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a b s t r a c t

We first establish the result that the Narayana polynomials can be represented as the
integrals of the Legendre polynomials. Then we represent the Catalan numbers in terms
of the Narayana polynomials by three different identities. We give three different proofs
for these identities, namely, two algebraic proofs and one combinatorial proof. Some
applications are also given which lead to many known and new identities.
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1. Introduction

The Catalan numbers [24, Sequence A000108] are defined by Cn = 1
n+1

(
2n
n

)
, for all n ≥ 0. The Narayana polynomials

Nn(q) and the associated Narayana polynomialsNn(q) [2] are defined by

Nn(q) =
n∑
k=1

1
n

(
n
k− 1

)(n
k

)
qk and Nn(q) = qnNn(q−1) = Nn(q)/q,

for n ≥ 1, with the initial values N0(q) = N0(q) = 1. The coefficients Nn,k = 1
n

( n
k−1

) ( n
k

)
with N0,0 = 1 are called the

Narayana numbers, and it is well known that the sequence {Nn(1)}n≥0 is the sequence of the Catalan numbers, while the
sequence {Nn(2)}n≥0 is the sequence of the large Schröder numbers [24, Sequence A006318]. The Narayana polynomials
and associated Narayana polynomials have been considered by several authors, see [2,8,20,22,21,27]. For instance, Bonin,
Shapiro and Simion [2] showed that the polynomial Nn(1 + q) is a q-analog of the nth large Schröder numbers. Coker [8]
provided several different expressions:

n∑
k=1

1
n

(
n
k− 1

)(n
k

)
qk−1 =

b
n−1
2 c∑
k=0

(
n− 1
2k

)
Ckqk(1+ q)n−2k−1, (1.1)

n∑
k=1

1
n

(
n
k− 1

)(n
k

)
q2(k−1)(1+ q)2(n−k) =

n−1∑
k=0

(
n− 1
k

)
Ck+1qk(1+ q)k. (1.2)

Identity (1.1) was studied by Simion and Ullman [22] and proved combinatorially by Chen, Deng and Du [4]. Later, Chen, Yan
and Yang [7] proved (1.1) and (1.2) combinatorially in terms of weighted 2-Motzkin paths. Recently, Mansour and Sun [14]
presented another expression for Narayana polynomials
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Nn(q) =
n∑
k=0

1
n

(
n
k− 1

)(n
k

)
qk =

1
n+ 1

n∑
k=0

(
n+ 1
k

)(
2n− k
n

)
(q− 1)k, (1.3)

whose generalized version is appeared in [15, Example 2.13]. Chen and Pang [6] independently deduced (1.3)
combinatorially. Pak [17, Example 8.5 and Exercise 8.15] also obtained (1.3) implicitly in his book.
The main result of this paper can be formulated as follows.

Theorem 1.1. For any integer n ≥ 0, there hold

Cn =
n∑
k=0

2k+ 1
2n+ 1

(
2n+ 1
n− k

)
Nk(q)(1− q)n−k, (1.4)

q
n
2+1C n

2
=

n∑
k=0

(−1)n−k
(n
k

)
Nk+1(q)(1+ q)n−k, (1.5)

qn+2Cn+1 =
n∑
k=0

(−1)n−k
(n
k

)
Nk+1(q2)(1− q)2(n−k), (1.6)

where C n
2
is zero if n is odd.

In this paper, we first establish the result that the Narayana polynomials can be represented as the integrals of the Legen-
dre polynomials [9] in Section 2. Then we give three different proofs for Theorem 1.1, see Sections 3–5, including two alge-
braical proofs and one combinatorial proof. Some applications are also given which lead tomany known and new identities.

