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CONTINUED FRACTIONS AND LINEAR RECURRENCES

H. W. LENSTRA, JR. AND J. O. SHALLIT

Dedicated to the memory ofD. H. Lehmer

Abstract. We prove that the numerators and denominators of the convergents

to a real irrational number 6 satisfy a linear recurrence with constant coeffi-

cients if and only if 6 is a quadratic irrational. The proof uses the Hadamard

Quotient Theorem of A. van der Poorten.

Let 6 be an irrational real number with simple continued fraction expansion

[ao, ax, a2, ...]. Define the numerators and denominators of the convergents
to 0 as follows:

(1) P-2 = 0;    p-i = l;    Pn = a„pn-x + p„-2   for«>0;

(2) 0-2 = 1;    i-i=0;    q„ = anqn-x + q„-2    for n > 0.

By the classical theory of continued fractions (see, for example, [2, Chapter X]),

we have

-fL = [a0,ax,... , a„].
Qn

In this note, we consider the question of when the sequences (pn)n>o and

(Qn)n>o can satisfy a linear recurrence with constant coefficients. If, for exam-

ple, 6 = y/3, then 8 = [I, I,2, 1,2, 1,2,...], and it is easy to verify that
qn+4 = 4qn+2 - qn for all n > 0. Our main result shows that this exemplifies

the situation in general.

Theorem 1. Let 6 be an irrational real number. Let its simple continued fraction

expansion be 6 = [ao, ax, ...], and let (p„) and (qn) be the sequence of

numerators and denominators of the convergents to 8, as defined above. Then

the following four conditions are equivalent:

(a) (Pn)n>o satisfies a linear recurrence with constant complex coefficients;

(b) (qn)n>o satisfies a linear recurrence with constant complex coefficients;

(c) (an)n>o is an ultimately periodic sequence;

(d) 6 is a quadratic irrational.
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Our proof is simple, but uses a deep result of van der Poorten known as the

Hadamard Quotient Theorem. We do not know how to give a short proof of

the implication (b) =>■ (c) from first principles.

Proof. The equivalence (c) <=$ (d) is classical. We will prove the equivalence

(b) <=> (c) ; the equivalence (a) <=> (c) will follow in a similar fashion.

(c) (b) : It is easy to see (cf. Frame [1]) that

(3)
Pn

Qn

Pn-l

Qn-\

a0

1
a\
1

a„
1

Now if the sequence (an)„>o is ultimately periodic, then there exists an

integer r > 0, and r integers bo, bx, ... ,br-X, and an integer s > 1 and 5

positive integers Co, cx, ... , cs-X  such that

6 = [bo, bx, ... , br-X, Co, cx, ... , cs-X, Co, cx

Now for each integer i modulo s, define

.]•

m,= n
0<j<s L

C¡+j

1

Then for all n > r, we have, by equation (3

(4)
Pn+s

Qn+s

Pn+s-l

Qn+s-l

Pn

Qn

Pn-\

Qn-l
Mn.

Since for all pairs (i, j) it is possible to find matrices A, B such that M¡ =

AB and M¡ = BA, and since Yr(AB) = Yr(BA), it readily follows that / =

Yr(M¿) does not depend on i. Hence the characteristic polynomial of each

Mj is X2 — tX + (—\y . Since every matrix satisfies its own characteristic

polynomial, we see that M2_r - tMn_r + (-\)SI is the zero matrix. Combining

this observation with equation (4), we get

Pn+2s

Qn+2s

Pn+2s-\

Qn+2s-l

Pn+s

Qn+s

Pn+s-\

Qn+s-\
+ (-i:

Pn

Qn

Pn~l 0.

Therefore, qn+2s - tqn+s + (-l)sqn = 0 for all n > r, and hence the sequence

(Qn)n>o satisfies a linear recurrence with constant integral coefficients.

