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Abstract The main objective of this paper is to introduce and investigate two new classes of generalized Apostol-

Bernoulli polynomials Kgm_l'“](x;c,a;/l) and Apostol-Euler polynomials a”n[m_l'“](x;c,a;/l). In particular, we

obtain addition formula for the new class of the generalized Apostol-Bernoulli polynomials. We also give some
recurrence relations and Raabe relations for these polynomials.
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1. Introduction, Definitions

Bernoulli polynomials play an important role in various
expansions and approximation formulas which are useful
both in analytic theory of numbers and the classical and
the numerical analysis. These polynomials can be defined
by various methods depending on the applications. There
are six approaches to the theory of Bernoulli polynomials.
We prefer here the definition by generating functions
given by Euler [4].

The classical Bernoulli polynomials and the classical
Euler polynomials are defined respectively as
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The corresponding Bernoulli numbers B, and Euler
numbers E, are given by
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From (1.1) and (1.2), we easily derive that
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(for details, see [11,12,13]).
The generalized Apostol-Bernoulli  polynomials

Br(]“)(x;/l) order ¢ e C and the generalized Apostol-

Euler polynomials Er(f”)(x;/l) order a € C are defined
respectively by the following generating functions
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Recently, Srivastava et. al. in ([13,14,15]) have
investigated some new classes of Apostol-Bernoulli,
Apostol-Euler polynomials with parameters a, b, and c.
They gave some recurrence relations and proved some
theorems.

For A4 =1 one can obtain the classical polynomials (1.1)
and (1.2). Other generalizations can be developed as well.
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Definition 1. [Natalini [12] and S. Chen et al. [3]] The

generalized Bernoulli polynomials Z?n[m_l](x),mzl are

defined, in a suitable neigbourhood of t =0, by means of
the generating functions
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From (1.7) for m =1, we obtain the generating function
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Definition 2. [Kurt [9]] For meN,
polynomials Bn[mfl'“](x) of

acC,meN are defined by means of the generating
function

the generalized

Bernoulli order
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in suitable neigbourhood of t =0.
The case « =1 was first introduced by Natalini and
Bernardini [6]. For a¢=m=1 we obtain classical

Bernoulli polynomials.

By the same motivation, the generalized Euler

polynomials éim_l‘“] (x) of order & € C and generalized

Euler numbers é;][m_l’“] of order o € C were defined by
the author [10]
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From (1.9) and (1.10) and for ¢ =m=1, we obtain

classical Euler polynomials and classical Euler numbers
respectively:
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By the same motivation, the generalized Genocchi

polynomials gn[m_l'a]( x) of order « € C and generalized

Genocchi numbers g’[m ~La] of order ¢ €C can be
defined as
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2. New Classes of Generalized Apostol-
Euler Polynomials and Apostol-Bernoulli
Polynomials

The following definitions
generalization of the

@Lm—lva] (x;4) of order & e C and the Apostol-Bernoulli

provide a natural
Apostol-Euler  polynomials

polynomials %Lm_l’“](x;/i) of order aeC, where

meN.
Definition 3. We de.ne the generalized Bernoulli

polynomials EB[m 10‘](x;c,a;/1) of order & e C and the

generalized Euler polynomials @Lm_l'a](x;c,a;/l) of
order a € C respectively by
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For A=a=1c=a=¢, (2.1) reduces to (1.7).
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For A=a=m=1c=e, (2.1), (2.2) and (2.3) reduce to
classical Bernoulli polynomial, classical Euler polynomial

and classical Genocchi polynomial.
From (2.1), (2.2) and (2.3), we obtain
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Theorem 1. Let ceR",a,feC,meN. Then the
generalized Apostol-Bernoulli polynomials

%Lm_l’“](x;c,a'ﬂ) and the generalized Apostol-Euler
polynomials G[m 1’)‘](x;c,a;/l) satisfy the following
relations
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Proof. Considering the generating function (2.1) and
n

comparing the coefficients of t—' in the both sides of the
n!

above equation, we arrive at (2.4). Proof of (2.5) and (2.6)
are similar. 0

Theorem 2. The generalized Apostol-Bernoulli
polynomials %[m e (x;c,a;4) satisfy the following
recurrence relation:
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Proof. Considering the expression
asplmta] (x+Lc,a;1)- [m-La] (x;c,a;4) and using
generating function (2.1), the proof follows. 0

Corollary 1. The generalized Apostol-Euler polynomials

@Lm—lﬂ](x;c,a;/l) satisfy the following recurrence
relation:
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Theorem 4. The
polynomials %Lm_l'“](x;c,a;ﬂ) satisfy the following
recurrence relation:

w07l (xc.a;1)

generalized  Apostol-Bernoulli

P Jgl0dl e g S MP S (P)2.10)
=(-1) (n+p)!{%”+p (x,c,a,/i)+kzgj[ ) J;}[rj

x(-1)" ir‘BLO’a] (x;c,a;2)(rnc)™ p-k }

Proof. From (2.1) for m =1, we write as
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We put (2.12) in the right hand side of (2.11). Then
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If we make necessary operations in the last equation and
n

comparing the coefficients of t—| we arrive (2.10). 0
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Theorem 5. The following relations hold true:
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Proof. From (2.1) for m =1,
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For the proof of (2.14), we write
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Corollary 2. The new generalized Bernoulli polynomials

%l[(m‘l’“](x;c,a) for ¢ =m=1 and the new generalized

Euler polynomials G;‘l[(mfl’a](x;c,a) for  =m=1 satisfy
the following Raabe relations:
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From the last equality, we have (2.15).
Second equation of this corollary can be obtained
similarly, so we omit it. O
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