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We study the inverses of block Toeplitz matrices based on the analysis of the block cyclic displacement. New formulas for the
inverses of block Toeplitz matrices are proposed. We show that the inverses of block Toeplitz matrices can be decomposed as a sum
of products of block circulant matrices. In the scalar case, the inverse formulas are proved to be numerically forward stable, if the

Toeplitz matrix is nonsingular and well conditioned.

1. Introduction

Let
L, 1T, - T,
LT, - T,
T <1>
Tn—l Tn—.Z TO

be an n x n block Toeplitz matrix with blocks of size # x m.
We use the shorthand T = (T,.,j)zj:1 for a block Toeplitz
matrix. The block Toeplitz systems Tx = b arise in a
variety of applications in mathematics, scientific computing,
and engineering, for instance, image restoration problems
in image processing, numerical differential equations and
integral equations, time series analysis, and control theory [1-
3]. If we want to solve more than one block Toeplitz linear
system with the same coefficient matrix, then we usually
solve four or so special block linear systems in order to
determine the block Toeplitz inverse formula that expresses
T~ as the sum of products of block upper and block lower
Toeplitz matrices. For example, Van Barel and Bultheel [4]
gave an inverse formula for a block Toeplitz matrix and then
derived a weakly stable algorithm to solve a block Toeplitz
system of linear equations. The special structure of block
Toeplitz matrices has resulted in some closed formulas for
their inverses.

In the scalar case, Gohberg and Semencul [5] have shown
that if the (1, 1)st entry of the inverse of a Toeplitz matrix T

is nonzero, then the first and the last columns of the inverse
of the Toeplitz matrix are sufficient to reconstruct T ' In[6],
an inverse formula can be obtained by the solutions of two
equations (the so-called fundamental equations), where each
right-hand side of them is a shifted column of the Toeplitz
matrix. Later, Ben-Artzi and Shalom [7], Labahn and Shalom
[8], Huckle [9], Ng et al. [10], and Heinig [11] have studied
the Toeplitz matrix inverse formulas when the (1, 1)st entry
of the inverse of a Toeplitz matrix is zero. In [12], Cabay
and Meleshko presented an efficient algorithm (NPADE) for
numerically computing Padé approximants in a weakly stable
fashion. As an application of NPADE, it has been shown that
it can be used to compute stably, in a weak sense, the inverse
of a Hankel or Toeplitz matrix.

When m > 1, additional problems are encountered in
obtaining the inverse formula of a block Toeplitz matrix. A
well-known formula of Gohberg and Heinig can construct
T, provided that the first and last columns together with
the first and last rows of the inverse are known [13]. In [14],
a set of new formulas for the inverse of a block Hankel
or block Toeplitz matrix is given by Labahn et al. The
formulas are expressed in terms of certain matrix Padé forms,
which approximate a matrix power series associated with
the block Hankel matrix. We refer the reader to [15, 16] for
the computation of Padé-Hermite and simultaneous Padé
systers in detail. In [7], Ben-Artzi and Shalom have proved
that each inverse of a Toeplitz matrix can be constructed
via three of its columns, and thus, a parametrization of the



set of inverses of Toeplitz matrices is obtained. Then they
generalized these results to block Toeplitz matrices; see [17].
In [18], Gemignani has shown that the representation of
T relies upon a strong structure-preserving property of
the Schur complements of the nonsingular leading principal
submatrices of a certain generalized Bezoutian of matrix
polynomials.

In this paper, we focus our attention to the inverses of
block Toeplitz matrices with the help of the block cyclic
displacement. In [19], Ammar and Gader have shown that
the inverse of a Toeplitz matrix can be represented as sums of
products of lower triangular Toeplitz matrices and circulant
matrices. The derivation of their results is based on the
idea of cyclic displacement structure. In [20], Gohberg and
Olshevsky also obtained new formulas for representation of
matrices and their inverses in the form of sums of products of
factor circulant, which are based on the analysis of the factor
cyclic displacement of matrices. The results in applications to
Toeplitz matrices generalized the Gohberg-Semencul, Ben-
Artzi-Shalom, and Heinig-Rost formulas. Motivated by a
number of related results on Toepltiz inverse formulas, we
study the representation of the inverses of block Toeplitz
matrices. Since block Toeplitz matrices have similar displace-
ment structure as Toeplitz matrices, all results about Toeplitz
matrices extend quite naturally to block Toeplitz matrices.

