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Abstract

Zeilberger’s algorithm provides a method to compute recurrence and di�erential equations from given hypergeometric
series representations, and an adaption of Almquist and Zeilberger computes recurrence and di�erential equations for
hyperexponential integrals. Further versions of this algorithm allow the computation of recurrence and di�erential equations
from Rodrigues type formulas and from generating functions. In particular, these algorithms can be used to compute the
di�erential=di�erence and recurrence equations for the classical continuous and discrete orthogonal polynomials from their
hypergeometric representations, and from their Rodrigues representations and generating functions.
In recent work, we used an explicit formula for the recurrence equation of families of classical continuous and discrete

orthogonal polynomials, in terms of the coe�cients of their di�erential=di�erence equations, to give an algorithm to identify
the polynomial system from a given recurrence equation.
In this article we extend these results by presenting a collection of algorithms with which any of the conversions

between the di�erential=di�erence equation, the hypergeometric representation, and the recurrence equation is possible.
The main technique is again to use explicit formulas for structural identities of the given polynomial systems. c© 1998

Elsevier Science B.V. All rights reserved.
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1. Structural formulas for classical orthogonal polynomials

A family

y(x)=pn(x)= kn x n + · · · (n∈N0 := {0; 1; 2; : : :}; kn 6=0) (1)
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of polynomials of degree exactly n is a family of classical continuous orthogonal polynomials if it
is the solution of a di�erential equation of the type

�(x)y′′(x) + �(x)y′(x) + �ny(x)= 0; (2)

where �(x)= ax2 +bx+c is a polynomial of at most second order and �(x)= dx+e is a polynomial
of �rst order. Since one demands that pn(x) has exact degree n, by equating the highest coe�cients
of x n in (2) one gets

�n= − (an(n− 1) + dn): (3)

Similarly a family pn(x) of polynomials of degree exactly n, given by (1), is a family of discrete
classical orthogonal polynomials if it is the solution of a di�erence equation of the type

�(x)�3y(x) + �(x)�y(x) + �ny(x)= 0; (4)

where

�y(x)=y(x + 1)− y(x) and 3y(x)=y(x)− y(x − 1)
denote the forward and backward di�erence operators, respectively, and �(x)= ax2 + bx + c and
�(x)= dx + e are again polynomials of at most second and of �rst order, respectively. Again, (3)
follows.
Since �3 =�−3, (4) can also be written in the equivalent form
(�(x) + �(x))�y(x)− �(x)3y(x) + �ny(x)= 0;

and replacing x by x + 1 we arrive at

(�(x + 1) + �(x + 1))�2y(x) + �(x + 1)�y(x) + �ny(x + 1)=0: (5)

It can be shown (see e.g. [14] or [16]) that for �n 6=�m (n6=m) any solution pn(x) of either (2) or
(4) satis�es a recurrence equation

pn+1(x)= (Anx + Bn)pn(x)− Cnpn−1(x) (n∈N0; p−1 ≡ 0) (6)

or equivalently

xpn(x)= anpn+1(x) + bnpn(x) + cnpn−1(x) (7)

with

an=
1
An
; bn= − Bn

An
; cn=

Cn
An
: (8)

In [14] (compare [16], Eqs. (5) and (10)) we showed that the coe�cients An; Bn; and Cn are given
by the explicit formulas

An=
kn+1
kn
;

Bn=
2bn(an+ d− a)− e(−d+ 2a)
(d+ 2an) (d− 2a+ 2an) · kn+1

kn
;
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Cn=−((an+ d− 2a)n(4ca− b2) + 4a2c − ab2 + ae2 − 4acd+ db2 − bed+ d2c)

× (an+ d− 2a)n
(d− 2a+ 2an)2(2an− 3a+ d) (2an− a+ d) ·

kn+1
kn−1

in the continuous case, and by the formulas

An=
kn+1
kn
;

Bn=
n(d+ 2b) (d+ an− a) + e(d− 2a)

(2an− 2a+ d) (d+ 2an) · kn+1
kn
;

Cn=−((and− db− ad+ a2n2 − 2a2n+ 4ca+ a2 + 2ea− b2)
×(n− 1) (d+ an− a)− dbe + d2c + ae2)

× (an+ d− 2a)n
(d− a+ 2an) (d+ 2an− 3a)(2an− 2a+ d)2 ·

kn+1
kn−1

in the discrete case, in terms of the coe�cients a; b; c; d and e of the given di�erential=di�erence
equation.
Orthogonal polynomials satisfy further structure equations. One of those is given by the derivative=

di�erence rules (see, e.g., [14])

�(x)p′
n(x)= �npn+1(x) + �npn(x) + 
npn−1(x) (n∈N := {1; 2; 3; : : :}); (9)

and

�(x)3pn(x)= �npn+1(x) + �npn(x) + 
npn−1(x) (n∈N); (10)

or

(�(x) + �(x))�pn(x)= Snpn+1(x) + Tnpn(x) + Rnpn−1(x) (n∈N); (11)

respectively. Here

Sn= �n; Tn= �n − �n; Rn= 
n: (12)

In [14] we showed that the coe�cients �n; �n; and 
n are given by the explicit formulas

�n= an
kn
kn+1

;

�n=−n(an+ d− a) (2ea− db)
(d+ 2an) (d− 2a+ 2an) ;


n= ((n− 1) (an+ d− a) (4ca− b2) + ae2 + d2c − bed)

× (an+ d− a) (an+ d− 2a)n
(d− 2a+ 2an)2(2an− 3a+ d) (2an− a+ d) ·

kn
kn−1
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in the continuous case, and by the formulas

�n= an
kn
kn+1

;

�n=−n(d+ an− a) (2and− ad− db+ 2ea− 2a
2n+ 2a2n2)

(2an− 2a+ d) (d+ 2an) ;


n= ((n− 1) (d+ an− a) (and− db− ad+ a2n2 − 2a2n+ 4ca+ a2 + 2ea− b2)
−dbe + d2c + ae2)

× (d+ an− a) (an+ d− 2a)n
(d− a+ 2an) (d+ 2an− 3a) (2an− 2a+ d)2 ·

kn
kn−1

in the discrete case, respectively.
Now, we develop further structural identities. Taking the derivative in (2), we get

0 = �(x)p′′′
n (x) + (�(x) + �

′(x))p′′
n (x) + (�n + �

′(x))p′
n(x)

= (ax2 + bx + c)p′′′
n (x) + ((d+ 2a) x + (e + b))p

′′
n (x) + (�n + d)p

′
n(x);

hence y(x) :=p′
n(x) satis�es a di�erential equation

(a′x2 + b′x + c′)y′′(x) + (d′x + e′)y′(x) + �′n; y(x)= 0

of the same type as (2) with

a′= a; b′= b; c′= c; d′=d+ 2a; and e′= e + b: (13)

From this we deduce that the equation

xp′
n(x)= �

∗
n p

′
n+1(x) + �

∗
n p

′
n(x) + 


∗
n p

′
n−1(x); (14)

namely a recurrence equation for p′
n(x), is valid, and from (13) it follows that

�∗n = an(a; b; c; d+ 2a; e + b); �∗n = bn(a; b; c; d+ 2a; e + b);

∗n = cn(a; b; c; d+ 2a; e + b);

where an(a; b; c; d; e); bn(a; b; c; d; e); and cn(a; b; c; d; e); are given by (8) and the explicit formulas
for An; Bn and Cn.
Similarly in the discrete case, applying � to (4), we get for y(x) :=�pn(x)

0= (�(x + 1)− ��(x))�3y(x) + (�(x + 1) + ��(x))�y(x) + (�n + ��(x))y(x)
= (ax2 + bx + c)�3y(x) + ((d+ 2a) x + d+ e + a+ b)�y(x) + (�n + d)y(x);

hence y(x) :=�pn(x) satis�es a di�erence equation

(a′x2 + b′x + c′)�3y(x) + (d′x + e′)�y(x) + �′ny(x)= 0
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of the same type as (4) with

a′= a; b′= b; c′= c; d′=d+ 2a; and e′=d+ e + a+ b: (15)

From this we deduce that the equation

x�pn(x)= �∗n �pn+1(x) + �∗n �pn(x) + 
∗n �pn−1(x); (16)

namely a recurrence equation for �pn(x), is valid, and from (15) it follows that

�∗n = an(a; b; c; d+ 2a; d+ e + a+ b); �∗n = bn(a; b; c; d+ 2a; d+ e + a+ b);
and


∗n = cn(a; b; c; d+ 2a; d+ e + a+ b);
where an(a; b; c; d; e); bn(a; b; c; d; e); and cn(a; b; c; d; e); are given by (8) and the explicit formulas
for An; Bn and Cn.
To obtain a derivative rule for y(x) :=p′

n(x), we take the derivative of (9) to get

�(x)p′′
n (x) + �

′(x)p′
n(x)= �np

′
n+1(x) + �np

′
n(x) + 
np

′
n−1(x):

Applying (14) to replace xp′
n(x) results in a derivative rule of the form

�(x)p′′
n (x)= a

′
np

′
n+1(x) + b

′
np

′
n(x) + c

′
np

′
n−1(x): (17)

Similarly in the discrete case a di�erence rule of the form

�(x)�3pn(x)= a′n�pn+1(x) + b′n�pn(x) + c′n�pn−1(x) (18)

can be obtained for y(x) :=�y(x).
Finally we substitute (17) in the di�erential equation. This gives

a′np
′
n+1(x) + b

′
np

′
n(x) + c

′
np

′
n−1(x) + �(x)p

′
n(x) + �npn(x)= 0;

and replacing xp′
n(x) by (14), again, we obtain an equation of the type

pn(x)= ânp′
n+1(x) + b̂np

′
n(x) + ĉnp

′
n−1(x); (19)

in the continuous case, and a similar procedure gives

pn(x)= ân�pn+1(x) + b̂n�pn(x) + ĉn�pn−1(x) (20)

in the discrete case. Note that in the discrete case also corresponding equations concerning 3 are
valid.
We note in passing that our development shows by simple algebraic arguments that whenever

pn(x) is a polynomial system of degree exactly n, satisfying a di�erential=di�erence equation of
type (2)=(4), a recurrence equation of type (6) and a derivative=di�erence rule of type (9)=(10),
the system p′

n+1(x) (�pn+1(x)) is again such a system. This has nothing to do with orthogonality.
Indeed, in our further development it will become rather important that in the continuous case the
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powers x n and in the discrete case the falling factorials

x n := x(x − 1) · · · (x − n+ 1)= (x − n+ 1)n=(−1)n (−x)n
which by no means become orthogonal families, have these properties.
To deduce the coe�cients �∗n ; �∗n ; 
∗n , a′n; b′n; c′n, and ân; b̂n; ĉn, we can follow the above instructions,

or we apply the following method: Substituting

pn(x)= kn x n + k ′n x
n−1 + k ′′n x

n−2 + · · ·
in the di�erential=di�erence equation and equating the coe�cients of x n determines �n, while equating
the coe�cients of x n−1 and x n−2 gives k ′n, and k

′′
n , respectively, in terms of kn. These values can be

substituted in pn(x). Next, we substitute pn(x) in the proposed equation, and equate again the three
highest coe�cients successively to get the three unknowns in terms of a; b; c; d; e; n; kn−1; kn, and kn+1
by linear algebra.
These computations can be easily carried out by a computer algebra system, e.g. by Maple. With

a few seconds of computation time, we get

Theorem 1. For the solutions of (2) and (4), the relations (14), (17), (19), and (16), (18), (20),
respectively; are valid. The coe�cients �∗n ; �∗n ; 
∗n ; a′n; b′n; c′n; and ân; b̂n; ĉn; are given by

