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ABSTRACT

In this paper we solve several recurrence relations with two indices with using combi-
natorial methods. Moreover, we present several recurrence relations with two indices
related to Dyck paths and Schroder paths.
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1. INTRODUCTION

A lattice path of length n is a sequence of points P, P, ..., P, with n > 1 such that
each point P; belongs to the plane integer lattice and each two consecutive points
P; and P;,; connect by a line segment. We will consider lattice paths in Z? whose
permitted step types are the up-step U = (1, 1), the down-step D = (1,—1), and the
labeled horizontal-step H; = (2,0) with label i. We will focus on paths that start
from the origin and return to the x-axis, and that never pass below the z-axis. Let
D,, denote the set of such paths of length 2n when only up-steps and down-steps are
allowed, and let 8¢ denote the set of such paths of length n when all the three types are
allowed such that the horizontal-step can be labeled with one of the labels 1,2,..., (.
It is well known that the cardinalities |D,| = ¢, = n+r1 (*), the n-th Catalan number
(see [2, A000108]), and |S}| = s,, the n-the large Schroder number (see [2, A006318]).
A lattice path is called an (-Schréder path of length n if it belongs to the set 8¢ and
there are no horizontal-steps labeled ¢ at level 0,1,...,¢—1; in the case of / =1 these
paths are called just Schroder paths.

A sequence with k indices is a function a : A* — B, and denoted by {a,,.... T
or {anfnear, where A C N. The element a, of a sequence {anfnea is called the nth
term, and the vector n of integers is the sequence vector of indices. A recurrence
relation is an equation which defines a sequence recursively, that is, each term of the
sequence is defined as function of the preceding terms, together with initial conditions.
The initial conditions are necessary to ensure an uniquely defined sequence. The aim
of this paper is to study combinatorial methods to solve recurrence relations with two
indices.

It well known there is no general procedure for solving recurrence relations, which is

why it is an art. In this paper we present a combinatorial method for solving a special
1
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class of recurrence relations with two indices. More precisely, we study different types of
recurrence relations with two indices where combinatorial methods provide a complete
solution for these types of recurrence relations. To do that we need to define the
following problem.

Hobby’s problem. Let A= {(n,m) |0 <m < n} be the second octant of the plane
integer lattice Z?. Assume there is a rabbit, called Hobby, at his home at O = (0,0) € A
and his n bunnies are located at points (j,n — 1) for 7 =0,1,...,n — 1. Suppose that
Hobby can not jump to the left, that is, it can jump from point (i, 7) € A to the point
(k,j+1) € Awith i <k < j+ 1. Hobby’s problem is to find the number of ways
(lattice paths) for Hobby to get from his home to one of his n bunnies.

Our main goal is the use of the combinatorial methods and the kernel method (see [1])
to obtain an explicit solution for several types of recurrences relation with two indices.
The paper is organized as follows. In Section 2 we deal with recurrence relation with
two indices of the form

nj = Gp-1,0+ Gpn-11+ ...+ An-1 Jj=0,1,...,n—1,

with the initial condition a,,, = Z;:g an—1,;- This allows us to relate this recurrence

relation to Dyck paths. In Section 3 we generalize our methods to study the recurrence
relation

Up,j = Gp—1,0 + Ap—1,1 +...F An—1,5—1 + (E + 1)an71,j7 j = O) 17 cee, 2)

. e e .. —1 .
with initial conditions a,, = Gppn-1 = ... = Gppy = Z?:o an—1;. This allow us to
relate this recurrence relation to Schroder paths.

2. RECURRENCE RELATION WITH TWO INDICES AND DYCK PATHS

Let a, ; be a sequence with two indices satisfies the following recurrence relation

(21) Canj = CLn,LO—’—CLn,Ll +...+6Ln,17j, j = O,l,...,’fb— 1,

. e L. —1 . .
with the initial conditions a, , = Z?:o an—1,; and agp = 1 . In this section we present

two different methods for finding an explicit formula for the general term of the sequence

CLan.

2.1. The Kernel method. The first of these methods can be described as follows.

First, define A, (v) = >0 ;a, ;07 and A(z;v) = 37 50 An(v)2”™. Multiplying (2.1) by

v/ and summing over all j =0,1,...,n — 1 we arrive at

U 1
/%w)ZEZ]fﬂj%44+vm%4u):1_@@%4@o—www%4u».
7=0

Again, multiplying the above recurrence relation by ", summing over all n > 1 and
using the initial condition Ag(v) = 1 we obtain the following functional equation

Aumo:1+T§;mumo—wAmuny

which is equivalent to

(L—a£}5>Amhm0:1—l_vAmﬂy
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This type of functional equation can be solved systematically using the kernel method
(see [1]). In this case, if we assume that v = 22 then A(x;1) = C*(x), where