2. Narayana polynomials

Recall that the Legendre polynomials Pn(x) [9,19], which are most familiar in the form

Pn(x) = 2−n
b
n
2 c∑
k=0

(−1)k
(
n− k
k

)(
2n− 2k
n− k

)
xn−2k,

have an alternate expression, namely,

Pn(x) =
n∑
k=0

(n
k

)(n+ k
k

)(x− 1
2

)k
=

n∑
k=0

(
n+ k
n− k

)(
2k
k

)(x− 1
2

)k
,

so that

Pn(2x− 1) =
n∑
k=0

(
n+ k
n− k

)(
2k
k

)
(x− 1)k. (2.1)

Note that an equivalent form of (1.3) is
n∑
k=0

1
n

(
n
k− 1

)(n
k

)
qk =

n∑
k=0

(
n+ k
n− k

)
1
k+ 1

(
2k
k

)
(q− 1)n−k. (2.2)

Then (2.1) and (2.2) generate the following result.

Theorem 2.1. For any integer n ≥ 1, there holds

Nn(q) = (q− 1)n+1
∫ q

q−1

0
Pn(2x− 1)dx.

Proof. It is clear that Nn(0) = 0 for all n ≥ 1. Then we have

(q− 1)n+1
∫ q

q−1

0
Pn(2x− 1)dx = (q− 1)n+1

n∑
k=0

(
n+ k
n− k

)(
2k
k

)∫ q
q−1

0
(x− 1)kdx

=

n∑
k=0

(
n+ k
n− k

)
1
k+ 1

(
2k
k

)
(q− 1)n−k

+ (q− 1)n+1
n∑
k=0

(
n+ k
n− k

)
1
k+ 1

(
2k
k

)
(−1)k

= Nn(q)− Nn(0)(1− q)n+1 = Nn(q),

which completes the proof. �
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Theorem 2.1 signifies that many classical sequences such as Catalan numbers and Schröder numbers can be represented
as the integrals of Legendre polynomials.

Example 2.2. (i) Let q = −1. Using the parity identity [8,28]

Nn(−1) =
{
0 if n = 2r,
(−1)r+1Cr if n = 2r + 1, (2.3)

we have for n ≥ 0,

Cn = 22n+1
∫ 1

0
P2n+1(x− 1)dx.

(ii) Let q = 2, we have that the large Schröder numbers Nn(2) satisfy

Nn(2) =
∫ 2

0
Pn(2x− 1)dx.

Remark 2.3. Simons [23] established the following identity
n∑
k=0

(−1)n−k(n+ k)!(1+ x)k

(n− k)!k!2
=

n∑
k=0

(n+ k)!xk

(n− k)!k!2
,

or equivalently

n∑
k=0

(−1)n−k
(
n+ k
n− k

)(
2k
k

)
(1+ x)k =

n∑
k=0

(
n+ k
n− k

)(
2k
k

)
xk, (2.4)

which was proved by Chapman [3], Prodinger [18], Wang and Sun [29]. It has been pointed out by Hirschhorn [13] that (2.4)
is a special case of the Pfaff identity [12]. Recently, Munarini [16] gave a generalization of (2.4).
Obviously, (2.1) and (2.4) generate that

(−1)nPn(−2x− 1) = Pn(2x+ 1),

which can be easily derived by the generating function of Legendre polynomials [9],∑
n≥0

Pn(x)tn =
1

√
1− 2xt + t2

.

3. Proof of Theorem 1.1 and inverse relations

In this section, using threewell-known inverses relations, we present our first proof for Theorem1.1. The Legendre inverse
relation reads [19]

An =
n∑
k=0

(
n+ k
n− k

)
Bk ⇐⇒ Bn =

n∑
k=0

(−1)n−k
2k+ 1
2n+ 1

(
2n+ 1
n− k

)
Ak, (3.1)

and the left-inversion formula [10] reads

An =
b
n
s c∑
k=0

(
n+ p
sk+ p

)
Bk H⇒ Bn =

sn∑
k=0

(−1)sn−k
(
sn+ p
k+ p

)
Ak, (3.2)

which, in the case s = 1, p = 0, implies the binomial inverse relation

An =
n∑
k=0

(n
k

)
Bk ⇐⇒ Bn =

n∑
k=0

(−1)n−k
(n
k

)
Ak. (3.3)

Now we are ready to present the proof of Theorem 1.1.