�∗n =
n

n+ 1
· kn
kn+1

;

�∗n =
−2bn(an+ d− a) + d(b− e)
(d+ 2an) (d− 2a+ 2an) ;


∗n =−((n− 1) (an+ d− a) (4ca− b
2) + ae2 + d2c − bed)n(an+ d− a)

(d− 2a+ 2an)2(2an− 3a+ d) (2an− a+ d) · kn
kn−1

;

a′n=
an(n− 1)
n+ 1

· kn
kn+1

;

b′n=−(n− 1) (an+ d) (2ea− db)
(d+ 2an) (d− 2a+ 2an) ;

c′n=
((n− 1) (an+ d− a) (4ca− b2) + ae2 + d2c − bed) (an+ d) (an+ d− a)n

(d− 2a+ 2an)2(2an− 3a+ d) (2an− a+ d) · kn
kn−1

;

ân=
1

n+ 1
· kn
kn+1

;

b̂n=
2ea− db

(d+ 2an) (d− 2a+ 2an) ;

ĉn=
((n− 1) (an+ d− a) (4ca− b2) + ae2 + d2c − bed)an

(d− 2a+ 2an)2(2an− 3a+ d) (2an− a+ d) · kn
kn−1
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in the continuous case; and

�∗n =
n

n+ 1
· kn
kn+1

;

�∗n =
−n(d+ 2a+ 2b) (d+ an− a)− d(e − a− b)

(2an− 2a+ d) (d+ 2an) ;


∗n =−((n− 1) (d+ an− a)(and− db− ad+ a2n2 − 2a2n+ 4ca+ a2 + 2ea− b2)
−dbe + d2c + ae2)

× (d+ an− a)n
(d− a+ 2an) (d+ 2an− 3a) (2an− 2a+ d)2 ·

kn
kn−1

;

a′n=
an(n− 1)
n+ 1

· kn
kn+1

;

b′n=−(n− 1) (an+ d) (2and− ad− db+ 2ea− 2a
2n+ 2a2n2)

(2an− 2a+ d) (d+ 2an) ;

c′n= ((n− 1) (d+ an− a) (and− db− ad+ a2n2 − 2a2n+ 4ca+ a2 + 2ea− b2)
−dbe + d2c + ae2)

× (d+ an− a) (an+ d)n
(d− a+ 2an) (d+ 2an− 3a)(2an− 2a+ d)2 ·

kn
kn−1

;

ân=
1

n+ 1
· kn
kn+1

;

b̂n=
−2an(d+ an− a)− db+ ad− d2 + 2ea

(2an− 2a+ d) (d+ 2an) ;

ĉn = ((n− 1) (d+ an− a) (and− db− ad+ a2n2 − 2a2n+ 4ca+ a2 + 2ea− b2)
−dbe + d2c + ae2)

× an
(d− a+ 2an) (d+ 2an− 3a) (2an− 2a+ d)2 ·

kn
kn−1

in the discrete case.

Note that (19) gives an immediate formula for the antiderivative of a continuous orthogonal
polynomial in terms of its neighbors, so that de�nite integrals can easily be computed, whereas (20)
gives an immediate formula for the antidi�erence of a discrete orthogonal polynomial in terms of
its neighbors, so that de�nite sums can easily be computed.
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As a direct consequence of Theorem 1 we have the following representations. The de�nition of
the continuous and discrete families will be given in Section 3 and Section 5.

Corollary 1. The classical continuous orthogonal polynomials have the following antiderivative
representations:∫

Hn(x) dx=
1

2(n+ 1)
Hn+1(x)

(see e.g. [24], (5.5.10)),∫
L(�)n (x) dx= L

(�)
n (x)− L(�)n+1(x)

(see e.g. [25], VI (1.14)),∫
B(�)n (x) dx=

2(n+ 1 + �)
(n+ 1) (2n+ �+ 1) (2n+ �+ 2)

B(�)n+1(x)

+
4

(2n+ �) (2n+ �+ 2)
B(�)n (x)

+
2n

(n+ �) (2n+ �) (2n+ �+ 1)
B(�)n−1(x);

∫
C�n (x) dx=

1
2(n+ �)

C�n+1(x)−
1

2(n+ �)
C�n−1(x)

(see e.g. [25], V (7.15)),∫
P(�; �)n (x) dx=

2(n+ �+ � + 1)
(2n+ �+ � + 1) (2n+ �+ � + 2)

P(�; �)n+1 (x)

+
2(�− �)

(2n+ �+ �) (2n+ �+ � + 2)
P(�; �)n (x)

− 2(n+ �) (n+ �)
(n+ �+ �) (2n+ �+ �)(2n+ �+ � + 1)

P(�; �)n−1 (x)

(see [12], Theorem 6).
The classical discrete orthogonal polynomials have the following antidi�erence representations:∑

x

c(�)n (x)= − �
n+ 1

c(�)n+1(x);

∑
x

k (p)n (x; N )= k
(p)
n+1(x; N )− pk (p)n (x; N );

∑
x

m(
; �)n (x)=
�

(� − 1) (n+ 1) m
(
; �)
n+1 (x)−

�
� − 1 m

(
; �)
n (x);
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∑
x

tn(x; N )=
1

2 (2n+ 1)
tn+1(x; N )− 1

2
tn(x; N ) +

(n− N ) (n+ N )
2 (2n+ 1)

tn−1(x; N );

∑
x

h(�; �)n (x; N ) =
n+ �+ � + 1

(2n+ �+ � + 1) (2n+ �+ � + 2)
h(�; �)n+1 (x; N )

− 2n
2 + 2n+ 2n�+ 2n� + �− �N + �N + �� + � + �2

(2n+ �+ �) (2n+ �+ � + 2)
h(�; �)n (x; N )

+
(n+ �) (n+ �) (n− N ) (n+ �+ � + N )
(n+ �+ �) (2n+ �+ �) (2n+ �+ � + 1)

h(�; �)n−1 (x; N ):

Proof. Using the representations for ân, b̂n and ĉn of Theorem 1 with the particular values for
a; b; c; d; e and kn of the families (see, e.g., [1, 19]) give the results.

Note that the representations for ân, b̂n and ĉn of Theorem 1, if applied to Pn(x)= x n or Pn(x)= x n,
respectively, yield the simple results∫

x n dx=
1

n+ 1
x n+1;

∑
x

x n=
1

n+ 1
x n+1;

respectively. The latter is equivalent to the well-known identity

m∑
k = 0

(
n+ k
k

)
=
1
n!

m∑
k = 0

(k + n)n=
1
n!

m+n∑
k = n

k n=
1

(n+ 1)!
k n+1

∣∣∣∣
k=m+n

k=n

=
1

(n+ 1)!
(n+ m)n+1 =

(
n+ m+ 1

m

)
:

The polynomial system

K (�; �)n (x) =
(
x +

1 + �
�

)
n
· �n · 1F1

( −n
1− x − n− 1+�

�

∣∣∣∣∣− 1
�

)

=(−1)n · 2F0
(
−n; x + 1+�

�

−

∣∣∣∣∣ �
)
; (21)

which was given in [14], is not orthogonal (on the lattice Z), but Theorem 1 is still applicable, and
we get

∑
x

K (�; �)n (x)=
1

� (n+ 1)
K (�; �)n+1 (x)− K (�; �)n (x):
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On the other hand, by the hypergeometric representation (compare Section 5), one sees also easily
that K (�; �)n (x) are translated Charlier polynomials

K (�; �)n (x)= (−1)n c(−1=�)n

(
−x − 1 + �

�

)
: (22)

2. Connection coe�cients

In this section we would like to consider the problem to determine connection coe�cients between
di�erent polynomial systems. Here we assume that Pn(x)= kn xn + · · · (n∈N0) denotes a family of
polynomials of degree exactly n and Qm(x)= �km xm + · · · (n∈N0) denotes a family of polynomials
of degree exactly m. Then for any n∈N0 a relation of the type

Pn(x)=
n∑
m=0

Cm(n)Qm(x); (23)

is valid, and the coe�cients Cm(n) (n∈N0; m=0; : : : ; n) are called the connection coe�cients
between the systems Pn(x) and Qm(x). For simplicity we assume that Cm(n) are de�ned for all
integers n; m and that Cm(n)= 0 outside the above n× m-region.
The connection coe�cients between many of the classical orthogonal polynomial systems had been

determined by di�erent kinds of methods (see, e.g., [24, 10, 20]) until Askey and Gasper [6] used
recurrence equations to prove the positivity of the connection coe�cients between certain instances
of the Jacobi polynomials. In a series of papers [21, 22, 3], Ronveaux et al. recently used such a
method more systematically. Here we will present an algorithmic approach di�erent from theirs.
Hence, the main idea is to determine recurrence equations for Cm(n). Since Cm(n) depends on two

parameters m and n; many mixed recurrence equations are valid as we shall see. The most interesting
recurrence equations are those which leave one of the parameters �xed. We will determine those
recurrence equations, hence pure recurrence equations with respect to m and n. The success of this
method will heavily depend on whether or not these recurrence equations are of lowest order, i.e.,
whether or not no recurrence equations of lower order for Cm(n) are valid. In cases when the order
of the resulting recurrence equation is one, it de�nes a hypergeometric term which can be given
explicitly in terms of shifted factorials (or Pochhammer symbols) (a)k = a(a + 1) · · · (a + k − 1)
=�(a+ k)=�(a) using the initial value Cn(n)= kn= �kn. We will see that there are many instances for
this situation.
Note that without loss of generality we could assume that kn= �km≡ 1; i.e., that P̃n(x) and Q̃m(x)

are monic systems with connection coe�cients C̃m(n); because if Pn(x) and Qm(x) have leading
coe�cients kn and �km; respectively, then their connection coe�cients Cm(n) are given by

Cm(n)=
kn
�km
C̃m(n):

In the last section we have already solved a rather special connection problem: (19)=(20) ex-
presses the connection between the polynomial systems Pn(x)=pn(x) and Qm(x)=p′

m+1(x) or Qm(x)
=�pm+1(x); respectively. In this case the connection coe�cients turn out to be rather simple:
almost all of them (namely all with m¡n− 2) are zero.
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Now, we consider the generic case. We assume that Pn(x) is a polynomial system given by (2)=(4)
with �(x)= ax2 + bx+ c; and �(x)= dx+ e; and that Qm(x) is a polynomial system given by (2)=(4)
with ��(x)= �ax2 + �bx + �c; and ��(x)= �dx + �e.
We know then that both Pn(x) and Qm(x) satisfy a recurrence equation (7) whose coe�cients

an(a; b; c; d; e); bn(a; b; c; d; e); and cn(a; b; c; d; e) were given explicitly in the last section. Note that
we will denote all coe�cients connected with Qm(x) by dashes. Hence we have

xPn(x)= anPn+1(x) + bnPn(x) + cnPn−1(x);

xQm(x)= �amQm+1(x) + �bmQm(x) + �cmQm−1(x);

all of an; bn; cn; �am; �bm; �cm given explicitly.
In three steps, we will now derive three independent recurrence equations for Cm(n). First we con-

sider the term xPn(x) (see, e.g., [22]). Using the de�ning equation of Cm(n); and the two recurrence
equations for Pn(x) and Qm(x); we get

xPn(x) = anPn+1(x) + bnPn(x) + cnPn−1(x)

