =
D2
By (2.4) and (2.5), we have

(nfk)/Q T o j+d NP N - -
Cre =t <Z> DI (nzj k) @ (A= 1) E 202G (0 — k - 2], ).
Jj=0 d=0 )

Salm -+ d, ) — k= 2]}z

Therefore, by (2.3), we can state the following result.
Theorem 2.2. Letr € Z;. For alln >0,

n n—k)/2 r
=1y (( Z)/ Z Sk 2" M ("Z,k) (d) (Z) (A — 1)rh=2imdgn=2i gy (n | — 9], d)) AP ().
From (1.13), Carlitz defined the Bessel function as follows:
(2.6) Jn(x) = 2"yn(1/x) ~ (1, — t2/2), for all n > 1, (see [22,30,31)).
By (2.6), we can derive the generating function of .J,,(z) as follows: >_ <, Jn(x) = er(1+VI=20) By

(1.13), we easily obtain

(n—14k)! ek

S A ~ 42
(2.7) T (1,t — 2/2).

M

Let us assume that

(2.8) AW (z|\) = Z(Jn wJi(z

Then, by (1.9) and (2.8), we have

cn,k(:)<(w ) () 1)
() S G2 () e )

1)’“(2) ;ck(j 2 ("j ) <<em1 ]>AA>TI(x1)“kj>

Therefore, by (2.8) we have the following result.



6 TAEKYUN KIM AND TOUFIK MANSOUR

Theorem 2.3. Letr € Z,. Forn > 0, we have

IERES 31 p ot (Z)(”j’“)w 240, (1N | Jela).

k=0 \ j=0

It is well known that Fulerian-type Chaughee polynomials are defined by the generating function
to be

(2.9) S Cha(x]A) = M—)\)‘(l 1) (see [19,22,23,30,31)).
n>0

From (1.8) and (2.9), we can derive Chy,(x|A) ~ (t(l{;ﬁ‘ﬂ\, e’ —1). Let us assume that
(2.10) A (z))) = Zc KkChy(z|N).

k=0
Then, by (1.9), we obtain

1 T ‘ k
Crpe = ! (et(,\ D _ > (e =1)" o
— S2(j + k., k) R YA
- Z ] + k et(—=1) _ ) |t .
j=0

n—=k r-4+1
n 1—A e
Hsenn(,0,) (1) )

. n (r+1)
= salio+ k() AT

\
: u
?g- O

=0

<.

Hence, by (2.10) we can sate the following theorem.

Theorem 2.4. Letr € Zy. Forn > 0, we have

n

n—k
T r+1
AD N =3[ D S +k k)( h >Afl 0O | Chu(z|A).
k=0 \ j=0
Let us consider the Eulerian-type Dachee polynomials of the second kind as follows:
1-X et —1

(2.11) Dy, (z|A) ~ (eto‘*l) et )\)'

From (1.8) and (2.11), we can derive the generating function of (2.11) as follows:

. (AT A )M AT
Z Dy ( |)‘ (1—X)(1 —t)m+r—1 ’

n>0

where t # 1. Let us assume that

(2.12) AW (z|N) = chkpk (z|N).
k=0
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Then, by (1.9) and (2.12), we have

C = 1 1A s et —1 F n
nk = 77 lO-1) _ ) Y |z
n 1—2\ r+1 )
A §=0 <J >SQ R <<et(/\1)_ >\> ks (N

n—kn—k—j
A > ( >32 Gk EES, (@ NAGFY ().
0

7=0 m=

Therefore, by (2.12), we obtain the following result.

Theorem 2.5. Letr € Zy. Forn > 0, we have

AD @) =Y Z Z ”’“ “ )F,S’?k,j,m@M)Ag:*”(A) Chy(z|N).

k=0 \ j=0 m=0

Let pp(x) ~ (1, f(t)) and gn(x) ~ (1,9(t)) (n > 0). Then we note that

f( )) 1
2.13 qnx1<— T pp(T).
(2.13) @ = (10 (2)
Let us consider the following Sheffer sequences
otA—1)
(2.14) Sp(x|A) ~ (1, T t) and " ~ (1,1).
From (2.13) and (2.14), we can derive
1—A "o
(2.15) S(@|\) = o <m> -
and
Sp(x)A) = (1 = A)z(efP) —1 41— ))gn?
— (n +]: — 1) (et(’\11>)\ 1>J Ll
o N
1
(2.16) =z <"+, j)(l—)\) I(fAD) Z1)ignT,
o~ Y
By (1.14), we easily get
- ; J! - j+m g tm
(2.17) O 1) =N — Sy (m + 4, j)(A — 1T,
= ™

Thus, from (2.16) and (2.17), we have

(2.18) S, (2 V) xnzln;:J (”“ )(Zé)“ 1) Sy (m + j, )z ™,

Hence, by (2.15) and (2.18), we obtain the following result.
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Theorem 2.6. Letr € Z,. Forn > 1, we have

A (2 Z; le: L S O

If we consider the following Sheffer sequences

et(—1) r
(2.19) pr(x) ~ (1, ( T > t) and 2" ~ (1,1),

then, by (2.13) and (2.19), we get

1-A . n— ™
(2.20) pn(z) =2 <m> "t =2 AT (z|N).