C(x) = 1”2;4:” is the generating function for the Catalan numbers. Therefore,

Alr;v) =1+ (11__UUC: iv ZJS Zvﬂ Z (n _j - Z>Cnia

n>0 7=0 =0

where ¢, is the n-th Catalan number. Hence, the explicit formula for the (n, j)-th term
of the sequence a,,; is given by a,; = > J(—=1)*(" f z)cn -

2.2. Combinatorial method. In this subsection we use a combinatorial method to
solve recurrence relation (2.1). Assume that a, ; denotes the point (7,n) on the plane
integer lattice Z? as described in the following figure:

éﬂx;,{a--q?ﬂxm--,?ﬂxg-z--,?ﬂx;,g...ia474
%Gs;(a--qiﬂsrl--giﬂ&-fz..iCL3,3
éa.zg--,?a_z,.;.iag,g
ia.L,@--.EMJ
iao,o

FIGURE 1. The terms of the sequence a,, ;.

Now, if we define another integer lattice with the property that two points (j,n) and
(7',n) in the second octant are connect by a line segment if n’ =n—1and 0 < j' < 7,
then we get that finding the (n — 1, j)-th term of the sequence a, ; is equivalent to
finding the number of Hobby’s paths to get from his home to the (j 4+ 1)-st of his n
bunnies. For example, Figure 2 presents all of Hobby’s paths in the case n = 2, 3, 4.

[O/ % 4

F1GURE 2. Hobby’s paths to get from his home to one of his n bunnies,
where n = 2, 3, 4.

Now, we define a map v which maps the set of Hobby$ paths to get from his home to one
of his n bunnies to the set of Dyck paths of length 2n. Let p = (0,0)(x1,1) ... (2,1, n—
1) be Hobby’s path of length n. We read the path p from left to right and successively
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generate the Dyck path. First we start the Dyck path by an up-step U. When p; =
(%j,7), 7 > 1, isread, then in the Dyck path we adjoin z; —x;_; down-steps D followed
by an up-step U. At the end of the Dyck path, we adjoin as many down-steps D as
necessary to return to the z-axis. For example, let p = (0,0)(0,1)(2,2)(2,3)(4,4) be

...........................

FIGURE 3. The Dyck path ((0,0)(0,1)(2,2)(2,3)(4,4)) = UUDDUUDDUD.

a Hobby’s path of length 5 and let our Dyck path start with an up-step U. The first
element to be read is (0, 1), therefore the Dyck path continues with one up-step U.
Next (2,2) is read, therefore the Dyck path continues with two down-steps D followed
by an up-step U, etc. The complete Dyck path 1 (p) = UUDDUUDDUD is shown in
Figure 3.

Theorem 2.1. The map ¥ is a bijection between the set of Hobby’s paths of length
n and the set of Dyck paths of length 2n. Moreover, the number of Hobby’s paths of

length n is given by C,, = n+r1(2:), the n-th Catalan number.

Proof. Let p = (0,0)(21,1)(22,2) ... (2n,—1,n—1) be Hobby’s path, so ; —z;—; > 0 and
j=>uwzjforall j=1,2,...,n—1. Thus it is possible always to adjoin the Dyck path by
x;—x;_1 down-steps (formed by definition of ¢ when considering (z;, j)), hence ¥(p) is
a Dyck path of length 2n. Conversely, given a Dyck path ¢ of length 2n, the inverse of ¥
can be defined as follows. Assume that ¢ can be decomposed as ugMg® ... ¢ Vdd...d
with ¢¥) = d...du with i; > 0 down-steps, for all 7 =1,2,...,n — 1. Then we define
the inverse of ¢ as ¥ "1(q) = p = (0,0)(iy, 1)(¢1 + 42,2) ... (44 + -+ - + 41,7 — 1). So,
from the definitions we get that p is a Hobby’s path of length n, as required. U

By the definition of the bijection % we have that the number of Hobby’s paths to get
from his home to the (7 + 1)-st of his n bunnies is the same as the number of Dyck
paths of length 2n ending with exactly n — 1 — 7 down-steps, and it is the same as the
(n — 1, 7)-th term of the sequence @, ;. Therefore we can state the following result.

Theorem 2.2. Let 0 < 7 <n —1. Then the number of Hobby’s paths of length n to
get from his home to the (j + 1)-st of his n bunnies equals the (n — 1, 7)-th term of the
sequence an; satisfying recurrence relation (2.1) and also equals the number of Dyck
paths of length 2n ending with exactly n — 1 — 5 down-steps which is given by

n—1—j . .
fmn—1—9—1
S o (" e
i=0

2.3. Generalizations. Here we present several directions to generalize the results of
the previous section. The first of these directions is to consider the following recurrence
relation, where the last term of (2.1) has been deleted:

(22) QUn,j = Gn-1,0 + Ap—1,1 + ...+ An—1,5—1, j = O, 1, o, n,
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with the initial condition a, = 0 for all n > 0.