=
n∑
m=0

(anCm(n+ 1)Qm(x) + bnCm(n)Qm(x) + cnCm(n− 1)Qm(x))

=
n∑
m=0

Cm(n)xQm(x)

=
n∑
m=0

Cm(n)( �amQm+1(x) + �bmQm(x) + �cmQm−1(x)):

By appropriate index shifts, we can equate the coe�cient of Qm(x) to get the “cross rule”

anCm(n+ 1) + bnCm(n) + cnCm(n− 1)= �am−1Cm−1(n) + �bmCm(n) + �cm+1Cm+1(n): (24)

To deduce a second cross rule in terms of the same variables Cm(n+1); Cm(n); Cm(n−1); Cm−1(n)
and Cm+1(n); we examine the term xP′

n (x) (or x�Pn(x) in the discrete case). Using both recurrence
equations for the derivatives=di�erences

xP′
n (x)= �

∗
n P

′
n+1(x) + �

∗
n P

′
n (x) + 


∗
n P

′
n−1(x);

xQ′
m(x)= ��

∗
mQ

′
m+1(x) + ��

∗
mQ

′
m(x) + �
∗mQ′

m−1(x)

(or analogously

x�Pn(x)= �∗n �Pn+1(x) + �∗n �Pn(x) + 
∗n �Pn−1(x);
x�Qm(x)= ��∗m �Qm+1(x) + ��∗m �Qm(x) + �
∗m �Qm−1(x)

in the discrete case), we get

xP′
n (x) = �

∗
n P

′
n+1(x) + �

∗
n P

′
n (x) + 


∗
n P

′
n−1(x)

=
n∑
m=0

(�∗n Cm(n+ 1)Q′
m(x) + �

∗
n Cm(n)Q

′
m(x) + 


∗
n Cm(n− 1)Q′

m(x))
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=
n∑
m=0

Cm(n) xQ′
m(x)

=
n∑
m=0

Cm(n)( ��∗mQ′
m+1(x) + ��

∗
m Q

′
m(x) + �
∗mQ′

m−1(x)):

Again, by appropriate index shifts, we can equate the coe�cient of Qm(x) to get the cross rule

�∗n Cm(n+ 1) + �∗n Cm(n) + 
∗n Cm(n− 1)= ��∗m−1 Cm−1(n) + ��∗m Cm(n) + �
∗m+1 Cm+1(n) (25)

(and the same result in the discrete case). In a similar way the cross rule

ânCm(n+ 1) + b̂nCm(n) + ĉnCm(n− 1)= �̂am−1Cm−1(n) + �̂bmCm(n) + �̂cm+1Cm+1(n) (26)

can be obtained. It turns out, however, that this relation is linearly dependent from (24) and (25),
and hence does not yield new information.
Now, we specialize a little. First, we consider the continuous case. To obtain reasonably simple

results, we assume furthermore that ��(x)= �(x). We consider the term �(x)P′
n (x). Then, using both

derivative rules

�(x)P′
n (x)= �n Pn+1(x) + �n Pn(x) + 
n Pn−1(x);

��(x)Q′
m(x)= ��mQm+1(x) + ��mQm(x) + �
mQm−1(x);

we get

�(x)P′
n (x) = �n Pn+1(x) + �n Pn(x) + 
n Pn−1(x)

=
n∑
m=0

(�n Cm(n+ 1)Qm(x) + �n Cm(n)Qm(x) + 
n Cm(n− 1)Qm(x))

=
n∑
m=0

Cm(n) �(x)Q′
m(x)

=
n∑
m=0

Cm(n)( ��mQm+1(x) + ��mQm(x) + �
mQm−1(x)):

Again, by appropriate index shifts, this results in the cross rule

�n Cm(n+ 1) + �n Cm(n) + 
n Cm(n− 1)= ��m−1 Cm−1(n) + ��m Cm(n) + �
m+1 Cm+1(n): (27)

To obtain a pure recurrence equation with respect to m; from the three cross rules (24), (25),
and (27) by linear algebra we eliminate the variables Cm(n+1) and Cm(n−1); and to obtain a
pure recurrence equation with respect to n; we eliminate the variables Cm−1(n) and Cm+1(n). For
simplicity we consider the monic case.
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Theorem 2. Let Pn(x) be a monic polynomial system given by the di�erential equation (2) with
�(x)= ax2 + bx + c; and �(x)=dx + e; and let Qm(x) be a monic polynomial system given by (2)
with ��(x)= �(x); and ��(x)= �dx+ �e. Then the relation (23) is valid; Cm(n) satisfying the recurrence
equation

−(m− n)(am+ d− a+ an)( �d+ 2am)( �d+ a+ 2am)( �d+ 3a+ 2am)
×( �d+ 2am+ 2a)2 Cm(n) + (−dbn �d+ 2dam2 b+ db �d+ 2damb+ 2d �e n a
+ d �d �e + 2d �dbm− mb �d2 − e �d2 − 4a2m2e − m2ab �d+ bn �da− 2e �da
− 4a2me − 4e �dam+ 2m2a2 �e + 2�ea2 n2 − 2 �ea2n− mab �d+ 2m �d �ea

+ 2m �ea2 − bn2 �d a)( �d+ 2am+ 2a)(m+ 1)( �d+ a+ 2am)( �d+ 3 a+ 2am)
×Cm+1(n)− ( �d+ 2am)(m+ 1)(−am− 2a+ an− �d+ d)(am+ an+ a+ �d)

×(ab2m2 − 4a2m2c − 8 a2mc + 2amb2 − 4a �dmc + mb2 �d− 4a �dc − a �e2 + ab2 − c �d2
+ b �e �d− 4a2c + b2 �d)(m+ 2)Cm+2(n)= 0

with respect to m; with initial values Cn(n)= 1; Cn+1(n) ≡ 0. Furthermore; the recurrence equation
−(d+ 2an)2 (d− a+ 2an)(d+ 2an+ 2a)(d+ a+ 2an)(−m+ n+ 2)
×( �d+ am+ a+ an)Cm(n+ 2) + (d− a+ 2an)(d+ a+ 2 an)(n+ 2)(d+ 2an)
×(−2 �ead− bd2n− 2ma2e + 2m2a2e + 2a2en− 4 �ea2n2 + 2 �dbd− 2 �dea
+ mbda− bd2 + 2eda− 4 �eadn+ 2edan− a bdn2 − bdna+ 2a2en2 − m2abd
− 4 �ea2n− �dmbd+ 2 �danb+ 2 �dan2b+ 2 �ddbn+ 2 �dm ea

− �ed2 + �dde)Cm(n+ 1) + (d+ 2an+ 2a)(n+ 2)(n+ 1)(an− am+ d− �d)

×(an+ am− a+ d)(bed− ae2 − d2c − 4acnd− 4a2cn2 + ab2n2 + nb2d)Cm(n)= 0
with respect to n is valid.

Proof. Using the explicit representations given in the last section in combination with (24), (25),
and (27), and elimination of Cm(n+1) and Cm(n−1); or Cm−1(n) and Cm+1(n); respectively, yield
the results.

Note that the recurrence equation given in Theorem 2 reduces to two terms, and hence can be rep-
resented by hypergeometric terms, for the connection between Laguerre polynomials (Pn(x)=L(�)n (x);
Qm(x)=L(�)m (x)), and between the Gegenbauer polynomials (Pn(x)=C

�
n (x); Qm(x)=C

�
m(x)). We will

consider these and more cases by another method in Section 4.
Now, let us switch to the discrete case. There are two possibilities to obtain a relation similar to

(27). Replacing the derivative by 3 ; the same argument gives (27), again, valid for �(x)= ��(x). If
�(x) + �(x)= ��(x) + ��(x); we can replace the derivative by �; and adopt the above argument to get
the relation

Sn Cm(n+1) + Tn Cm(n) + Rn Cm(n−1)= �Sm−1 Cm−1(n) + �Tm Cm(n) + �Rm+1 Cm+1(n): (28)

Hence we get
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Theorem 3. Let Pn(x) be a monic polynomial system given by the di�erence equation (4) with
�(x)= ax2 + bx + c; and �(x)=dx + e; and let Qm(x) be a monic polynomial system given by (4)
with ��(x)= �(x); and ��(x)= �dx+ �e. Then the relation (23) is valid; Cm(n) satisfying the recurrence
equation

( �d+ 2am+ 2a)2 ( �d+ 3a+ 2am)( �d+ a+ 2am)( �d+ 2am)(−m+ n)
×(an− a+ d+ am)Cm(n)− ( �d+ 2am+ 2a)( �d+ 3a+ 2am)( �d+ a+ 2am)(m+ 1)
×(−a �dd+ an2 �d2 + 2 ea �d− 2a2 �em2 + b �d2m− 2na3m2 − 2a3nm− a2n �d
+ a2n2 �d− an �d2 − 2 �ea �dm+ 4ea2m+ ba �dm2 + 2a3m2 n2 + a �dbm
+ 2a2m �dn2 − 4a3m3 − 2a �d2m2 − 4a2 �dm3 + dn �d2 − 2a2m2 d− a2m �d− �d2ma

− 2a2 �em+ 2a3mn2 + and �d− 2a3m2 − 2a2 �en2 − �d2d− �dbd− 2a3m4 − 2a2md
+ 2 �dmand+ 2a2m2nd+ 4a2em2 + 4aem �d− 2a �end+ 2a2ndm− 2a2m �dn

− 3am �dd− �dm2ad− 2 �dbmd− 2am2bd− 2ambd− 5 �dm2a2 + 2 �ea2n
− �d �ed− �d2md+ e �d2 + dbn �d+ a n2b �d− anb �d)Cm+1(n) + (m+ 1)
×( �d+ 2am)( �d+ am+ a+ an)(m+ 2)(4a2cm2 + 2 a2 �em2 − b �d2m− b2am2
+ 2 �ea �dm− ba �dm2 + 4 �dcam+ 2a2 �d+ 4a3m− 2a �dbm+ 4a3m3
− �db2m+ a �d2m2 + 2a2 �dm3 + 6 a2m �d+ 2 �d2ma+ 4a2 �em+ 6 a3m2

+ 4 �dca− 2b2am+ 8 a2cm+ 2a2 �e − b2a+ a3m4 + a3 + 4a2c − �db2 − ba �d+ �d2c

+ a �d2 − b �d2 + a �e2 − �db �e + 2�ea �d+ 6 �dm2a2)

×(−am− 2a− �d+ an+ d)Cm+2(n)= 0

with respect to m; with initial values Cn(n)= 1; Cn+1(n) ≡ 0. Furthermore; the recurrence equation
(d+ 2an+ 2a)(n+ 2)(−n2ab2 − d2bn− dbe + 2a2n2e + 4n2a2c
+ 2dn3a2 + d2an2 − db2n+ a3n4 + d2c + ae2 − dan2b+ 2dane + 4dcna)
×(n+ 1)(an− a+ d+ am)(−am− �d+ an+ d)Cm(n)− (d+ 2an)
×(d− a+ 2an)(d+ a+ 2an) (n+ 2)(−2ea �d− 2na3m2 + ed �d
+ 2a3nm+ amd2 − am2d2 + d2n �d− 2ea2m+ an2d �d− 2a3m2n2
− 2a2m �dn2 − d2bn− a2m2d− andb+ 2a2 n2e + 2a3mn2 + 3a2nd
+ 7 a2n2d+ and �d+ 2ead− �dmd2 + 4dn3a2 − 4a2 �en2
− �ed2 + 2a2ne + d2 �d+ 2d2an2 + 2 �dbd+ 2a3n4 + ad2 − bd2
− dan2b+ a2md+ 2dane + 4a3n3 + 2a3n2 − 2 �dmand− 2a2m2nd
+ 2a2em2 + 2aem �d− 4a �end− 2a �ed+ 2a2ndm
− 2a2m �dn− am �dd− �dbmd− am2b d+ ambd− 4 �ea2n
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+ 2dbn �d+ 2an2b �d+ 2anb �d+ 3and2)Cm(n+ 1)