3.1. Proof of (1.4)

Rewriting (2.2), we have

Nn(q)
(q− 1)n

=

n∑
k=0

(
n+ k
n− k

)
Ck(q− 1)−k,
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and using (3.1), we obtain an expressions for the Catalan numbers,

Cn =
n∑
k=0

(−1)n−k
2k+ 1
2n+ 1

(
2n+ 1
n− k

)
Nk(q)(q− 1)n−k,

which completes the proof of (1.4).

3.2. Proof of (1.5)

Rewriting (1.1) in another form after replacing n by n+ 1,

Nn+1(q)
(1+ q)n

=

b
n
2 c∑
k=0

( n
2k

)
Ckqk+1(1+ q)−2k,

and using (3.2) in the case s = 2, p = 0, we deduce another expression for Catalan numbers,

qn+1Cn =
2n∑
k=0

(−1)k
(
2n
k

)
Nk+1(q)(1+ q)2n−k, (3.4)

which motivates us to consider the following related summation

fn(q) =
2n+2∑
i=1

fiqi =
2n+1∑
k=0

(−1)k
(
2n+ 1
k

)
Nk+1(q)(1+ q)2n+1−k. (3.5)

Lemma 3.1. For all n ≥ 0, fn(q) = 0.
Proof. Comparing the coefficients of two sides in (3.5), we have

fm =
m∑
j=0

2n+1∑
k=0

(−1)k
(
2n+ 1
k

)
Nk+1,j

(
2n+ 1− k
m− j

)
.

Noting that Nk+1,j
(
2n+1−k
m−j

)
is a polynomial on k with degree m + j − 2, which does not exceed 2n when 1 ≤ m ≤ n + 1.

According to the well-known difference formula
n∑
k=0

(−1)k
(n
k

)
(x− k)r =

{
0 if 0 ≤ r < n,
n! if r = n,

we can derive that each inner sum is zero in fm for 1 ≤ m ≤ n+ 1. Note that fn(q) = q2n+3fn(q−1) by qn+1Nn(q−1) = Nn(q),
which implies that fm = 0 for n+ 2 ≤ m ≤ 2n+ 2. Hence, fn(q) = 0 for n ≥ 0, as claimed. �

By combining (3.4) and (3.5), using Lemma 3.1, we obtain (1.5).

3.3. Proof of (1.6)

Rewriting (1.2) in another form after replacing n by n+ 1,

Nn+1

(
q2

(1+ q)2

)
(1+ q)2n+2 =

n∑
k=0

(n
k

)
Ck+1qk+2(1+ q)k,

and using (3.3), we deduce that

qn+2(1+ q)nCn+1 =
n∑
k=0

(−1)n−k
(n
k

)
Nk+1

(
q2

(1+ q)2

)
(1+ q)2k+2.

Replacing q by q
1−q , after simplification, we get (1.6).

3.4. Applications

Theorem 1.1 can produce numerical known or new identities. For instance,
• The case q = −1 in (1.4) together with (2.3), lead to a new identity

(2n − 1)Cn =
b
n−1
2 c∑
r=0

(−1)r
4r + 3
2n+ 1

(
2n+ 1
n− 2r − 1

)
2n−2r−1Cr .
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• Taking the coefficient of qn in both sides of (1.4), we get another parity identity

n∑
k=0

(−1)k
2k+ 1
2n+ 1

(
2n+ 1
n− k

)
= 0, (n ≥ 1), (3.6)

which has been proved by Chen, Li and Shapiro [5].
• The case q = 1 in (1.5) leads to a new identity

Cn =
2n∑
k=0

(−1)k
(
2n
k

)
Ck+122n−k.