At first, for purposes of presentation, we adopt some
notations that will be used throughout the paper. We denote
the m x m identity matrixby 1,,,. E; (i =0, 1,...,n—1) means
a matrix of dimension mn x m in which the (i + 1)-th block
is the identity matrix I,,, and the remaining blocks are all
zeros. J is called an n x n block reverse identity matrix, if J
has the identity matrices on the block antidiagonal and zero
elsewhere. Let A = (Aij) be a block matrix or a block vector
with block size of m x m. A’ = (Aji) is said to be the block
transpose of A. By C(r, ¢) we denote the block ¢-circulant
with the first column r = [ry,...,r, ;]" with a block size of
m x m; that is, the matrix of form is defined by

1"0 q)rn—l ‘e ‘e q)r‘l
n o Pru
, R ()
1 . .
. (Prn—l
LT -1 o ry

In this work, new formulas for the inverses of block
Toeplitz matrices are proposed. As is well known, any block
Toeplitz matrix T has a property of block persymmetry, that
is, JT'] = T, where J is the block reverse identity matrix.
Unfortunately, the matrix inverse does not hold this property.
This can explain why the Gohberg-Heinig formula [13] needs
the first and last columns together with the first and last
rows of the inverse for constructing the inverse. For a block
Toeplitz matrix T, let T, and T be its block circulant and
block skew-circulant parts, respectively. The representation
T = T, -1+ T, I shows that there will exist block
circulant matrices A; (i = 1,2) and B; (i = 1,2) such that
T = A,B, + A,B,. In this paper, by solving four linear
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equations with the same coeflicient matrix T, we decompose
the inverses of block Toeplitz matrices as a sum of products
of block circulant matrices. From the point of view of the
computation, the formulas involving block circulants instead
of block upper or lower Toeplitz matrices are more attractive.
For example, in the scalar case, matrix-vector product by
a circulant matrix is roughly twice as fast as matrix-vector
product by a triangular Toeplitz matrix of the same size.
In fact, the efficient multiplication of a Toeplitz matrix and
a vector is achieved by embedding the Toeplitz matrix in
a circulant matrix of twice the size. The derivation of the
formulas we present is based on the factor cyclic displacement
of block matrices. Later on, we give some corollaries about the
representations of the inverse matrices. The results generalize
the Gohberg-Olshevsky, Heinig-Rost, and Ben-Artzi-Shalom
formulas. In the scalar case, we consider the stability of
the Toeplitz matrix inverse formulas. We show that if the
Toeplitz matrix is nonsingular and well conditioned, the
inverse formulas are numerically forward stable.

We summarize briefly the content of our paper. Section 2
reviews some fundamental concepts such as the factor cyclic
displacement structure of a block matrix and every square
block matrix can be written as a sum of products of block
circulant matrices. In Section 3, we decompose the inverses
of block Toeplitz matrices as a sum of products of block
circulant matrices by solving four equations with the same
coefficient matrix T. Some corollaries are also obtained in
this section. We discuss the stability of the inverse formulas of
scalar Toeplitz matrices in Section 4. Some remarks are given
in Section 5.

2. The Factor Block Cyclic Displacement

The inverse formulas derived in the next section depend on
some results of the factor block cyclic displacement of a block
matrix. The focus of this section lies upon the definitions and
the properties of the factor block cyclic displacement of a
block matrix. We start with the definition of the factor block
cyclic displacement.