+ (d+ 2an)2 (d+ 2an+ 2a)(d− a+ 2an)(d+ a+ 2an)(−m+ n+ 2)
×( �d+ am+ a+ an)Cm(n+ 2)=0

with respect to n is valid.
Next let ��(x) + ��(x)= �(x) + �(x); hence �a= a; �b= b+f; �c= c+ g; �d=d−f; �e= e− g for some

constants f; g. Then the relation (23) is valid; Cm(n) satisfying the recurrence equation

(−d+ f − 2am)(−d+ f − 2am− 2a)2(−d+ f − a− 2am)(−d+ f − 3a− 2am)
×(−m+ n)(an− a+ d+ am)Cm(n)− (−d+ f − 2am− 2a)(−d+ f − a− 2am)
×(−d+ f − 3a− 2am)(m+ 1)(2ea2m− 2a3m2n− d3 + 2a2gm+ 2ead− ad2

− bd2 + d2bn+ d2an2 + a2n2d− 2a2n2e + 2a2ne − a2nd+ dan2b− andb
− 2dane − 2aef − dan2f + 2a3m2n2 + 2anmd2 − 2a3m2 − am2bd
− ambd− 7a2m2d− 3a2md− 3am2d2 − 4amd2 + f3m− 4a3m3 − 2a3m4

− amfb− 2a2mfn2 + 2a2n2dm+ 2a2fmn− 2a3mn+ 2a3n2m− md3

+fban+ 2dgan+ 2a2m2nd+ d3n+ 2a2em2 + a2nf − dbnf − d2nf
− a2n2f − an2bf − 2ga2n+ 2ga2n2 − 2mfand+ mfd2 + 3fad− 2f2a
− 2f2d+ 2fd2 + 4am2fd+ 2deam+ d2g+ 5a2mf + 9a2m2f − md2b
− fed− fgd− mf2d+ 8amfd+ f2e − 2aemf + 2adgm− 2afgm
− 4a2dm3 + 4a2fm3 + dfb+ f2bm− 3am2f2 + 2a2m2g− am2fb− 6f2am
+ f3)Cm+1(n)− (−d+ f − 2am)(m+ 1)(4ea2m+ 8a2cm− 2b2am
+ 4a2gm+ 2ead+ 4dca− db2 + d2c + ad2 − bd2 − b2a+ ae2 + 2a2e
+ 2a2d+ 4a2c + a3 − dbe − bad− 2aef + 6a3m2 + 4a3m− am2bd
− 2ambd+ 6a2m2d+ 6a2md+ am2d2 + 2amd2 + 4a3m3 + a3m4

− b2am2 + 4a2cm2 − 2amfb+ 2a2em2 − mfd2 − 3fad+ f2a+ f2d− fd2

− 3am2fd+ 2deam+ d2g− 6a2mf − 6a2m2f − md2b+ 2dga− fed
− 2fga− fgd+ mf2d− 6amfd+ f2e − 2aemf + ag2 + 4adcm+ 2adgm
− 4afcm− 2afgm+ f2c − 2dfc − 2aeg+ dbg+ fbe − fbg+ 2a2dm3

− 2a2fm3 − db2m+ fb2m+ f2bm+ am2f2 + 2a2m2g+ f2b− am2fb− afb
+ 2f2am− 2a2f + fb2 + 2a2g− 4afc)(m+ 2)(−d+ f − am− an− a)
×(−am− 2a+ f + an)Cm+2(n)= 0
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with respect to m; with initial values Cn(n)= 1; Cn+1(n) ≡ 0. Furthermore; the recurrence
equation

(n+ 2)(d+ 2an+ 2a)(2dn3a2 + a3n4 + d2c + ae2 − dbe − db2n− d2bn
− n2ab2 + d2an2 + 2a2n2e + 4n2a2c − dan2b+ 4dcna+ 2dane)
×(n+ 1)(an− a+ d+ am)(−am+ f + an)Cm(n)− (d− a+ 2an)(d+ a+ 2an)
×(d+ 2an)(n+ 2)(−2ea2m− 2a3m2n+ d3 + 4dn3a2 − 2ead+ 2a3n4
+ ad2 + bd2 + 4a3n3 + 2a3n2 + d2bn+ 3d2an2 + 4and2 + 7a2n2d

− 2a2n2e − 2a2ne + 3a2nd+ dan2b+ andb− 2dane + 2aef − dan2f
− 2a3m2n2 − 2anmd2 − am2bd+ ambd− a2m2d+ a2md− am2d2
+ 2a2mfn2 − 2a2n2dm+ 2a2fmn+ 2a3mn+ 2a3n2m− md3 − 2fban
− dfan+ 4dgan− 2a2m2nd+ d3n+ 2a2em2 − 2dbnf − d2nf − 2an2bf
+ 4ga2n+ 4ga2n2 + 2mfand+ mfd2 + mfbd− fd2 + 2deam+ d2g
− md2b+ 2dga− fed+ amfd− 2aemf − 2dfb)Cm(n+ 1)− (d− a+ 2an)
×(d+ a+ 2an)(d+ 2an)2(d+ 2an+ 2a)(−m+ n+ 2)(−d+ f − am− an− a)
×Cm(n+ 2)=0

with respect to n is valid.

Note that the recurrence equation for ��(x)= �(x) given in Theorem 3 reduces to two terms, and
hence can be represented by hypergeometric terms, for the connection between Charlier polynomials
(Pn(x)= c(�)n (x); Qm(x)= c

(�)
m (x)), between Meixner polynomials (Pn(x)=m

(
; �)
n (x); Qm(x)=m(�; �)m (x)),

and between Krawtchouk polynomials (Pn(x)= k (p)n (x; N ); Qm(x)= k
(p)
m (x;M)). We will consider these

and more cases by another method in Section 6.

3. Hypergeometric representations: continuous case

Note that by P̃
(�; �)
n (x); C̃

�
n(x); L̃

(�)
n (x); H̃ n(x); B̃

(�)
n (x) we denote the monic Jacobi, Gegenbauer,

Laguerre, Hermite and Bessel polynomials. Their non-monic counterparts have the standardizations
(see, [1], (22.3), and [2]; Al-Salam denotes the Bessel polynomials by Y (�)n (x))

system P(�; �)n (x) C�n (x) L(�)n (x) Hn(x) B(�)n (x)

kn 1
2n
(2n+�+�

n

) (�)n 2n

n!
(−1)n
n! 2n (n+�+1)n

2n

We get
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Theorem 4. Let Pn(x) be a monic polynomial system given by the di�erential equation (2) with
�(x)= ax2 + bx + c; and �(x)=dx + e. Then the power series coe�cients Cm(n) given by

Pn(x)=
n∑
m=0

Cm(n) xm (29)

satisfy the recurrence equation

(m− n)(an+ d− a+ am)Cm(n) + (m+ 1)(bm+ e)Cm+1(n)
+ c(m+ 1)(m+ 2)Cm+2(n)= 0: (30)

In particular; if c=0; then the recurrence equation

(m− n)(an+ d− a+ am)Cm(n) + (m+ 1)(bm+ e)Cm+1(n)= 0

is valid; and we have the hypergeometric representation

Pn(x)=
( eb)n (

d−a
a )n

(d−a2a )n (
d
2a)n

(
b
4a

)n
· 2F1

(
−n; d+(n−1)aa

e
b

∣∣∣∣∣− a
b
x

)
; (31)

valid for a 6=0; or

Pn(x)=
(
e
b

)
n

(
b
d

)n
1F1

(−n
e
b

∣∣∣∣∣− d
b
x

)
; (32)

valid for a=0; b 6= 0; or �nally

Pn(x)=
(
e
d

)n
1F0

(−n
−

∣∣∣∣∣− d
e
x

)
; (33)

valid for a=0; b=0.
Therefore; the classical continuous orthogonal polynomials and their monic counterparts have

the following hypergeometric power series representations:

P(�; �)n (x) =
(
n+ �
n

)
2F1

(−n; n+ �+ � + 1
�+ 1

∣∣∣∣∣ 1− x2
)

=
(
2n+ �+ �

n

)(
x − 1
2

)n
2F1

( −n;−n− �
−2n− �− �

∣∣∣∣∣ 2
1− x

)

= (−1)n
(
n+ �
n

)
2F1

(−n; n+ �+ � + 1
� + 1

∣∣∣∣∣ 1 + x2
)

=
(
2n+ �+ �

n

)(
x + 1
2

)n
2F1

( −n;−n− �
−2n− �− �

∣∣∣∣∣ 2
1 + x

)
;
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C̃
�
n(x)= x

n
2F1

(−n=2;−n=2 + 1=2
−n− �+ 1

∣∣∣∣∣ 1x2
)
;

C�n (x)=
(�)n 2n xn

n! 2F1

(−n=2;−n=2 + 1=2
−n− �+ 1

∣∣∣∣∣ 1x2
)
;

L̃
(�)
n (x)= (1 + �)n (−1)n1F1

( −n
1 + �

∣∣∣∣∣ x
)
= xn 2F0

(−n;−n− �
−

∣∣∣∣∣− 1
x

)
;

L(�)n (x)=
(
n+ �
n

)
1F1

( −n
1 + �

∣∣∣∣∣ x
)
=
(−x)n
n! 2F0

(−n;−n− �
−

∣∣∣∣∣− 1
x

)
;

H̃n(x)= xn 2F0

(−n=2;−n=2 + 1=2
−

∣∣∣∣∣− 1
x2

)
;

Hn(x)= 2n xn 2F0

(−n=2;−n=2 + 1=2
−

∣∣∣∣∣− 1
x2

)
;

B̃
(�)
n (x)=

2n

(n+ �+ 1)n
2F0

(−n; n+ �+ 1
−

∣∣∣∣∣− x
2

)
= xn 1F1

( −n
−2n− �

∣∣∣∣∣ 2x
)
;

B(�)n (x)= 2F0

(−n; n+ �+ 1
−

∣∣∣∣∣− x
2

)
=
(n+ �+ 1)n

2n
xn 1F1

( −n
−2n− �

∣∣∣∣∣ 2x
)
:

These results are all particular cases of the recurrence equation (30).

Proof. Substituting the power series (29) into the di�erential equation, and equating the coe�cients
yield the recurrence equation (30).
For c=0 this recurrence equation degenerates to a two-term recurrence equation, and hence es-

tablishes the hypergeometric representations (31)–(33), using the initial value Cn(n)= 1.
A shift in the x-variable then generates the representations for the Jacobi polynomials. The two

points of development x1 = 1 and x2 =−1 correspond to the zeros of �(x).
Note that some of the hypergeometric representations correspond to each other by changing the

direction of summation.
The other representations follow by substituting the particular parameters a; b; c; d; and e into the

recurrence equation (30), and using the initial value Cn(n)= kn (or Cn(n)= 1 in the monic case).