• The case q = −1 in (1.6) leads to a known identity [1,8,19]

Cn+1 =
n∑
k=0

(−1)k
(n
k

)
Ck+14n−k.

and the case q =
√
−1 in (1.6) leads to the Touchard identity [1,8]

Cn+1 =
n∑
k=0

( n
2k

)
Ck2n−2k.

• Let q =
√
2 in (1.6), by the relation (1 −

√
2)n = (Pn + Pn−1) − Pn

√
2, where Pn is the nth Pell number (defined by the

recurrence relation Pn+1 = 2Pn + Pn−1 with P−1 = 1, P0 = 0), we have new identities involving Catalan numbers, large
Schröder numbers, and Pell numbers

2n+1C2n+1 =
2n∑
k=0

(−1)k
(
2n
k

)
Nk+1(2)P4n−2k−1,

2n+1C2n+2 =
2n+1∑
k=0

(−1)k
(
2n+ 1
k

)
Nk+1(2)P4n−2k+2.

• Let q =
√
5 in (1.6), by the relation ( 1−

√
5

2 )n+1 = Ln−Fn
√
5

2 , where Ln and Fn are respectively the nth Lucas number
and the nth Fibonacci number (defined by the same recurrence relation Gn+1 = Gn + Gn−1 with G−1 = 2,G0 = 1
for Ln and G−1 = 0,G0 = 1 for Fn), we have new identities involving Catalan numbers, Lucas numbers, and Fibonacci
numbers

5n+1C2n+1 =
2n∑
k=0

(−1)k
(
2n
k

)
Nk+1(5)L4n−2k−124n−2k−1,

5n+1C2n+2 =
2n+1∑
k=0

(−1)k
(
2n+ 1
k

)
Nk+1(5)F4n−2k+124n−2k+1.

4. Proof of Theorem 1.1 and generating functions

In this section we present our second proof for Theorem 1.1 which is based on generating function techniques.
Recall that C(x) = 1−

√
1−4x
2x is the generating function for the Catalan numbers Cn = 1

n+1

(
2n
n

)
, which satisfies the relation

C(x) = 1+ xC(x)2 = 1
1−xC(x) . By the Lagrange inversion formula [30], one can deduce that

[xn−k]C(x)2k+1 =
2k+ 1
2n+ 1

(
2n+ 1
n− k

)
. (4.1)

DefineΩ(q; x) =
∑
n≥0 Nn(q)x

n, thenΩ(q; x) has the explicit expression [11]

Ω(q; x) =
1+ x− qx−

√
1− 2x+ x2 − 2qx− 2qx2 + q2x2

2x
,

which can be rewritten as

Ω(q; x) =
1

1+ x− qx
C
(

x
(1+ x− qx)2

)
= 1+

qx
1− x− qx

C
(

qx2

(1− x− qx)2

)
.
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Identity (4.1) and the identity involvingΩ(q; x) imply at once that∑
n≥0

[
n∑
k=0

2k+ 1
2n+ 1

(
2n+ 1
n− k

)
Nk(q)(1− q)n−k

]
xn =

∑
k≥0

Nk(q)
(1− q)k

[∑
n≥k

2k+ 1
2n+ 1

(
2n+ 1
n− k

)
(1− q)nxn

]

=

∑
k≥0

Nk(q)
(1− q)k

(1− q)kxkC((1− q)x)2k+1

= C((1− q)x)
∑
k≥0

Nk(q)(xC((1− q)x)2)k

= C((1− q)x) Ω(q; xC((1− q)x)2)

=
C((1− q)x)

1+ (1− q)xC((1− q)x)2
C
(

xC((1− q)x)2

(1+ (1− q)xC((1− q)x)2)2

)
= C(x),

which is equivalent to (1.4).
For the second identity (1.5), consider the second identity forΩ(q; x) rewritten as∑

k≥0

Nk+1(q)xk =
Ω(q; x)− 1

x
=

q
1− (1+ q)x

C
(

qx2

(1− (1+ q)x)2

)
.