Let Z,, be the block g-cyclic lower shift matrix defined by

0 v .. 0 ol
I 0 0
0 1 (3)
0 0 I 0

The block ¢-cyclic displacement of an n x n block matrix A
with blocks size of m x m is defined as

V,(A) = A-Z,AZy,, 9#0. (4)

The number & = rank V,(A) is referred to as block ¢-cyclic
displacement rank of the block matrix A. Since all block



Journal of Mathematics

Toeplitz matrices have a special structure, it is not difficult
to obtain that

O T-¢Ty - Ti,—¢Th]
T, - lTH1 O O
T P
v, (T) =
T,1—-T, O O
L P _
1 [ I ]
-T 1
n T T,
T,-¢T,, ' ' '
= EO . + EO’
T, -oT) T, - lq:1
L ¢

where T, may be an arbitrary s xm matrix. Therefore, the ¢-
cyclic displacement rank of a block Toeplitz matrix is at most
2m.

By straightforward computations, it is easy to see that the
equality V,,(A) = O holdsif and onlyif Aisablock p-circulant
matrix. For any invertible block matrix A there exists a simple
interrelation between the block ¢-cyclic displacement of the
inverse matrix A~! and the block ¢-cyclic displacement of A.
This connection is given by

V,(A) =AY, (A)Z,A "2y (6)

From the previous equation, we know that the block ¢-cyclic
displacement rank of the inverse matrix A" is the same as
that of A. Moreover, the previous equation also allows us to
make use of the block @-cyclic displacement technique for the
calculation of the inverse matrix. We will study the inverses
of block Toeplitz matrices with the help of the block cyclic
displacement. We need the following result.

Theorem 1. If the block @-cyclic displacement of A is given as
the sum

A-Z,AZY =Y g,h, )
m=1

where g, and h; (i = 1,...,
blocks of size m x m, then

(B o)) o

2 (Bt o)) o

where C(Ir, @) is a block @-circulant matrix with the same last
block row as that of A and C(lc, @) is the block @-circulant
matrix with the same last block column as that of A.

m) are n x 1 block vectors with

=C(Ir, @) +

or

Clc, ) +

Proof. From computing the block ¢-cyclic displacement of
matrix A defined by (4), it then follows that

v, (C(Ir, 9))
go (ic I V) <”“<lv>) (10)

1 !
ZV ( (g v ~C<hm,—>).
q) Wml q)

Note that the @-cyclic displacement of any block matrix A
is a linear operator and two block @-circulant matrices can
commute; we obtain

V, (A) =

ZV (G v/ ~c<hm,glo>’. (11)

q) Wml

By computing the block @-cyclic displacement of block -
cyclic matrix C(g,,, ) for all m, we have

q) o 1 !
V,(A)= —— > V_(C(g,m ~C<hm, —>
0 QD_WZI 0 (C(gm¥)) p
o !
7 1
= zgm : EO : C<hm’ _> (12)
m=1 (P
o !
N ZEO ~1’44 ’C<hm’ > >
m=1
where ?;4 for m = 1,...,a are the first row of the

block g-circulant matrices C(g,,, ¢), respectively. Since E -
C(h,,, 1/9)’ = h. , it s easy to observe that the sum of the

first & terms in the previous equality is equal to Yo _, g,k .

In the following, we need to show that the sum of the last

o terms in the previous equality is equal to the zero matrix.

Using the fact that Z{ = ¢l and Z,, '=7] /o> We check
ok e 1,1\ ok
Yz (1t -z, 172, )2 =0 (13)
k=0
Thus we obtain
"k (e 1,1\ ok
ZZ(,, <T —ZoT Z<p >Z<p
k=0
n-1 « . , ‘
= Z gmh, 2
;)n;l Y Y (14)
[24 1 !
= ZC (gm’(P) : C<hm’ _>
m=1
=0.

( m’l/(P Wlchm 1 gm’(P)’
C(hy, 1/9) = 0.