We would like to mention that the recurrence equation (30) carries the complete information about
the hypergeometric representations given in the theorem.
The method described results in four di�erent hypergeometric representations for the Jacobi poly-

nomials. Many more hypergeometric representations exist, but the algorithmic procedure presented
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�nds power series representations only. For example, the representation (see, e.g., [1] (22.5.45))

P(�; �)n (x)=
(
n+ �
n

) (
x − 1
2

)n
2F1

(−n;−n− �
� + 1

∣∣∣∣∣ x + 1x − 1

)

cannot be discovered by this method.
The method was able to �nd hypergeometric series representations with point of development

x0 = 0 for the Gegenbauer polynomials which are speci�c Jacobi polynomials, but failed in the Jacobi
case, though. One might ask whether such a representation exists. This question can be completely
answered by an algorithm of Petkov�sek [18]. Petkov�sek’s algorithm �nds all hypergeometric term
solutions of holonomic recurrence equations, i.e., homogeneous linear recurrence equations with
polynomial coe�cients. Using the recurrence equation (30), an application of Petkov�sek’s algorithm
proves that the Jacobi polynomials do not generally have a hypergeometric series representation at
the origin.
Note that the method of the last section, although more complicated, does also give the recurrence

equation (30), and hence the above results.

4. Power representations

Whereas in the last section we considered the speci�c connection coe�cient problem for
Qm(x)= xm; in this section the opposite problem, having Pn(x)= xn; is studied.
In many applications, one wants to develop a given polynomial in terms of a given orthogonal

polynomial system. In this case handy formulas for the powers xn are very welcome.

Theorem 5. Let Qm(x) be a monic polynomial system given by the di�erential equation (2) with
��(x)= �ax2 + �bx + �c, and ��(x)= �dx + �e. Then the coe�cients Cm(n) of the power representations

xn=
n∑
m=0

Cm(n)Qm(x)

satisfy the recurrence equation

(n− m)( �d+ 2 �am)( �d+ 3 �a+ 2 �am)( �d+ �a+ 2 �am)( �d+ 2 �am+ 2 �a)2Cm(n)

+ ( �d �e + �b �d+ 2 �d�bm+ 2 �am2 �b+ 2 �am�b+ 2�e �an− �d�bn)( �d+ 2 �am+ 2 �a)

× (m+ 1)( �d+ 3 �a+ 2 �am)( �d+ �a+ 2 �am)Cm+1(n)− (m+ 2)(−4 �a2 �cm2

+ �a�b2m2 + 2 �a�b2m− 4 �a �cm �d− 8 �a2 �cm+ m�b2 �d− �a �e2 − �d2 �c + �b �e �d− 4 �a2 �c
− 4 �a �c �d+ �a�b2 + �b2 �d)( �am+ �an+ �a+ �d)(m+ 1)( �d+ 2 �am)Cm+2(n)= 0: (34)

If �c=0, then the recurrence equation

(n− m)( �d+ 2 �am)( �d+ �a+ 2 �am)Cm(n) + (m+ 1)(�bm+ �e)( �am+ n �a+ �d)Cm+1(n)= 0 (35)
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is valid, and we get ( �a�b 6=0)

Cm(n)=

(
�e
�b

)
n(

�d
�a

)
n

(
−
�b
�a

)n
·
(−n)m

(
�d
2 �a

)
m

(
�a+ �d
2 �a

)
m(

�e
�b

)
m

(
�an+ �d
�a

)
m
m!

(
4 �a
�b

)m
: (36)

Therefore, the following representations for the powers in terms of the classical continuous orthog-
onal polynomials are valid:

(1− x)n=2n�(�+ n+ 1)
n∑
m=0

(�+ � + 2m+ 1)�(�+ � + m+ 1)
�(�+ m+ 1)�(�+ � + n+ m+ 2)

(−n)mP(�; �)m (x)

(see e.g. [20], 136, Eq. (2), or [17], Section 5.2.4; note the essential misprint in this formula!),

(1 + x)n=2n�(� + n+ 1)
n∑
m=0

(−1)m (�+ � + 2m+ 1)�(�+ � + m+ 1)
�(� + m+ 1)�(�+ � + n+ m+ 2)

(−n)mP(�; �)m (x);

xn=
bn=2c∑
k=0

(−n=2)k(−n=2 + 1=2)k(−n− �)k
(−n=2− �=2)k(−n=2− �=2 + 1=2)kk!

(
−1
4

)k
C̃�n−2k(x);

(bn=2c denoting the largest integer smaller or equal to n=2)

xn=
n!

(�)n2n

bn=2c∑
k=0

(−n=2− �=2 + 1)k(−n− �)k
(−n=2− �=2)kk! (−1)kC�n−2k(x)

=
n!
2n

bn=2c∑
k=0

n+ �− 2k
k!(�)n+1−k

C�n−2k(x)

(see e.g. [20], 144, Eq. (36), or [17], Section 5.3.4),

xn=(1 + �)n
n∑
m=0

(−n)m
(1 + �)mm!

(−1)mL̃(�)m (x);

xn=(1 + �)n
n∑
m=0

(−n)m
(1 + �)m

L(�)m (x)= n!
n∑
m=0

(
n+ �
n− m

)
(−1)mL(�)m (x)

(see e.g. [20], 118, Eq. (2), or [17], Section 5.5.4),

xn=
bn=2c∑
k=0

(−n=2)k(−n=2 + 1=2)k
k!

H̃ n−2k(x);

xn=
bn=2c∑
k=0

(−n=2)k(−n=2 + 1=2)k
k!2n−2k

Hn−2k(x)=
n!
2n

bn=2c∑
k=0

1
k!(n− 2k)!Hn−2k(x)
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(see e.g. [20], 110, Eq. (4), or [17], Section 5.6.4),

xn=
(−2)n
(�+ 2)n

n∑
m=0

(−n)m(�=2 + 1)m(�=2 + 3=2)m
(n+ 2 + �)mm!

2mB̃(�)m (x);

xn=
(−2)n
(�+ 2)n

n∑
m=0

(−n)m(�+ 1)m(�=2 + 3=2)m
(n+ 2 + �)m(�=2 + 1=2)mm!

B(�)m (x)

= (−2)n
n∑
m=0

(2m+ �+ 1)
(−n)m�(�+ m+ 1)
m!�(n+ m+ �+ 2)

B(�)m (x)

(see [2], (7.5); note the essential misprint in this formula!; compare [20], 150, Eq. (7)).

Proof. In Section 2 it was shown how one obtains three essentially di�erent cross rules for the
connection coe�cients between Pn(x) and Qm(x). We modify this method here. For Qm(x), we have
the di�erential equation

��(x)Q′′
m(x) + ��(x)Q′

m(x) + ��mQm(x)= 0

with ��(x)= �ax2 + �bx + �c, and the derivative rule

��(x)Q′
m(x)= ��mQm+1(x) + ��mQm(x) + �
mQm−1(x);

and it is easily seen that our current Pn(x)= xn satis�es any of the derivative rules

��(x)P′
n (x)= �anPn+1(x) + �bnPn(x) + �cnPn−1(x): (37)

Hence in our situation, we get the two cross rules (24) with an=1, bn= cn=0

Cm(n+ 1)= �am−1Cm−1(n) + �bmCm(n) + �cm+1Cm+1(n) (38)

and (26) with ân=1=(n+ 1), b̂n= ĉn=0

1
n+ 1

Cm(n+ 1)= �̂am−1Cm−1(n) +
�̂bmCm(n) + �̂cm+1Cm+1(n) (39)

which we had deduced in Section 2. Using the derivative rule (37), we obtain the third cross rule

�anCm(n+ 1) + �bnCm(n) + �cnCm(n− 1)= ��m−1Cm−1(n) + ��mCm(n) + �
m+1Cm+1(n): (40)

To receive the recurrence equation (34), we use Theorem 1 writing the cross rules in terms
of �a; �b; �c; �d; and �e, only. Then by linear algebra we eliminate the variables Cm(n+1) and Cm(n− 1)
to obtain a pure recurrence equation with respect to m. (Similarly by elimination of the variables
Cm−1(n) and Cm+1(n) a pure recurrence equation with respect to n is obtained.) A shift by one gives
(34).
If �c=0, then the recurrence equation has still three terms, unfortunately. But since for �c=0

in neither of the three cross rules (38)–(40) the variable Cm(n − 1) does occur, we can do a
similar elimination, this time eliminating the variables Cm(n + 1) and Cm−1(n), leading to the �rst
order recurrence equation (35). Hence the hypergeometric representation (36) follows. The power
representations for the Jacobi, Laguerre and Bessel polynomials are special cases thereof.
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In the case of Hermite and Gegenbauer polynomials, (34) contains only the two terms Cm(n) and
Cm+2(n), which leads to the desired representations.

Note that, again, the recurrence equation (35) carries the complete information about the hyper-
geometric type representations given in the theorem.
As an immediate consequence of the above theorem, we get the following connection coe�cient

results.

Corollary 2. The following connection relations between the classical orthogonal polynomials are
valid:

P(�; �)n (x) =
n∑
m=0

(2m+ 
+ � + 1)
�(n+ � + 1)
�(m+ � + 1)

�(n+ m+ �+ � + 1)
�(n+ �+ � + 1)

× �(m+ 
+ � + 1)
�(n+ m+ 
+ � + 2)

(�− 
)n−m
(n− m)! P

(
; �)
m (x)

(see e.g. [4], (13)),

P(�; �)n (x) =
n∑
m=0

(−1)n−m(2m+ �+ �+ 1) �(n+ �+ 1)
�(m+ �+ 1)

�(n+ m+ �+ � + 1)
�(n+ �+ � + 1)

× �(m+ �+ �+ 1)
�(n+ m+ �+ �+ 2)

(� − �)n−m
(n− m)! P

(�; �)
m (x)

(see e.g. [6], (2.8)),

C�n (x)=
�(�)

�(�)�(�− �)
bn=2c∑
m=0

(n− 2k + �)�(k + �− �)�(n− k + �)
k!�(n− k + � + 1) C�n−2k(x)

(see e.g. [5], (3.42)),

L(�)n (x)=
n∑
m=0

(�− �)n−m
(n− m)! L

(�)
m (x)

(see e.g. [20], 119, Eq. (2)),

B(�)n (x) =
(−1)n(�− �)n
(� + 2)n

n∑
m=0

(−n)m(� + 1)m(�=2 + 3=2)m(n+ �+ 1)m
(n+ 2 + �)m(�=2 + 1=2)m(� − �+ 1− n)mm! (−1)

mB(�)m (x)

=
n∑
m=0

(−1)m(2m+ � + 1) · (−n)m�(� + m+ 1)(n+ �+ 1)m�(� − �+ 1)
m!�(n+ m+ � + 2)�(m− n+ � − �+ 1) B(�)m (x);

(see [2], (8.2); note the essential misprint in this formula!).