(b) ==> (c) : The proof proceeds in two stages. First we show, by means of a

theorem of van der Poorten, that if (qn)n>o satisfies a linear recurrence, then so

does (a„)n>o . Next we show that the an are bounded because otherwise the qn

would grow too rapidly. The periodicity of (a„)n>o then follows immediately.

Let us recall a familiar definition: if the sequence of complex numbers

(tin)n>o satisfies a linear recurrence with constant complex coefficients

un =   Yl e>u"->
\<i<d

for all n  sufficiently large, and d is chosen to be as small as possible, then

Xd - YjX<i<de'^d~' xs sa'^ t0 De tne minimal polynomial for the linear recur-
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rence. Also recall that a sequence of complex numbers (un)„>o satisfies a linear

recurrence with constant coefficients if and only if the formal series 2~^„>0 unX"

represents a rational function of X.

Define the two formal series F = J2n>0(Qn+2 - Qn)Xn and G = \^n>oQn+\X".

Clearly F and G represent rational functions. We now use the following the-

orem of van der Poorten [4, 5,6]:

Theorem 2 (Hadamard Quotient Theorem). Let F = Y,i>0fiX' and G =

Y!i>o8'X' be formal series representing rational functions in C(X). Suppose

thai the f and g¡ are complex numbers such that g¡ / 0 and fi/g, is an

integer for all i>0. Then Yï,i>o(fi/gi)X' also represents a rational function.

Since q„+2 = an+2qn+x + qn for all n > 0, it follows from this theorem that

^2n>Qan+2X" represents a rational function, and hence the sequence of partial

quotients (a„)„>o also satisfies a linear recurrence with constant coefficients.

We now require the following lemma:

Lemma 3. Suppose that (yn)n>o and (z„)„>o are sequences of complex numbers,

each satisfying a linear recurrence, with the property that the minimal polynomial

of (z„)„>o divides the minimal polynomial of (yn)n>o ■ Let d denote the degree

of the minimal polynomial of (yn)n>o ■ Then there exist constants c > 0 and no

such that for all n> n0 we have

max(|yn_rf+1|, \y„-d+2\, ■■■ , \yn\) >c\z„\.

Proof. Put Y = \Zn>oynXn = f/g with gcd(/\ g) = 1 and degg = d, and

z = 2Zn>oznx" = hlg\ here f,g,he C[X]. Since gcd(/, g) = 1, we can

find a polynomial k = ICo-íi«/^'^' °^ degree < d such that kf = h (mod

g). Then Z = kY + m, for a polynomial m, and z„ = 52o<i«/byn-i f°r

n > no = deg m . It follows that

\z„\ <     Y^ \k'\]  max(|y„-d+i|, \y„-d+2\, ••• , |v„|),

\0<;<d        /

and the lemma follows, with c = (1 + J2o<i<d l^'i)-' •   D

Since (an)„>o satisfies a linear recurrence, we may express an as a general-

ized power sum

a„ =  Y Mn)a",
\<i<d

for all n sufficiently large. Here the a, are distinct nonzero complex numbers

(the "characteristic roots") and the A,(n) are polynomials in n .

Now take y„ = an and z„ = n'a" , where a = a, and / = deg .4, for some

i. Then the hypothesis of Lemma 3 holds, and we conclude that at least one

of ßn-rf+i , an-d+2, ... , an is greater than cn'\a\" , for all n sufficiently large.

Then, using equation (2), we have

Qdm>    Il    a> >c'-cm •dlm-(m\)1 ■(\a\d)m{m+X)l2

\<]<dm
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for some positive constant c' and all m > 1. But (qn)n>o satisfies a linear

recurrence, and therefore logqdm = 0(dm). It follows that \a,\ < 1 for all /,

and further that deg^4, = 0 for those i with \a¡\ = 1. Hence the sequence

(an)n>o is bounded. But a simple argument using the pigeonhole principle

(see, for example, [3, Part VIII, Problem 158]) shows that any bounded integer

sequence satisfying a linear recurrence is ultimately periodic. This completes

the proof.   D
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