By comparing Y, Eq-g,,C
C(h,,, 1/9)', we obtain Y& _ Eo- g, -



Finally, we discuss why C(Ir, ¢) is the block ¢-circulant
with the same last block rows as the matrix A. We know that
the last block row of the matrix C(g,,, ¥) is independent of
the number y. In view of ¥, _, C(g,,,¢) - C(h,,, 1/9) = 0, the
last block rows of the matrix A and C (Ir, ¢) are the same.

Equation (8) is now completely proved. A similar argu-
ment shows that (9) can be obtained from (7). ]

3. Inverses of Block Toeplitz Matrices

In this section, we focus our attention to new formulas on the
inverses of block Toeplitz matrices. It is easy to find that any
block Toeplitz matrix has a property of block persymmetry,
thatis, JT'J = T, where J is the block reverse identity matrix.
Unfortunately, the matrix inverse does not have this property.
This can explain why the Gohberg-Heinig formula [13] needs
the first and last block columns together with the first and last
block rows of the inverse to construct it. Unlike the Gohberg-
Semencul formula [5], it only needs the first and the last
columns of the inverse if the (1, 1)st entry of the inverse is
nonzero.

Let
T(xg0 X1s-- s X y) = Ep» (15)
(Rgs T s %) T=E, |, (16)
!
T(ug vy oo thy 1)
| 1 ' (17)
_ <Tn, T, - 1T, T, - —T,1> ,
P P

"

o _ 1 1
(s Uy, .Uy y) T = <Tn,1 - ;T,I,...,T1 - ;Tl,n, Tn>.

(18)
For convenience, we will write x, X, u and 7 as
! - — — !
x=(x0 X150 X 1), X =(X0 X1, X q) s
(19)
! - — — !
u=(ugpuy, ...,y 1), U= (Toby,...,0,).

From (5), (6), (15), and (17), by simple computations we
obtain the following equality:

—1 —1 —1
Vo (T7)= =TV, (1) 2,7 23,

—1 7
~Z¢T Zl/(p

Uy

! —1
- . (L 0,0, 0) - Z, T Zy

un—l
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Substituting (16) and (18) into the previous equality and
computing, we obtain

X0
X
—1 1
V‘P <T ) =¢ :
xn—l
1 1 —1 .1
T,q—=T4....7 - ;Tl,n, T, T Zl/(p
Uy
“ —1 .1
el . (00 L,) T Zy,
un—l
X0
x4 B ~ ~
= : (t,_q, Py - . ., Plly_5)
xn—l
Uy
u; B ~ ~
- . (X1 PX gy s 9%, ) -
un—l

(21)

Theorem 2. Let T be a block Toeplitz matrix given by (1). If
(15)-(18) are solvable for some @ # 0 and an arbitrary matrix
T, of order m, then

(a) T is invertible;

(b) T can be denoted as

= 2 (clay) - Cig)

{22k ) c05).

where w(+ @) is an arbitrary number.

Proof. (a) Assume that there exists nonzero vector p of
dimension #n such that Tp = 0. Then by computing (16)
and (18), we have (=T, T = ¢T,, ..., T, —¢T})Z,p =0
and (I, 0,...,O)Z(pp = 0. These imply V(p(T)Z(pp = 0.
Since V(p(T) =T - Z(pTZ;/(p, we obtain TZ,p = 0. A
similar argument shows that TZ];p =0(k=2,3,...,n-1).
Premultiplying the equalities TZ];p =0(k=0,1,....,n-1)
by (%o, X1, .., %, 1), we can conclude that all elements of the
vector are equal to zero. Therefore, the invertibility of T is now
proved.
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(b) According to Theorem 1, we get

¢ _ 1y
—y (C(x"”)’c@zw”’ 5)

1 !
C(u,w)~C<<pZ1/(p3€,¥> )

(23)

T'=C(r, )+

C(Ir, ) is the block @-circulant matrix with the same last
block row as that of T'. It is not difficult to see that
Clr, ) = ClpZ, %, 1/9) = C(J%, ). After computations
and arrangement, we obtain the formula (22) on the inverses
of block Toeplitz matrices. O

Remark 3. In fact, the inverse formula (22) is a generalization
of the formula of Gohberg and Olshevsky [20], where they
consider scalar Toeplitz matrices. Since the matrix inverse
does not hold the property of persymmetry, in the block case,
for constructing T~ we need to solve four linear equations
with the same coeflicient matrix 7. Labahn et al. also gave
this conclusion in terms of certain matrix Padé forms [14].