Proof. We want to �nd the coe�cients Cm(n) in the relation (23)

Pn(x)=
n∑
m=0

Cm(n)Qm(x):
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Combining

Pn(x)=
∑
j∈Z

Aj(n)xj and xj=
∑
m∈Z

Bm( j)Qm(x)

yields the representation

Pn(x)=
∑
j∈Z

∑
m∈Z

Aj(n)Bm( j)Qm(x);

and interchanging the order of summation gives

Cm(n)=
∑
j∈Z

Aj(n)Bm( j):

Similarly, if (as in the Gegenbauer case)

Pn(x)=
∑
j∈Z

Aj(n)xn−2j and xj=
∑
m∈Z

Bm( j)Qj−2m(x)

then one gets

Dm(n)=
∑
j∈Z

Aj(n)Bm−j(n− 2j)

with

Pn(x)=
n∑
m=0

Dm(n)Qn−2m(x):

Since the summand F(j; m; n) :=Aj(n)Bm( j) turns out to be a hypergeometric term with respect to
(j; m; n), i.e., the term ratios F(j + 1; m; n)=F(j; m; n), F(j; m + 1; n)=F(j; m; n), and F(j; m; n + 1)=
F(j; m; n) are rational functions, Zeilberger’s algorithm ([26, 11], see, e.g., [9]) applies and �nds
recurrence equations for Cm(n) with respect to m and n.
In all cases considered, Zeilberger’s algorithm �nds recurrence equations of �rst order with respect

to m (as well as for n). The given representations follow then from the initial value Cn(n)=
kn= �kn.

For some applications, it is important to know the rate of change in the direction of the parameters
of the orthogonal systems, given in terms of the system itself. By a limiting process, these parameter
derivative representations can be obtained from the results of Corollary 2.

Corollary 3. The following representations for the parameter derivatives of the classical orthogonal
polynomials are valid:

@
@�
P(�; �)n (x) =

n−1∑
m=0

1
�+ � + 1 + m+ n

×
(
P(�; �)n (x) +

�+ � + 1 + 2m
n− m

(� + m+ 1)n−m
(�+ � + m+ 1)n−m

P(�; �)m (x)
)
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(see [7], Theorem 3),

@
@�
P̃(�; �)n (x)=

n−1∑
m=0

2n−m

n− m

(2m+�+�
m

)
(2n+�+�

n

) �+ � + 1 + 2m
�+ � + 1 + m+ n

(� + m+ 1)n−m
(�+ � + m+ 1)n−m

P̃(�; �)m (x);

@
@�
P(�; �)n (x) =

n−1∑
m=0

1
�+ � + 1 + m+ n

×
(
P(�; �)n (x) + (−1)n−m �+ � + 1 + 2m

n− m
(�+ m+ 1)n−m

(�+ � + m+ 1)n−m
P(�; �)m (x)

)

(see [7], Theorem 3),

@
@�
P̃(�; �)n (x)=

n−1∑
m=0

(−2)n−m
n− m

(2m+�+�
m

)
(2n+�+�

n

) �+ � + 1 + 2m
�+ � + 1 + m+ n

(�+ m+ 1)n−m
(�+ � + m+ 1)n−m

P̃(�; �)m (x);

@
@�
C�n (x) =

n−1∑
m=0

(
2(1 + m)

(2�+ m)(2�+ 1 + 2m)
+

2
2�+ m+ n

)
C�n (x)

+
n−1∑
m=0

2(1 + (−1)n−m)(�+ m)
(2�+ m+ n)(n− m) C

�
m(x)

(see [12], Theorem 10),

@
@�
C̃�n(x) =

n−1∑
m=0

2m−n+1
(�)mn!
(�)nm!

(1 + (−1)n−m)(�+ m)
(2�+ m+ n)(n− m) C̃

�
m(x)

=
bn=2c∑
k=1

n!
(�+ n− 2k)2k4k(n− 2k)!

n− 2k + �
k(n− k + �) C̃

�
n−2k(x);

@
@�
L(�)n (x)=

n−1∑
m=0

1
n− mL

(�)
m (x)

(see [12], Theorem 10),

@
@�
L̃(�)n (x)=

n−1∑
m=0

(−1)n−m
n− m

n!
m!
L̃(�)m (x);

@
@�
B�n(x) =

n−1∑
m=0

1
�+ n+ m+ 1

×
(
B�n(x) + (−1)n−m

2m+ �+ 1
(n− m)

n!
(�+ m+ 1)n−mm!

B�m(x)
)
;

@
@�
B̃�n(x)=

n−1∑
m=0

(−2)n−m
(n− m)(�+ n+ m+ 1)

n!
(�+ 2m+ 2)2n−2m−1m!

B̃�m(x):
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Proof. Given the connection relation

P�n (x)=
n∑
m=0

Cm(n; �; �)P�m(x);

we build the di�erence quotient

P�n (x)− P�n (x)
�− � =

n∑
m=0

Cm(n; �; �)
�− � P�m(x)−

P�n (x)
�− �

=
Cn(n; ��)− 1

�− � P�n (x) +
n−1∑
m=0

Cm(n; �; �)
�− � P�m(x)

so that with �→ �

@
@�
P�n (x)= lim�→�

Cn(n; �; �)− 1
�− � P�n (x) +

n−1∑
m=0

lim
�→�

Cm(n; �; �)
�− � P�m(x) (41)

since the systems P�n (x) are continuous with respect to �. This gives the results.

Note that for monic polynomials (and moreover if kn does not depend on � as in the Laguerre
case) the �rst limit in (41) equals zero. Hence the parameter derivative representations are simplest
in such a case.

5. Hypergeometric representations: discrete case

By h(�; �)n (x; N ) and Qn(x; �; �; N ) we denote two commonly used standardizations of the Hahn
polynomials (see [19], and [23]), and by m(
; �)n (x), k (p)n (x; N ) and c

(�)
n (x) the Meixner; Krawtchouk

and Charlier polynomials are denoted, respectively. They have the standardizations

system h(�; �)n (x; N ) Qn(x; �; �; N ) m(
; �)n (x) k (p)n (x; N ) c(�)n (x) K (�; �)n (x)

kn
(�+�+2n

n

) (�+�+n+1)n
(−N )n(�+1)n

(
1− 1

�

)n
1
n!

(
− 1
�

)n
�n

The polynomials tn(x; N ) := h(0;0)n (x; N ) are the discrete Chebyshev polynomials. The polynomials
K (�; �)n (x) given in (21), are not orthogonal (see, however, (22)), but satisfy the di�erence equation

�3y(x) + (�x + �)�y(x) + �ny(x)= 0:

The monic counterparts of the discrete systems will be denoted by h̃(�; �)n (x; N ), Q̃n(x; �; �; N ), t̃n(x; N ),
m̃(
; �)n (x), k̃ (p)n (x; N ) and c̃

(�)
n (x), respectively. Observe that therefore by h̃n we do not denote the

Hahn–Eberlein polynomials h̃(�;�)n (x; N ) as in [19].
In the continuous case, we looked for power series representations, i.e., we set Qm(x)= xm. The

corresponding choice in the discrete case is a representation in terms of the falling factorial

Qm(x)= xm := x(x − 1) · · · (x − m+ 1)= (x − m+ 1)m=(−1)m(−x)m:
We get
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Theorem 6. Let Pn(x) be a monic polynomial system given by the di�erence equation (4) with
�(x)= ax2 + bx + c, and �(x)= dx + e. Then the series coe�cients Cm(n) given by

Pn(x)=
n∑
m=0

Cm(n)xm (42)

satisfy the recurrence equation

(an+ am− a+ d)(n− m)Cm(n)
+ (m+ 1)(an2 − 2am2 − an− am+ nd− 2dm− bm− d− e)Cm+1(n)
− (m+ 1)(m+ 2)(am2 + 2am+ dm+ bm+ a+ d+ b+ c + e)Cm+2(n)= 0: (43)

If c=0, then the recurrence equation

(n− m)(am+ d+ an− a)Cm(n)− (m+ 1)(am2 + mb+ md+ e)Cm+1(n)= 0 (44)

is valid, and we have the hypergeometric representation

Pn(x) =

(d
a − 1

)
n

(
b+d+

√
(b+d)2−4ae
2a

)
n

(
b+d−

√
(b+d)2−4ae
2a

)
n( d

2a

)
n

(d−a
2a

)
n

(
1
4

)n

× 3F2


 −n;−x; n− 1 + d

a

b+d+
√
(b−d)2−4ae
2a ;

b+d−
√
(b−d)2−4ae
2a

∣∣∣∣∣∣ 1

 ; (45)

valid for a 6=0, or

Pn(x)=
(

e
b+ d

)
n

(
1 +

b
d

)n
2F1

(−n;−x
e
b+d

∣∣∣∣∣ d
b+ d

)
; (46)

valid for a=0, b+ d 6=0, or �nally

Pn(x)=
(
−e
b

)n
2F0

(−n;−x
−

∣∣∣∣∣− b
e

)
; (47)

valid for a=0, d=−b.
Therefore, the classical discrete orthogonal polynomials and their monic counterparts have the

following hypergeometric series representations:

h(�; �)n (x; N )=
(−1)n
n!

(� + 1)n(N − n)n 3F2
(−n;−x; n+ 1 + �+ �

� + 1; 1− N

∣∣∣∣∣ 1
)



W. Koepf, D. Schmersau / Journal of Computational and Applied Mathematics 90 (1998) 57–94 83

(see e.g. [19], p. 54, Table 2.4),

h̃(�; �)n (x; N )=
(1 + �)n(1− N )n
(1 + n+ �+ �)n

3F2

(−n;−x; n+ 1 + �+ �
� + 1; 1− N

∣∣∣∣∣ 1
)
;

tn(x; N )= (−1)n(N − n)n · 3F2
(−n;−x; n+ 1

1; 1− N

∣∣∣∣∣ 1
)
;

t̃n(x; N )=
n!(1− N )n
(1=2)n4n

3F2

(−n;−x; n+ 1
1; 1− N

∣∣∣∣∣ 1
)
;

Qn(x; �; �; N )= 3F2

(−n;−x; n+ 1 + �+ �
�+ 1;−N

∣∣∣∣∣ 1
)

(see e.g. [23], 1.5),

Q̃n(x; �; �; N )= h̃
(�;�)
n (x; N + 1);

m(
; �)n (x)= (
)n 2F1

(−n;−x



∣∣∣∣∣ 1− 1
�

)

(see e.g. [19], p. 54, Table 2.4),

m̃(
; �)n (x)= (
)n

(
�

� − 1
)n

2F1

(−n;−x



∣∣∣∣∣ 1− 1
�

)
;

k (p)n (x; N )= (−1)n
(
N
n

)
pn 2F1

(−n;−x
−N

∣∣∣∣∣ 1p
)

(see e.g. [19], p. 54, Table 2.4),

k̃ (p)n (x; N )= (−N )npn 2F1
(−n;−x

−N

∣∣∣∣∣ 1p
)
;

c(�)n (x)= 2F0

(−n;−x
−

∣∣∣∣∣− 1
�

)

(see e.g. [19], p. 54, Table 2.4),

c̃(�)n (x)= (−�)n 2F0
(−n;−x

−

∣∣∣∣∣− 1
�

)
:

These results are all particular cases of the recurrence equation (44).