It is easy to see that the (n,j)-th term of the sequence a, ; that satisfies (2.2) equals
the number of Hobby’s paths with the restriction that Hobby does not jump from point
(a,b) to point (a,b+ 1) with @ > 1. Thus, from the definition of the bijection ¢ we
can be state the following result.

Theorem 2.3. The (n,j)-th term of the sequence a, ; that satisfies (2.2) equals the
number of Dyck paths that avoid DUU (that is, there is no down-step followed by two
up-steps). Moreover, for all n >0, a,0 =1 and a,; =271 withj =1,2,...,n.

The second of these directions is to consider the following recurrence relation
(23) @n,j = an*I,O + Cln,Ll 4+ ...+ Cln,Lj, j = O, 1, o, N,

with the initial condition a,o = 1 and a,; = 0 for all n = 0,1,...,¢ and j =
1,2,...,n — 1. The problem of finding the (n, j)-th term of the above sequence that
satisfies (2.3) is equivalent to finding the number of Hobby’s paths where each path
of Hobby starts with (0,0)(0,1)...(0,¢). Thus, the bijection ¢ maps these Hobby’s
paths to Dyck paths starting with £+ 1 up-steps. Hence, we have the following result.

Corollary 2.4. Let n > (+ 1. The bijection 1 maps the set of Hobby’s paths to get
from his home to one of his n bunnies starting with (0,0)(0,1)...(0,f) to the set of
Dyck paths of length 2n starting with { up-steps. Moreover the number of such paths is

. 244 (2n—L
given by 75 (J17)-

Proof. The first part of the corollary holds immediately from the bijection 7. The
second part can be checked easily by using the first return decomposition of Dyck
paths. L

3. RECURRENCE RELATIONS WITH TWO INDICES AND /-SCHRODER PATHS

Let a,; = af;vj be a sequence with two indices satisfying the following recurrence
relation

(31) Upj = Up-10 + Up—11 +...+ Up—1,5—1 + (1 +£)6Ln,17j, j = O, 1, e, = 1-— E,

with the initial conditions a,, = Gpn-1 =+ = Appr = Z;:& an-1,; and agp = 1.
In this section we present two different methods for finding an explicit formula for the
general term of the the sequence a, ;.

3.1. The Kernel method. We modify the definitions from Section 2.1 by defining

n

Al(v) = Y0 a7 and Ag(z;v) = 050 AL(v)2". Multiplying recurrence rela-

J=0"n,3
tion (3.1) by v/ and summing over all 7 =0,1,...,n — 1 — { we arrive at
AL (v) = 75 (AL (v) — v AL (1) + (L + DAL (v)
T (—“”*iiii“” - (1 +€>v”*l) A1), n>14+0

Again, multiplying the above recurrence relation by 2", summing over all n > 1 and
using the initial conditions A?(v) = j!l?’# 7 =0,1,..., ¢, we obtain the following

v )
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functional equation

(1_ﬁ_%) (Ae(z/v;v) Z]’l - ij)

7=0

(3.2)

zt

-2 ‘
=/ T T ies (1 -5 - (1+e)w + o U)) (A(:c; ) —S(+ 1)!33]) .

j=0

This type of functional equation can be solved systematically using the kernel method

1+4z++/ (1*&16)274:10’ then

2

[1]. In this case, if assume that v =

-2
| d—1 e
1)l + Ll o X ’
1—(x (1 —lx)?
]:0
where C(x) = 1= —— 2 is the generating function for the Catalan numbers. For exam-

ple, if £ = 0 then we have that Ag(z;1) = C%(z) = UL A 1 49”) as shown in Theorem 2.1.

3.2. Combinatorial method. In this subsection we use a combinatorial method to
solve recurrence relation (3.1), as follows. Assume that a, ; denotes the point (j,7) on
the plane integer lattice Z? as described in Figure 1. Now, if we define another integer
lattice with the property that two points (7, n) and (5',n’) the second octant connected
by

e one line segment if " =n—1land 0 <5 <j—1withn>1+/¢,
e 1+ ( line segments if n’ =n —1 and j' = j with n > 1+ ¢,
e one line segment if " =n—1and 7 =0,1,...,n—1withn=1,2,..., (.