Therefore, we can state the following result.

Theorem 2.7. Letr € Zy. Forn > 1, we have

A -2y
lAnfl(lP\) ~ <1, <m> t> .

3. ORTHOGONALITY-TYPE

Let I1,, = {p(z) € C[z]|degp(z) < n}. Then we note that II,, is the (n + 1)-dimensional vector
space over C. It is not difficult to see that {Aér) (x|A), AY) (x| A), ... ,Aq(f) (xz|A\)} is a basis for I1,,. For
p(z) € T, let us assume that

(3.1) p(x) =Y arA (z|A), (n > 0).
k=0

From (1.4), (2.1) and (3.1), we can derive

et=1) A\ " et(A=1) N ,
<<T> Hp(e) > Z<< T—x ) #1477 el Zj'aa O = Kla.
1 e A\ 1 et N\
“km<<T> Ple) ) =g (T) ID7p()

T

- ﬁ > () (~ )" H{0ID p(a + j (A — 1))).

=0 M

So,

Therefore, by (3.1), we obtain the following theorem.

Theorem 3.1. Forr € Zy and p(x) € I, let p(z) = > ,_, akA,(:) (x|X). Then

o=y o () O Dk - ),

=0 M
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Now, we present several applications for the above theorem. At first, let us take

(3.2) pla) = =Y (1) e~ - o),

m=1
where L, (x) is the n-th Laguerre polynomial. By Theorem 3.1, we obtain

T

= ﬁ > () ar Dkt - vy

=\
;;ﬂ;( ) (n_11> (Z)%(j@n)mk
- Z Z ( > (” . 1) (7:)()\)7"1'()\ - 1)m*k*r(71)rjm,k%'

j=0m=1

Hence, by Theorem 3.1 we can state the following theorem.

Theorem 3.2. Forr,n € Z,, we have

- zn: i 3 ( > (” - 1) (7;) (=A)" 9 (A = 1)mfkfr(_1)rjmfk:l_!! AD (),

k=0 | j=0m=1

Let us take p(z) = J,(z) = S m!(gjfz);wx"*m ~ (1,t — t?/2), where J,(z) is the n-th
Bessel function. By Theorem 3.1, we obtain

T

o= g 3 () VDR - 1)

=0 M

33>y EEE L TR

Hence, by Theorem 3.1 we can state the following theorem.

Theorem 3.3. Forr,n € Z,, we have

9=3 ZZ()( M e U A .

k=0 | j=0m=0

4. APPLICATION TO NORMAL ORDERING

Since the seminal work of Katriel [17] the combinatorial aspects of normal ordering arbitrary
words in the creation and annihilation operators a and a of a single-mode boson having the usual
commutation relations [a,a] = aa’ —a'a =1, [a,a] = 0 and [al, a'] = 0 have been studied intensively
since the seventies, see [3,4,17,18,26-29, 32-34] and references therein. From a more mathematical
point of view the consequences of the noncommutative calculus of operators has been considered, in
particular by Maslov [29]. Recall that normal ordering N'(F(a,a')) is a functional representation of
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an operator function F(a,a') in which all the creation operators stand to the left of the annihilation
operators. For example, Katriel [17] showed that

n
"= Si(n,k)(a)*"
k=0
By the properties of coherent states (for instance, see [3]), the last identity can be written as
t " 20t
(le''|z) = 3 (#l(ala)"|z)— = ",
n>0

Now, we can state the relation between normal ordering and Sheffer sequences as follows. Let Sy, (z) ~
(9(t), f(t)) and Ry (x) ~ (h(t),£(t)) be any two Sheffer sequences. Then one has

A Gl =3 g (e

=0

( (f(®))* |z ><Z|[Mh,e(a,aT)]k|Z’>,

where f denotes the compositional inverse of f and My ¢(z,y) = ( gﬂ%ﬁ%) 77. By (4.1) and the

results in the previous sections, we can obtain several nice normal ordering identities. In the following,
we present several examples.

Example 4.1. Let (g, f) = (1,t — t?/2) and (h,{) = (((%)T,t), so My (a,al) = AR

l1—a

at 2250 a’ and My (a,a’) = al — % Then, by the proof of Theorem 2.1 and (4.1), we
obtain

n n—k Af:) J( ) (1 — Nea(1—X)
DD 2j+kk!(]/2§.(n — gy | el 0)" 0) = {el(a’ - (ea<17+>e_A)"|0>'

k=0 \j=0, j even

Example 4.2. Let (g,f) = ((%)T,t) and (h,0) = (1,t — t2/2), so M, s(a,a’) = a' —
%‘g and My ¢(a,a’) = a'(1 —a)™' = a' 32,5 5a’. Then, by the proof of Theorem 2.3 and
(4.1), we obtain

i Z F()(" )t mal e | el - o )

=0

r(1 — \)es(I—=2)
= Glfat = L2 T,
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