Proof. Substituting the series (42) into the di�erence equation, and equating the coe�cients of the
falling factorials yield the recurrence equation (43) which had been obtained by Lesky [16].
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This conversion can be easily done using a computer algebra system by bringing the given di�er-
ence equation into the form (5), expanding it, and replacing any occurrence of �y(x) by (m+1)Cm+1,
any occurrence of a product xy(x) by Cm−1 + mCm and any occurrence of a shift y(x + 1) by
Cm + (m+ 1)Cm+1 since

�xm=mxm−1 ; xxm= xm+1 + mxm;

and

(x + 1)m= xm + mxm−1:

Iteratively for all nonnegative integers j; k any of the terms xj�ky(x) and xjy(x+k) can be replaced
by these rules. Note that this method can also be applied for higher order di�erence equations with
polynomials coe�cients.
Di�erent from the continuous case, the recurrence equation (43) does not degenerate to a two-

term recurrence equation for c=0. To get (44), nevertheless, we must use a di�erent approach. One
possibility is to apply Petkov�sek’s algorithm [18] to the recurrence equation (43), leading to (44).
Another possibility is to modify the method which will be used in the next section to deduce

representations of the falling factorials in terms of discrete orthogonal systems. This method yields
(44) directly.
As soon as (44) is deduced, the initial value Cn(n)= 1 gives the hypergeometric representations

(45)–(47) which include all other representations by substituting the particular parameters a; b; c; d,
and e.

We would like to mention that, again, a single recurrence equation, (43), carries the complete
information about the hypergeometric representations given in the theorem.
Note furthermore, that the radicals in (45) do only occur by the representation used: the radical

factors come in pairs whose product is radical-free. Note that the computation which gives (45),
answers a question raised by Koornwinder [15]. For more examples of this type see [13].
Our method was able to �nd hypergeometric series representations for the particular case c=0.

This is the most important situation since all the classical discrete orthogonal families are of this
type, corresponding to the fact that their discrete support has zero as left boundary point (see e.g.
[19], Tables 2.1–2.3).
By construction, all the series representations determined have an upper parameter −x. The ques-

tion remains, however, whether or not such a hypergeometric series representation might be valid for
c 6=0, too. In general, the answer is no. Petkov�sek’s algorithm shows that the recurrence equation
(43) does not generally have a hypergeometric term solution.
Note that the hypergeometric representation (21) for K (�; �)n (x) is not of this type, and cannot be

obtained by the given method. By Petkov�sek’s algorithm there is no representation (42) with a
hypergeometric term Cm(n) for these polynomials.

6. Falling factorial representations

Whereas in the last section we considered the speci�c connection coe�cient problem for Qm(x)=
xm, in this section the opposite problem, having Pn(x)= xn, is studied.
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Theorem 7. Let Qm(x) be a monic polynomial system given by the di�erence equation (4) with
��(x)= �ax2 + �bx + �c, and ��(x)= �dx + �e. Then the coe�cients Cm(n) of the falling factorial repre-
sentations

xn=
n∑
m=0

Cm(n)Qm(x) (48)

satisfy the recurrence equation

(2m �a+ �a+ �d)(2m �a+ 3 �a+ �d)(2m �a+ 2 �a+ �d)2(2m �a+ �d)(n− m)Cm(n)
+ (2m �a+ �a+ �d)(2m �a+ 3 �a+ �d)(2m �a+ 2 �a+ �d)(m+ 1)(2m2n �a2 − 2m2 �a2

+m2 �a �d+ 2m2 �a�b+ 2mn �a2 + 2mn �a �d− 2m �a2 − m �a �d+ 2m �a�b+ m �d2

+ 2m �d�b+ n �a �d+ 2n �a �e − n �d�b− �a �d+ �d�b+ �d �e)Cm+1(n)

+ (m+ 1)(2m �a+ �d)(m4 �a3 + 4m3 �a3 + 2m3 �a2 �d+ 6m2 �a3 + 6m2 �a2 �d

+4m2 �a2 �c + 2m2 �a2 �e + m2 �a �d2 − m2 �a �d�b− m2 �a�b2 + 4m �a3 + 6m �a2 �d
+8m �a2 �c + 4m �a2 �e + 2m �a �d2 − 2m �a �d�b+ 4m �a �d �c + 2m �a �d �e
− 2m �a�b2 − m �d2 �b− m �d�b2 + �a3 + 2 �a2 �d+ 4 �a2 �c + 2 �a2 �e + �a �d2

− �a �d�b+ 4 �a �d �c + 2 �a �d �e − �a�b2 + �a �e2 − �d2 �b+ �d2 �c

− �d�b2 − �d�b �e)(m+ 2)(m �a+ n �a+ �a+ �d)Cm+2(n)= 0: (49)

If �c=0, then

0= ( �d+ �a+ 2 �am)( �d+ 2 �am)(−n+ m)Cm(n)
− ( �an+ �d+ �am)(m+ 1)( �am2 + m �d+ m�b+ �e)Cm+1(n): (50)

Therefore, the following representations for the falling factorials in terms of the classical discrete
orthogonal polynomials are valid:

xn=
n∑
m=0

(� + 1)n(1− N )n(−1)n(1 + �+ � + 2m)(−n)m(1 + �+ �)m
(�+ � + 2)n(1 + �+ �)(n+ 2 + �+ �)m(� + 1)m(1− N )m h

(�; �)
m (x; N );

xn=
n∑
m=0

(� + 1)n(1− N )n(−1)n
(�+ � + 2)n

(−n)m(�=2 + �=2 + 1)m(�=2 + �=2 + 3=2)m4m
(n+ 2 + �+ �)m(� + 1)m(1− N )mm! h̃(�; �)m (x; N );

xn=
n∑
m=0

(1 + �)n(−N )n(−1)n
(�+ � + 2)n

(�+ � + 1 + 2m)
(�+ � + 1)

(−n)m(1 + �+ �)m
(n+ 2 + �+ �)mm!

Qm(x; �; �; N )



86 W. Koepf, D. Schmersau / Journal of Computational and Applied Mathematics 90 (1998) 57–94

(compare [8], (4.2)–(4.3)),

xn=
(1− N )n(−1)n

n+ 1

n∑
m=0

(−n)m(1 + 2m)
(n+ 2)m(1− N )m tm(x; N );

xn=
(1− N )n(−1)n

n+ 1

n∑
m=0

(−n)m(3=2)m4m
(n+ 2)m(1− N )mm! t̃m(x; N );

xn=
n∑
m=0

(−1)n(
)n
(

�
�−1
)n
(−n)m

(
)mm!
m(
; �)m (x);

xn=
n∑
m=0

(−1)n (
)n
(

�
�−1
)n−m

(−n)m
(
)m m!

m̃(
; �)m (x);

xn=
n∑
m=0

(−1)n (−N )n pn−m (−n)m
(−N )m k (p)m (x; N );

xn=
n∑
m=0

(−1)n (−N )n pn−m (−n)m
(−N )m m! k̃ (p)m (x; N );

xn=
n∑
m=0

�n (−n)m
m!

c(�)m (x);

xn=
n∑
m=0

(−1)n (−�)n−m (−n)m
m!

c̃(�)m (x):

Proof. In Section 2 it was shown how one obtains three essentially di�erent cross rules for the
connection coe�cients between Pn(x) and Qm(x). We modify this method here. For Qm(x), we have
the di�erence equation

��(x)�3Qm(x) + ��(x)�Qm(x) + ��mQm(x)= 0

with ��(x)= �ax2 + �bx + �c, and the di�erence rule (11)

( ��(x) + ��(x))�Qm(x)= ��mQm+1(x) + ( ��m − ��m)Qm(x) + �
mQm−1(x);

and it is easily seen that our current Pn(x)= xn satis�es any of the di�erence rules

( ��(x) + ��(x))�Pn(x) = �anPn+1(x) + n ( �a (2n− 1) + �b+ �d)Pn(x)

+ n ((n− 1)( �a(n− 1) + �b+ �d) + �c + �e)Pn−1(x): (51)
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Hence in our situation, we get the two cross rules (24) with an=1; bn= n; cn=0

Cm(n+ 1)= �am−1Cm−1(n) + �bmCm(n) + �cm+1Cm+1(n) (52)

and (26) with ân=1=(n+ 1); b̂n= ĉn=0

1
n+ 1

anCm(n+ 1)= �̂am−1Cm−1(n) +
�̂bmCm(n) + �̂cm+1Cm+1(n) (53)

which we had deduced in Section 2. Using the di�erence rule (51), we obtain the third cross rule

�anCm(n+ 1) + n ( �a (2n− 1) + �b+ �d)Cm(n) + n ((n− 1)( �a(n− 1) + �b+ �d) + �c + �e)Cm(n− 1)
= ��m−1Cm−1(n) + ��mCm(n) + �
m+1Cm+1(n): (54)

To receive the recurrence equation (49), we use Theorem 1 writing the cross rules in terms of
�a; �b; �c; �d; and �e, only. Then by linear algebra we eliminate the variables Cm(n+1) and Cm(n− 1)
to obtain a pure recurrence equation with respect to m. (Similarly by elimination of the variables
Cm−1(n) and Cm+1(n) a pure recurrence equation with respect to n is obtained.) A shift by one
gives (49).
If �c=0, then the recurrence equation has still three terms, unfortunately. For �c=0, we �nd a fourth

cross rule to eliminate one more variable in the following way. Since the (second) di�erence rule (10)

��(x)3Qm(x)= ��mQm+1(x) + ��mQm(x) + �
mQm−1(x)

is valid, we can use the fact that for �c=0 any of the di�erence rules

��(x)3Pn(x)= �anPn+1(x) + n ( �an+ �b)Pn(x);

and therefore the fourth cross rule

�anCm(n+ 1) + n ( �an+ �b)Cm(n)= ��m−1Cm−1(n) + ��mCm(n) + �
m+1Cm+1(n) (55)

is valid.
Eliminating the variables Cm(n+1); Cm−1(n), and Cm−1(n) from the four cross rules (52)–(55)

gives the �rst order recurrence equation (50). This leads to the desired representations.

Whereas we admit that all the shifted factorial representations of the theorem essentially were
known [8, 22], our presentation uni�es this development. In particular, the recurrence equation (50)
carries the complete information about the falling factorial representations given in the theorem.
Petkov�sek’s algorithm proves, again, that for the family K (�; �)n (x) there is no representation (48)

with a hypergeometric term Cm(n).
As an immediate consequence of Theorem 7, we get the following connection coe�cient results.

Corollary 4. The following connection relations between the classical discrete orthogonal polyno-
mials are valid:

h(�; �)n (x; N ) =
n∑
m=0

(� − �)n (1− N )n (�+ 1)n
(2 + �+ �)n n!
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× (�+ �+ 1 + 2m)
(�+ �+ 1)

(−n)m (1 + �+ �)m (n+ 1 + �+ �)m
(1−N )m (�+1)m (�+2+ n+ �)m (−n− �+ �+1)m

× h(�; �)m (x; N ); (56)

h̃(�; �)n (x; N ) =
n∑
m=0

(�+ 1)n (1− N )n (1 + �+ �)n (� − �)n
(2 + �+ �)n (�=2 + �=2 + 1=2)n (�=2 + �=2 + 1)n 4n

× (−n)m (n+ 1 + �+ �)m (�=2 + �=2 + 1)m (�=2 + �=2 + 3=2)m 4
m

(1− N )m (�+ 1)m (�+ 2 + n+ �)m (−n− � + �+ 1)m m! h̃(�; �)m (x; N );

h(�; �)n (x; N ) =
n∑
m=0

(� + 1)n (1− N )n (�− 
)n (−1)n
(2 + � + 
)n n!