Remark 4. TFor the inverse formula (22), we take an interest
in two particular cases. When ¢ = 1 and y = 0, the inverse
formula (22) can be written as

xo 0O --- 0
1 X1 Xp
T =
0
Xp-1 X1 X
U1 U Uy o
un—Z un—l
X
Uy
L Ho Upy Up
(24)
rug—1, 0 - 0
Uy g — 1,
0
L u, u; uy—1
Xp-1 Xp Xn—2
xn—Z xn—l
X
Xo
Xo Xp—2 Xp1

So we obtain that the inverse of a block Toeplitz matrix can
be represented as a sum of products of block lower triangular
Toeplitz matrices and block circulant matrices. This is a
generalization of the formula of Ammar and Gader [19]. And
when ¢ = 1 and v = -1, the inverse formula (22) can be

written as a sum of products of block skew-circulant matrices
and block circulant matrices.

Xo TXu1 —X1
X X,
-1 1 1 0
T :E
—Xp1
Xp-1 X1 X
Uy U Uy o
un—Z un—l
X
Uy
L Yo Uy Uy
(25)
u,—21, -u,, —uy
u; Uy — 21,
Uy
L u, u, uy—21,
Xp-1 Xp Xp-2
xn—Z xn—l
X
Xo
L Xo Xn-2 Xp-1

This is a generalization of the formula of Ammar and Gader
[21], where they considered the Hermitian Toeplitz matrix.

o=

Let ¥ = (Jos Visevos Vu )32 = (200 Z1seeerZy )V =
G Vpoe-s ¥, ) and 2 = (Z0,Z,,..., Z, 1) be the solutions
of the equations Ty = E,, Tz = E,.,3T = E, , |
and 27T = E,'H{f2 for some integer kK (0 < k < n - 1),
respectively. In addition ¥,_; and ;T/O are both nonsingular,

5/61 Z:l 11 5/1 —nti Z; 1 Tﬂyl lyn 1 fOI'O k < <n-2 and

(1/§0)yo + 5’81 P 11 VT s = (/o) yn71 + Zi:l T—iyi—ly;—ll

fork=n-1.
Fork <n—1,wehave T, = To +(1/@) Y1, Ty il =
.. Then we obtain

+ ()5, Y KT

Tu = T% (Z(py - z) y,;ll

(Pyn—l
0 —1
= _T . ynfl
' :
0
0
Y
+ lT ~0 J’;1 - lTZLV1:1
' '



Ty ' (Tn - To) Vo1
_T—n+1yn—1

Il
+
|

Ty T Yy

1 1 _1 1 _1
XYVpq t ;EkJrlynfl - ;EkJrlyn—l

- Tn S
1
Tl - ET—nJrl

1
Tn—l - _T—l

L (N

T éy;l (yz,-2)T

1__
;yol (0,...,

0, (P%)T

1~,1 —_ — ~—1~I
+ — yeiis ¥y, 0) = =3 ZT
q)yo (J’1 Va1 ) (PLV

= (T, ....T,T,)

1__ _ _ _
+ ;LVO1 (‘yoT—p L] IR (Tn - To))

1 ~,1 ~71

+J’n7 yn—
970 k1¢0 k-1

<T,H LT - lT,ml,Tn).
¢ ¢

(26)

For k = n—l,wehaveT—T0 =

(1) Yoy Tya9,h = (@), + (1/9)7
A similar argument shows that

(1/(,0)3’;1 +
Zk Ve

Tl/i = . 3
1 (27)

1 1
T = <T,H - =T ,,..,T, - —T,nﬂ,Tn).
¢ ¢

As a result, we obtain that u = (I/go)(Z(py z)y,;l1 and

i = (l/go)ygl(j/'Zq) — Z') are the solutions of (17) and (18),
respectively. This result together with Theorem 2 yields the
following corollary.