Then ∑
n≥0

[
n∑
k=0

(−1)n−k
(n
k

)
Nk+1(q)(1+ q)n−k

]
xn =

∑
k≥0

Nk+1(q)
(1+ q)k

[∑
n≥k

(−1)n−k
(n
k

)
(1+ q)nxn

]

=

∑
k≥0

Nk+1(q)
(1+ q)k

(1+ q)kxk

(1+ x(1+ q))k+1

=
1

1+ x(1+ q)

Ω(q; x
1+x(1+q) )− 1

x
1+x(1+q)

= qC(qx2),

which is equivalent to (1.5).
For the last identity (1.6), we have∑

n≥0

[
n∑
k=0

(−1)n−k
(n
k

)
Nk+1(q2)(1− q)2(n−k)

]
xn =

∑
k≥0

Nk+1(q2)
(1− q)2k

[∑
n≥k

(−1)n−k
(n
k

)
(1− q)2nxn

]

=

∑
k≥0

Nk+1(q2)
(1− q)2k

(1− q)2kxk

(1+ x(1− q)2)k+1

=
1

1+ x(1− q)2
Ω(q2; x

1+x(1−q)2
)− 1

x
1+x(1−q)2

=
q2

1− 2qx
C
(

q2x2

(1− 2qx)2

)
=

∑
k≥0

Ck
q2k+2x2k

(1− 2qx)2k+1

=

∑
n≥0

xnqn+2
n∑
k=0

( n
2k

)
Ck2n−2k =

∑
n≥0

xnqn+2Cn+1,

which is equivalent to (1.6). Note that the last equation follows by the well-known Touchard identity, which can also be
derived by setting q = 1 in (1.1) after replacing n by n+ 1.

5. Combinatorial Proof of Theorem 1.1

In order to give the combinatorial proof of (1.4), we need the following definitions. A Dyck path of length 2n is a lattice
path from (0, 0) to (2n, 0) in the first quadrant of xy-plane, consisting of up-steps u = (1, 1) and down-steps d = (1,−1),
which never passes below the x-axis. We will refer to n as the semilength of the path. It is well known that the set of Dyck
paths of semilength n is counted by the Catalan number Cn = 1

n+1

(
2n
n

)
. A peak in a Dyck path is an occurrence of ud. By

the height of a step we mean the ordinate of its endpoint. By a return step we mean a down-step ending at height zero.
Dyck paths that have exactly one return step are said to be primitive. If D1 and D2 are Dyck paths, we define D1D2 to be the
concatenation of D1 and D2.
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Fig. 1. The involution ϕ onD12 \D̃12 , where the weight 1 of up-steps is unlabeled. The first Dyck path D constructed from D(0) = u2d2ud,D(1) = ∅,D(2) =
ud,D(3) = D(4) = D(5) = D(6) = ∅,D(7) = u4d2ud2u2d3ud, and ϕ(D) constructed from D(0) = u2d2udu2d2,D(1) = ∅,D(2) = ud,D(3) = D(4) = D(5) =
D(6) = D(7) = ∅,D(8) = u3d2ud2,D(9) = ud,D(10) = ∅,D(11) = ud.

Aweighted Dyck path is a Dyck path D for which every up-step is endowed with a weight. The weight of a Dyck path D is
the product of the weights of its up-steps, the weight of a set S of Dyck paths means the sum of the weights of D in S.
Let Dn,k denote the set of weighted Dyck paths of length 2n constructed from an ordered sequence of 2k+ 2 Dyck paths

D(0),D(1), . . . ,D(2k+1) by the following steps:
• D(0) is a Dyck path of length 2k for 0 ≤ k ≤ n with an up-step in each peak weighted by q and other up-steps weighted
by 1. It should be noticed that D(0) could be an empty path;
• There are totally n − k up-steps in the rest 2k + 1 Dyck paths, and all up-steps of each D(i) are weighted by 1 or−q for
1 ≤ i ≤ 2k+ 1, i.e., such up-steps can be regarded to be weighted by (1− q);
• Each D(i) is inserted into the ith endpoint of D(0) including the beginning point for 1 ≤ i ≤ 2k+ 1.