× (� + 
+ 1 + 2m)
(� + 
+ 1)

(−n)m (1 + � + 
)m (n+ 1 + �+ �)m (−1)m
(1− N )m (� + 1)m (� + 
+ n+ 2)m (
− �− n+ 1)m

× h(
; �)m (x; N );

h̃(�; �)n (x; N ) =
n∑
m=0

(� + 1)n (1− N )n (1 + �+ �)n (�− 
)n (−1)n
(2 + � + 
)n (�=2 + �=2 + 1=2)n (�=2 + �=2 + 1)n 4n

× (−n)m (n+ 1 + �+ �)m (�=2 + 
=2 + 1)m (�=2 + 
=2 + 3=2)m (−4)
m

(� + 
+ n+ 2)m (1− N )m (� + 1)m (
− �− n+ 1)m m!
× h̃(
; �)m (x; N );

h̃(�; �)n (x; N )

=
bn=2c∑
k=0

(−n=2)k (−(n− 1)=2)k (�− 
)k ((N − n)=2)k (N − n+1)=2)k (−n− 
− 1=2)k
(1=4− 
=2− n=2)k (−n+ 1=2− �)k (−n=2− 1=4− 
=2)k k! 4k

× h̃(
; 
)n−2k(x; N ); (57)

h(�; �)n (x; N ) =
(�+ 1)n (�+ 1=2)n (2
+ 1)n
(
+ 1)n (
+ 1=2)n (2�+ 1)n

×
bn=2c∑
k=0

(N−n
2

)
k

(N−n+1
2

)
k
(�− 
)k

(
3−2
−2n

4

)
k

(
−2
−2n−1

2

)
k

(−
−n
2

)
k

(
−
−n+1

2

)
k
4k

(−
− n=2)k (−
=2− n=2− 1=4)k (−n− �+ 1=2)k (−
− n=2 + 1=2)k k!
× h(
; 
)n−2k(x; N ); (58)

Qn(x; �; �; N ) =
(�+ 1=2)n (2
+ 1)n
(
+ 1=2)n (2�+ 1)n

×
bn=2c∑
k=0

(−n=2)k (−(n− 1)=2)k (�− 
)k (3=4− 
=2− n=2)k (−
− n− 1=2)k
(−
− n=2)k (−
=2− n=2− 1=4)k (−n− �+1=2)k (−
− n=2+1=2)k k!

×Qn−2k(x; 
; 
; N ); (59)



W. Koepf, D. Schmersau / Journal of Computational and Applied Mathematics 90 (1998) 57–94 89

Qn(x; �; �; N ) =
n∑
m=0

(� − �)n (−1)n
(2 + �+ �)n

× (�+ �+ 1 + 2m)
(�+ �+ 1)

(−n)m (1 + �+ �)m (n+ 1 + �+ �)m (−1)m
(�+ 2 + n+ �)m (1− � + �− n)m m! Qm(x; �; �; N )

(compare [8], (4.1), (4.5)),

Qn(x; �; �; N ) =
n∑
m=0

(�− 
)n (� + 1)n
(�+ 1)n (2 + � + 
)n

× (� + 
+ 1 + 2m)
(� + 
+ 1)

(−n)m (1 + � + 
)m (
+ 1)m (n+ 1 + �+ �)m
(� + 1)m (� + 
+ n+ 2)m (
− �− n+ 1)m m!

×Qm(x; 
; �; N )

(compare [8], (4.1), (4.5)),

m(
; �)n (x)=
n∑
m=0

(
− �)n (−n)m
(�− n+ 1− 
)m m! m

(�; �)
m (x)

(compare [8], (5.5)),

m̃(
; �)n (x)=
n∑
m=0

(
�

� − 1
)n−m (
− �)n (−n)m

(�− n+ 1− 
)m m! m̃
(�; �)
m (x);

m(
; �)n (x)=
n∑
m=0

(
�− �
� (�− 1)

)n
(
)n

(−n)m
(
)m m!

(
−� (� − 1)

�− �
)m
m(
; �)m (x)

(compare [8], (5.4)),

m̃(
; �)n (x)=
n∑
m=0

(
�− �

(� − 1) (�− 1)
)n−m (
)n (−n)m (−1)m

(
)m m!
m̃(
; �)m (x);

k (p)n (x; N )=
n∑
m=0

(p− q)n−m (−N )n (−n)m (−1)
m

n! (−N )m k (q)m (x; N )

(compare [8], (5.11)),

k̃ (p)n (x; N )=
n∑
m=0

(p− q)n−m (−N )n (−n)m (−1)
m

(−N )m m! k̃ (q)m (x; N );

k (p)n (x; N )=
n∑
m=0

pn−m (M − N )n (−n)m
n! (N −M − n+ 1)m k (p)m (x;M)
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(compare [8], (5.12)),

k̃ (p)n (x; N )=
n∑
m=0

pn−m (M − N )n (−n)m
(N −M − n+ 1)m m! k̃

(p)
m (x;M);

c(�)n (x)=
n∑
m=0

(−1)n �
m

�n
(�− �)n−m (−n)m

m!
c(�)m (x)

(compare [8], (5.16)),

c̃(�)n (x)=
n∑
m=0

(−1)m (�− �)n−m (−n)m
m!

c̃(�)m (x);

K (�; �)n (x)=
(
� − �
�

)
n
�n−m

n∑
m=0

(−n)m
(
�(1−n)−�+�

�

)
m

m!
K (�; �)m (x);

K̃ (�; �)n (x)=
(
� − �
�

)
n

n∑
m=0

(−n)m
(
�(1−n)−�+�

�

)
m

m!
K̃ (�; �)m (x):

Proof. Combining the representations

Pn(x)=
∑
j∈Z
Aj(n) xj and xj=

∑
m∈Z

Bm(j)Qm(x);

and using Zeilberger’s algorithm, the method of Corollary 2 yields the results.
The connection relations for the polynomials K (�; �)n (x) cannot be obtained by this method. Here

Theorem 2 leads straightforwardly to the result.

Although besides (57)–(59) the connection results were essentially known [8, 3], our development
gives a uni�ed treatment of them and makes new results like (57)–(59) easily accessible.
Note that some of the representations are rather complicated. We suggest the idea to use the

notation pfq for the summand of pFq, i.e.,

pFq

(
upper

lower

∣∣∣∣∣ x
)
=

∞∑
k=0

pfq

(
upper

lower

∣∣∣∣∣ x; k
)
:

With this notation, (56) could be written in the standardized hypergeometric notation

h(�; �)n (x; N ) = 3f1

(
�− �; 1−N; �+1

2 + �+ �

∣∣∣∣∣ 1; n
)
:

×
n∑
m=0

4f5

( −n; 1 + �+ �; n+ 1 + �+ �; �=2 + �=2 + 3=2; 1
1−N; �+1; �=2+ �=2+1=2; �+2+ n+ �;−n− �+ �+1

∣∣∣∣∣ 1;m
)

× h(�; �)m (x; N ):

Finally, we deduce the parameter derivatives for the classical discrete orthogonal polynomials.
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Corollary 5. The following representations for the parameter derivatives of the classical discrete
orthogonal polynomials are valid:

@
@�
h(�; �)n (x; N ) =

n−1∑
m=0

1
�+ � + m+ n+ 1

· (h(�; �)n (x; N )

+
(−1)n−m (�+ �+1+2m) (1−N +m)n−m (�+1+m)n−m

(n− m) (�+ � + 1 + m)n−m h(�; �)m (x; N ));

@
@�
h̃(�; �)n (x; N )=

n−1∑
m=0

(−1)n−m (�+ �+1+2m)
(�+ �+m+ n+1) (n−m)

(1−N +m)n−m (�+1+m)n−m n!
(�+ �+1+2m)2n−2m m!

h̃(�; �)m (x; N );

@
@�
Qn(x; �; �; N ) =

n−1∑
m=0

(
1

�+ � + m+ n+ 1
− 1
�+ m+ 1

)
· (Qn(x; �; �; N )

+
(�+ � + 1 + 2m) (� + 1 + m)n−m n!

(n− m) (�+ 1 + m)n−m (�+ � + 1 + m)n−m m!Qm(x; �; �; N ));

@
@�
h(�; �)n (x; N ) =

n−1∑
m=0

1
�+ � + m+ n+ 1

· (h(�; �)n (x; N )

+
�+ � + 1 + 2m

n− m
(1− N + m)n−m (�+ 1 + m)n−m

(�+ � + 1 + m)n−m
h(�; �)m (x; N ));

@
@�
h̃(�; �)n (x; N )=

n−1∑
m=0

�+ �+1+2m
(�+ �+m+ n+1) (n−m)

(1−N +m)n−m (�+1+m)n−m n!
(�+ �+1+2m)2n−2m m!

h̃(�; �)m (x; N );

@
@�
Qn(x; �; �; N ) =

n−1∑
m=0

1
�+ � + m+ n+ 1

· (Qn(x; �; �; N )

+
(−1)n−m (�+ � + 1 + 2m)

n− m
n!

(�+ � + 1 + m)n−m m!
Qm(x; �; �; N ));

@
@�
m(
; �)n (x)=

n(−1 + 
+ n)
(1− �)� m(
; �)n−1 (x)−

n
(1− �)� m

(
; �)
n (x)

(see; e.g., [12], Theorem 9),

@
@�
m̃(
; �)n (x)=

n(1− 
− n)
(1− �)2 m̃(
; �)n−1 (x);

@
@

m(
; �)n (x)=

n−1∑
m=0

n!
m! (n− m) m

(
; �)
m (x)
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(see [12], Theorem 10),

@
@

m̃(
; �)n (x)=

n−1∑
m=0

(
�

� − 1
)n−m n!

m! (n− m) m̃
(
; �)
m (x);

@
@p
k (p)n (x; N )= (−1 + n− N ) k (p)n−1(x; N )

(see; e.g., [12], Theorem 9),

@
@p
k̃ (p)n (x; N )= n (−1 + n− N ) k̃ (p)n−1(x; N );

@
@�
c(�)n (x)=

n
�
c(�)n−1(x)−

n
�
c(�)n (x)

(see; e.g., [12], Theorem 9),

@
@�
c̃(�)n (x)=− nc̃(�)n−1(x);

@
@�
K (�; �)n (x)=

n−1∑
m=0

�n−m−1 n!
(n− m)m! K

(�; �)
m (x);

@
@�
K̃ (�; �)n (x)=

n−1∑
m=0

n!
� (n− m)m! K̃

(�; �)
m (x):

Proof. If the derivative is taken with respect to a variable occurring as an argument rather than as
a parameter in the hypergeometric representation, its representation can be easily obtained from the
derivative rule of the generalized hypergeometric function, and the chain rule. In those cases, the
representations need at most two neighboring polynomials.
The other cases can be handled similarly to Corollary 3.

7. Conclusions

Here, we want to recall the algorithms to convert between the di�erent types of representations:
(i) Hypergeometric Representation→Recurrence Equation: Zeilberger’s algorithm;
(ii) Hypergeometric Representation→Di�erence=Di�erential Equation: Zeilberger’s=Almkvist–

Zeilberger’s algorithm;
(iii) Di�erence=Di�erential Equation→Recurrence Equation: Theorem 1;
(iv) Di�erence=Di�erential Equation→Hypergeometric Representation: method of Sections 3

and 5;
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(v) Recurrence Equation→Di�erence=Di�erential Equation: Algorithms 1 and 2 in [14];
(vi) Recurrence Equation→Hypergeometric Representation: combination of methods 5 and 4.
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