Corollary 5. Let T be the block Toeplitz matrix given by (1).
If (15) and (16), Ty = EuTz = E,5T = E,
and ZT = E,'H{f2 are solvable for some integer k (0 <
k < n - 1), in addition, y, , and ¥, are both nonsingular,
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—— 1._, —1 _
yol 1’11 y; —n+1 1271 Tﬂyl lynllforo < k <n-2 Dli’ld
n-1 ~

(l/q’)yo +y0 Zl 1 y; —nti (1/()0 yn 1 +Z” 1T 1y1 lyn 1
Jork =n—1, thenT is invertible and

=1 (c(x I3, (2.5 - %),
o (CEv)-cU3' (2,5-2).9)) -

- C((Zyy=2) i ¥) CUR ).

Corollary 5 shows how to construct the inverse of a block
Toeplitz matrix, provided that the first block column and last
block row, along with two successive block columns and block
rows of the inverse, are given. More precisely, the choice of
k=n-1givesthatE,,; = Ejand E,_;_, = E,_;. This means
thatz = xand Z = X. As a consequence, we have the following
result.

Corollary 6. Let T be the block Toeplitz matrix given by
Q). If 5) and (6), Ty = E, ,, and 3T = E, are
solvable, in addition, yn1 and ?0 are both nonsingular,

~,1 1
. =Y

o 2pe1 ML ik = T v, 1J’n 1 then T is invertible and
1

T = ——(Clxy) U5 (25 -%).9))
p-y (29)

~C((zyy-x) 9, w)-CU% ).

Corollary 6 is a generalization of the well-known formula
of Gohberg and Heinig. In [13], the authors have shown that
the first and last block columns together with the first and last
block rows of the inverse are sufficient to construct the inverse
T~!. In addition, we decompose the inverses of block Toeplitz
matrices as a sum of products of block circulant matrices.

4. Stability Analysis

In the scalar case, the inverse formula (22) in Section 3 is
just the well-known formula of Gohberg and Olshevsky; see
Theorem 3.1 in [20]. Hence, solving two linear systems are
sufficient to reconstruct the inverse of the Toeplitz matrix
T Let x = (X, X15...,%, 1) and u = (uy, 1y,...,4, ;) be
the solutions of (15) and (17), respectively. In the scalar case,
formula (22) can be written as

e G R CY)

Y-y
-C <u— %VEO’W> ~C(x,(p)>,

where ¢ # 0 and w(# ¢) is an arbitrary number. For conve-
nience, we rewrite T as

(30)

1. _9
T = o—v (C11C1 = CyCyy). (31)
In this section, we want to show that the evaluation of some
scalar inverse formulas in Section 3 is forward stable. An
algorithm is called forward stable if for all well-conditioned
problems, the computed solution % is close to the true
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solution x in the sense that the relative error ||x — X||,/[x[l, is
small. In the matrix computation, roundoff errors occur. Let
A, B € C™ and a € C; if we neglect the O(e?) terms, then for
any floating-point arithmetic with machine precision ¢, there
are

fl (@A) = A + E,
IElF < elal | All < el 1Al

fl(A+B)=A+B+E, (32)

IElls < ell A+ Bllp < eVullA + Bll,

fl(AB) = AB + E, IEll < enll AllpllBll -

See [22]. According to the floating-point arithmetic, we have
the following result.

Theorem 7. Let T be a nonsingular Toeplitz matrix given by
(1) withm = 1 and let it be well conditioned then the inversion
Jormula (30) is forward stable for @ +0 and a given number

y(#@).