Let Dn =
⋃n
k=0 Dn,k. For any D ∈ Dn, denote by w(D) the weight of D. Let D̃n denote the subset of Dyck paths D ∈ Dn

such that all up-steps in D are weighted by 1, such Dyck paths only appear in Dn,0.

Theorem 5.1. There exists a sign reversing involution ϕ on the set Dn \ D̃n.

Proof. For any D ∈ Dn \ D̃n, it can be uniquely written as D = D1D2 · · ·Dm for some 1 ≤ m ≤ n, where Di’s are weighted
primitive Dyck paths. Obviously, there exists at least a Di such that Di has an up-step weighted by q or −q. Now we can
recursively construct the involution ϕ as follows. First find the maximum i for 1 ≤ i ≤ m such that Di has an up-step
weighted by q or −q, then define ϕ(D) = D1 · · ·Di−1ϕ(Di)Di+1 · · ·Dm. Note that Di = uD∗i d, where D

∗

i ∈ Dj for some
0 ≤ j ≤ n− 1.
• If the first up-step in Di = uD∗i d has weight q or−q, then D

∗

i has no up-steps with weight q, otherwise it will contradict
with the definition of D ∈ Dn. Let D′i denote the weighted Dyck path obtained from Di by changing the sign of the weight
of the first up-step. Then define ϕ(Di) = D′i;
• If the first up-step in Di = uD∗i d has weight 1, then define ϕ(Di) = uϕ(D

∗

i )d.

It is clear that the ϕ is a sign reversing involution on the set Dn \ D̃n. See Fig. 1 for an illustration. �

Proof of (1.4)

It is clear that the weight of D̃n is the nth Catalan number Cn. According to the definition of D ∈ Dn,k, it is easy to derive
the weight ofDn,k. On the one hand, it is well known that the total weight for D(0) is the Narayana polynomial Nk(q) [25]. On
the other hand, the total product of the weights of D(1),D(2), . . . ,D(2k+1) is just the coefficient of xn−k in (1− q)n−kC(x)2k+1.
Then by (4.1) we have

w(Dn,k) = Nk(q)(1− q)n−k[xn−k]C(x)2k+1 =
2k+ 1
2n+ 1

(
2n+ 1
n− k

)
Nk(q)(1− q)n−k.

By Theorem 5.1, we havew(D̃n) =
∑n
k=0w(Dn,k), which completes the proof. �

Remark 5.2. Specially, let D̄n denote the subset of Dyck paths D ∈ Dn such that all up-steps in D are weighted by q or −q.
Such Dyck paths can only appear in Dn,k for 0 ≤ k ≤ n satisfying that (a)D(0) = (ud)k with up-steps weighted by q, and (b)
all up-steps in D(i) are weighted by−q for 1 ≤ i ≤ k. Let ϕD̄n be the ϕ restricted to D̄n, it is clear that ϕD̄n is a sign reversing
involution on D̄n. Then (3.6) is followed similarly to the proof of Theorem 5.1 and the proof of (1.4) above.

In order to give the combinatorial proof of (1.5) and (1.6), we need the following definitions. A plane tree T can be defined
recursively (see for example [26]) as a finite set of vertices such that a distinguished vertex u is called the root of T , and the
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Fig. 2. The involution onP∗
n .