With this definition, finding the (n — 1, 7)-th term of the sequence a, ; is equivalent
to finding the number of Hobby’s paths in the /-problem of Hobbydefined as follows:
assume that Hobby stays at his home O = (0,0) € A and his n bunnies stay at points
(j,n—1) for j = 0,1,...,n—1. Hobby can jump either diagonally or it has ¢ possibilities
to jump upwards from the point (7, m), where 0 <j <m —1—/¢<n—2— /. In this
context, the £ possibilities are called v, v2, ..., v* Hobby’s decisions. The (-problem of
Hobby is to find the number of paths to get from his home to one of his n bunniesas
shown in Figure 4 for n =2,3,4,5 and £ = 2.

[O/ % 4

FI1GURE 4. Hobby’s paths to get from his home to one of his n bunnies
with £ = 2, where n = 2,3,4,5.
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Each of Hobby’s paths to get from his home to one of his n bunnies can be coded as
follows. Fix p to be the empty word and assume Hobby stays at his home. When
Hobby jumps from point (a,b) to point

e (a+c,b+ 1), c>1, then in p we adjoin the letter .,
e (a,b+ 1) with 7/ Hobby’s decisions, then in p we adjoin the letter v;.

For example, if n = 2 then Hobby has exactly six paths vivq, U109, U171, V1Us, U107 and
u1U1, see Figure 4.

Now, we define a map ¢ which maps the set of Hobby paths to get from his home to
one of his n bunnies to the set of /-Schroder paths of length 2n. Let p = pipa. .. px
be Hobby’s path of length n. We read the path p from left to right and successively
generate the /-Schroder path. First we start the /-Schroder path by an up-step. When
p;j = uy; (resp. p; = vy, or p; = v;, with é; > 1) is read, then in the (-Schroder path we
adjoin 4; down-steps followed by an up-step (resp. we adjoin one up-step, or a level-
step labelled 7; —1). At the end, in the /-Schroder path we adjoin as many down-steps
as necessary to return to x-axis. For example, let p = ugviu1v2 be a Hobby’s path of

FIGURE 5. The 1-Schroder path ¢(vv9u1v2).

length 5 and let our /-Schroder path start with an up-step. The first element to be
read is ug, therefore the (-Schroder path continues with one up-step. Next v; is read,
therefore the -Schroder path continues with one level-step labeled 1, etc. The complete
(-Schroder path ¢(p) is shown in Figure 5. The reverse of the map ¢ is obvious, and
we obtain the following result.

Theorem 3.1. The map ¢ is a bijection between the set of £-Hobby’s paths of length
n and the set of (-Schroder paths of length 2n. Moreover, the ordinary generating
function for the number of Hobby’s paths of length n is given by

02
ot €
1)l
Z(‘]+ i +1—£:UC<1—£3:>’

J=0

where C () = 4 VQ;M s the gemerating function for the Catalan numbers.

In particular, the number of Hobby’s paths of length n with £ = 0 is given by the n-th
Catalan number, and the number of Hobby’s paths of length n with £ = 1 is given by
the n-th Schroder number.

3.3. Generalizations. Let us consider the following recurrence relation

(33) On,j = Un—1,0 + ap—1,1 4+ ...+ Op—1,j+15 j = O, 1, NS 2,

with the initial conditions ago = 0 and . = Gpp-1 = Z?;é an—1,;. Here, the (n, j)-th

term of the above sequence equals to the number of Hobby’s paths of length n such
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that it can jump from point (b, 5) to point (b+ 1,5 + 1) for all 1 < 7 < b < n; in this
context this step is called the back step of Hobby at level b, see Figure 6 where the
back step is shown with by a dashed line.

FIGURE 6. Hobby’s paths of length n with back step, where n = 2, 3, 4.

Now, we define a map ¢’ which maps the set of Hobby’s paths of length n with back
steps into the set of Schroder paths of length 2n. Let p = (g, 0) (w1, 1)(22,2) ... (€1, — 1)
be Hobby’s path of length n. We read the path p from left to right and successively
generate the Schroder path. First we start the Schroder path with one up-step. When

p; = (2;,7) is read, then in the Schroder path we adjoin z; —z;_1 down-steps D followed

by an up-step U (resp. horizontal-step H) if 2; —x;_1 > 0 (resp. z; —x;_1 = —1). At

the end, in the Schréder path we adjoin as many down-steps as necessary to return to

the x-axis. Since the reverse map of ¢’ is obvious we get the following result.

Theorem 3.2. The map ¢ is a bijection between the set of Hobby’s paths of length n
with back steps to the set of Schrioder paths of length 2n.

The above theorem gives the following corollary.

Corollary 3.3. The bijection ¢' : R +— S between the set of Hobby’s paths of length n
with back steps and the set of Schrider paths of length 2n satisfies that the number of
back steps of Hobby equals the number of horizontal-steps in the corresponding Schroder
path.
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