Proof. Assume that we have computed the solutions X, @
in the inverse formula (30) which are perturbed by the
normwise relative errors bounded by €

1%l < lIxll, T+, llzll, < Jlull, (1 +7). (33)

Let N = max{1, y} and M = max{1, ¢}. Then, we have

||C11||F \/—N”x”z,
||C12||F < \/;1M||“”2>
LAY
€l < J( L) el ey
< vi|2 AN lul,,

||C22||F < \/;1M||x||2

By using the perturbed solutions %, %, the inverse formula
(30) can be expressed as

= ﬂ<(P v <C11C12 + C21C22>>

——ﬂ<—i C,; +AC C,, + AC
‘V(( 11 11)( 12 12)

35
+ (C21 + ACz1) (sz + Aczz)) > =

=T '+

¢
v (AC;; Cpy + €1 ACH + ACy Cy

+ CyAC, + E+F)+G.

Here, E is the matrix containing the error which results from
computing the matrix products, F contains the error from

subtracting the matrices, and G represents the error of the
multiplication by ¢/(¢ — ). For the error matrices AC,,,
ACy,, AC,,, and AC,,, we have

||AC11||F < §||CH||F < &ynN||x|,,

IAC[lp < B[C 1]y < EvaMIul,,
(36)

JaCly s elcaly < 2va(| =2

+ N||“||2>>

1A, [l < E[Caall = EVIMIlxll.
It follows that

IEll, < |IElly

&n (”Cn ||F||C12||F + ||C21||F||C22||F)

-V

IA

IA

2
en” M| x|l <‘

+ 2N||“||2>’

IFlly < el T

(37)
1Gll2 < IGllg

I/\

“o w (ICulelCualle + |l Caall )

2

IA

+2N||u||2>.

After adding all these error bounds, we have

e
2 Q-

" 2
(2671 +en” + sn)

x Mx] <‘

¢;W +2N||u||2> (38)

evig)
S,

Note that x and u are the solutions of (15) and (17),
respectively; then [|x[|, < ||T’1||2 and |ull, < ||T’1||2||f||2,
where f = (T, T) — (1/@)Ty - > T,y — (1/@)T ) . Thus,
the relative error is

H ||T_1ﬁ H < (P?W <2§n +en’ + sn)
2

x M<‘%”‘ +2NHT’1H2||f||2> P 202,
(39)

As T is well conditioned, thus, || T [l is finite. Obviously, | f|l,
is finite. Therefore, the formula (30) presented in this section
is forward stable. O

For example, there are two particular cases of the inverse
formula (30). When ¢ = 1 and ¥ = -1, the inverse formula
T = (1/2)(Clx,~1) - Cw, 1) = Clu = 2B, -1) - Cx, 1)),



which denotes T™! as a sum of products of skew-circulant
and circulant matrices, is numerically forward stable for a
well-conditioned and nonsingular Toeplitz matrix 7. In fact,
this is the formula of Ammar and Gader in [21]. And when
@ = land ¢y = 0, this is the formula of Ammar and
Gader in [19]. The inverse formula T = (C(x,0) - C(u, 1) —
C(u — E,,0) - C(x, 1)) in which skew-circulant matrices are
replaced by upper triangular factors is also forward stable, if
T is nonsingular and well conditioned.

We also find that even when y = co and a given number
@ #0, the inverse formula (30) is still numerically forward
stable. A similar argument can show that the inverse formulas
in Corollaries 5 and 6 for the scalar case are all numerically
forward stable when T is nonsingular and well conditioned.

5. Concluding Remarks

In this paper, with the help of the block cyclic displace-
ment, the inverses of block Toeplitz matrices are discussed.
New formulas for inversion of block Toeplitz matrices are
obtained, which can be decomposed in a sum of products
of block circulant matrices. In the scalar case, we analyze
the stability of the inverse formulas. In addition, it should
be remarked that any mention of matrix Padé forms for
representing inverses of Toeplitz matrices could also be given
in terms of solving block linear systems. Also the proofs of
the inverses formulas in [14] could also be extended to prove
the inverse formulas in this work.
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