Fig. 3. The involution onPn \ P̃n .

remaining vertices are put into an ordered partition (T1, T2, . . . , Tm) of m ≥ 0 disjoint non-empty sets, each of which is a
plane tree called a subtree of u. The root ui of Ti is called a child of u, and u is called the father of ui. The out-degree of a vertex
of T is the number of its subtrees. An internal vertex of T is a vertex of out-degree at least one. A vertex of out-degree zero is
called a leaf of T . A complete binary tree is a plane tree such that each internal vertex has out-degree two.
Aweighted plane tree is a plane tree for which every vertex is endowed with a weight. The weight of a plane tree T is the

product of the weights of its vertices, the weight of a set S of plane trees means the sum of the weights of T in S.
LetPn,k denote the set of weighted plane trees of n+ 2 vertices such that

• The leaves have weight q;
• There exist n− k vertices of out-degree one, except for the root if it has out-degree one, with weight−1 or−q. In other
words, such vertices can be regarded to be weighted by−(1+ q);
• All other internal vertices have weight 1. There may exist vertices of out-degree one with weight 1.

LetPn =
⋃n
k=0Pn,k. For any T ∈ Pn, denote by w(T ) the weight of T . LetP∗n denote the subset ofPn such that there

are at least one vertex, except for the root, of out-degree one weighted by 1 or−1, let P̃n denote the subset ofPn such that
the root has out-degree one, and all other internal vertices have out-degree two. It is clear thatP∗n ∩ P̃n = ∅.

Theorem 5.3. There exists a sign reversing involution ψ on the set Pn \ P̃n.

Proof. Note that a tree T ∈ Pn is inP∗n if and only if it contains a vertex, different from the root, of out-degree one with
weight either 1 or−1. Consider the first occurrence of such vertex, denoted by v, when traversing the weighted plane tree
T in pre-order, (i.e., visiting the root first, then traversing its subtrees from left to right). Then replace the weight of v in T
by−w(v), we obtain another weighted plane tree T ∗ inP∗n , and then define ψ(T ) = T

∗. See Fig. 2 for an example.
For any T ∈ Pn \ (P

∗
n ∪ P̃n), we can construct recursively the involution ψ as follows. First we should consider the

following two cases:

• The root of T has out-degree one, in this case the unique subtree of the root has either a vertex of out-degree greater than
two or a vertex of out-degree one with weight−q.
• The root of T has out-degree not less than two.

If the root u of T has i (≥2) number of subtrees, denoted by T1, T2, . . . , Ti, when T1 is a complete binary tree, then delete
the subtree T2 of the root u, regard T2 as the subtree of the right-most leaf v of T1, and replace the weight q of v by−q, hence
we obtain a new weighted plane tree T ∗ inPn \ (P

∗
n ∪ P̃n), and define ψ(T ) = T ∗; when T1 is not a complete binary tree,

consider the left-most component of T , that is the tree T ′1 with the root u and T1 as its unique subtree, thenψ(T ) is obtained
by adding the subtrees T2, . . . , Ti right to the root u of ψ(T ′1) step by step. See Fig. 3 for an example.
If the root u of T has a unique subtree, denoted by T ′, let u′ be the root of T ′ which is the only child of u. Note that u′ is

always an internal vertex.
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Fig. 4. The involution onPn \ P̃n .

Fig. 5. The involution onPn \ P̃n .

Fig. 6. The involution onPn \ P̃n .

(i) If the out-degree of u′ is greater than two, then ψ(T ) is defined to be the tree T ∗ inPn \ (P
∗
n ∪ P̃n) which has the

root uwith a unique subtree ψ(T ′); See Fig. 4 for an example.
(ii) If the out-degree of u′ is one or two, find the right-most leaf v′,
• if there exist vertices of weight−q in the path u′v′, then choose the vertex v (if u′ has out-degree one, then v = u′) which
is first occurring in the path u′v′, denoted by T ′′ as the subtree of v, if deleting T ′′ in T ′, the resulting tree is a complete
binary tree. Then deleting the subtree T ′′ in T , annexing it to the right of u, and changing the weight−q of v to be q, we
obtain a new weighted plane tree T ∗ inPn \ (P

∗
n ∪ P̃n), and define ψ(T ) = T ∗; See Fig. 5 for an example.

• if deleting T ′′ in T ′, the resulting tree is not a complete binary tree or if there is no vertex of weight−q in the path u′v′,
then u′must have out-degree two. Let T1, T2 be the left and right subtrees of u′ and T ′1, T

′

2 be the left and right components
of u′ respectively. If T1 is not a complete binary tree, thenψ(T ) is defined to be the tree T ∗ inPn \(P

∗
n ∪P̃n) by replacing

T ′1 in T by ψ(T
′

1). If T1 is a complete binary tree, so T2 must not be a complete binary tree, then ψ(T ) is defined to be the
tree T ∗ inPn \ (P

∗
n ∪ P̃n) by replacing T ′2 in T by ψ(T

′

2). See Fig. 6 for an example.

Clearly, the ψ just defined is indeed a sign reversing involution on the setPn \ P̃n. �
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LetQn,k denote the set of weighted plane trees of n+ 2 vertices such that
• The leaves have weight q2;
• There exist n − k vertices of out-degree one, except for the root if it has out-degree one, with weight −1, 2q or −q2. In
other words, such vertices can be regarded to be weighted by−(1− q)2;
• All other internal vertices have weight 1. There may exist vertices of out-degree one with weight 1.

Let Qn =
⋃n
k=0Qn,k, and Q∗n denote the subset of Qn such that there are at least one vertex, except for the root, of out-

degree one weighted by 1 or−1, let Q̃n denote the subset ofQn such that the root has out-degree one, and all other internal
vertices have either out-degree two or out-degree one with weight 2q. It is clear that Q∗n ∩ Q̃n = ∅. Similar to the proof of
Theorem 5.3, a sign reversing involution can be constructed on Qn \ Q̃n, the details leave to the interested readers. Hence
we have

Theorem 5.4. There exists a sign reversing involution on the set Qn \ Q̃n.

Now we can give the combinatorial proof of identities (1.5) and (1.6).
Proof of (1.5) and (1.6). For any T ∈ Pk,k, namely, T is a weighted plane tree of k + 2 vertices with leaves weighted by q
and all other internal vertices weighted by 1, inserting n− k vertices of weight−(1+ q) into the k+1 edges of T (repetition
allowed), we can obtain

( n
k

)
number of weighted plane trees inPn,k. It is well known that the weight ofPk,k is Nk+1(q) [25],

thenPn,k has the weight
( n
k

)
Nk+1(q)(−1− q)n−k. Similarly,Qn,k has the weight (−1)n−k

( n
k

)
Nk+1(q2)(1− q)2(n−k).

On the other hand, for any T ∈ P̃n, we know that the root of T has out-degree one and has only one subtree T ′ which is
a weighted complete binary tree with n+ 1 vertices, it is well known that the number of complete binary trees with n+ 1
vertices is counted by Catalan number C n

2
[25], where C n

2
= 0 if n is odd. So the weight of P̃n is q

n
2+1C n

2
.

For any T ∈ Q̃n, let Q̃n,k denote the subset of Q̃n such that T has n − 2k vertices, except for the root, of out-degree one
with weight 2q. For any T ∈ Q̃2k,k, we know that the root of T has out-degree one and has only one subtree T ′ which is
a weighted complete binary tree with 2k + 1 vertices, inserting n − 2k vertices of weight 2q into the 2k + 1 edges of T
(repetition allowed), we can obtain

( n
2k

)
number of weighted plane trees in Q̃n,k. It is clear that Q̃2k,k is counted by Catalan

numbers Ck and has weight q2k+2Ck, then Q̃n,k has weight (2q)n−2k
( n
2k

)
q2k+2Ck = qn+2

( n
2k

)
Ck2n−2k. Hence Q̃n has weight

qn+2
∑n
k=0

( n
2k

)
Ck2n−2k, which is qn+2Cn+1 by Touchard identity.

Using Theorems 5.3 and 5.4, one can easily obtain that the weight of Pn(resp. Qn) equals that of P̃n(resp. Q̃n), which
completes the proof. �
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