
Advances in Applied Mathematics 26, 258–269 (2001)
doi:10.1006/aama.2000.0719, available online at http://www.idealibrary.com on

Restricted 132-Avoiding Permutations

Toufik Mansour

Department of Mathematics, University of Haifa, Haifa, Israel 31905
E-mail: tmansur@study.haifa.ac.il

and

Alek Vainshtein

Departments of Mathematics and Computer Science, University of Haifa,
Haifa, Israel 31905

E-mail: alek@mathcs.haifa.ac.il

Received October 4, 2000; accepted November 10, 2000

We study generating functions for the number of permutations on n letters avoid-
ing 132 and an arbitrary permutation τ on k letters, or containing τ exactly once. In
several interesting cases the generating function depends only on k and is expressed
via Chebyshev polynomials of the second kind. © 2001 Academic Press

1. INTRODUCTION

Let α ∈ Sn and τ ∈ Sk be two permutations. We say that α contains
τ if there exists a subsequence 1 ≤ i1 < i2 < · · · < ik ≤ n such that
�αi1

� 	 	 	 � αik
� is order-isomorphic to τ; in such a context τ is usually called a

pattern. We say that α avoids τ, or is τ-avoiding, if such a subsequence does
not exist. The set of all τ-avoiding permutations in Sn is denoted Sn�τ�.
For an arbitrary finite collection of patterns T , we say that α avoids T if α
avoids any τ ∈ T ; the corresponding subset of Sn is denoted Sn�T �.
While the case of permutations avoiding a single pattern has attracted

much attention, the case of multiple pattern avoidance remains less investi-
gated. In particular, it is natural, as the next step, to consider permutations
avoiding pairs of patterns τ1, τ2. This problem was solved completely for
τ1� τ2 ∈ S3 (see [SS]), for τ1 ∈ S3 and τ2 ∈ S4 (see [W, A]), and for
τ1� τ2 ∈ S4 (see [B1, Km] and references therein). Several recent papers
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[CW, MV1, Kr, MV2] deal with the case τ1 ∈ S3, τ2 ∈ Sk for various
pairs τ1� τ2. Another natural question is to study permutations avoiding
τ1 and containing τ2 exactly t times. Such a problem for certain τ1� τ2 ∈ S3
and t = 1 was investigated in [R], and for certain τ1 ∈ S3, τ2 ∈ Sk in
[RWZ, MV1, Kr]. The tools involved in these papers include continued
fractions, Chebyshev polynomials, and Dyck paths.
In this paper we present a general approach to the study of permutations

avoiding 132 and avoiding an arbitrary pattern τ ∈ Sk (or containing it
exactly once). As a consequence, we derive all the previously known results
for this kind of problem, as well as many new results.
The paper is organized as follows. The case of permutations avoiding

both 132 and τ is treated in Section 2. We derive a simple recursion for
the corresponding generating function for general τ. This recursion can
be solved explicitly for several interesting cases, including 2-layered and
3-layered patterns (see [B2, MV2]) and wedge patterns defined below. It
also allows one to write a Maple program that calculates the generating
function for any given τ. This program can be obtained from the authors
on request. Observe that if τ itself contains 132, then any 132-avoiding
permutation avoids τ as well, so in what follows we always assume that
τ ∈ Sk�132�.
The case of permutations avoiding 132 and containing τ exactly once is

treated in Section 3. Here again we start from a general recursion and then
solve it for several particular cases.
Most of the explicit solutions obtained in Sections 2 and 3 involve

Chebyshev polynomials of the second kind. Several identities used for get-
ting these solutions are presented in Section 4. The authors are grateful to
the referee for explaining to us a general approach to such identities.
The final version of this paper was written during the second author’s

(A.V.) stay at the Max–Planck–Institut für Mathematik in Bonn, Germany.
A.V. is grateful to MPIM for the support.

2. AVOIDING A PATTERN

Consider an arbitrary pattern τ = �τ1� 	 	 	 � τk� ∈ Sk�132�. Recall that τi
is said to be a right-to-left maximum if τi > τj for any j > i. Let m0 =
k�m1� 	 	 	 �mr be the right-to-left maxima of τ written from left to right.
Then τ can be represented as

τ = �τ0�m0� τ
1�m1� 	 	 	 � τ

r�mr��
where each of τi may be possibly empty, and all the entries of τi are
greater than mi+1 and all the entries of τi+1. This representation is called
the canonical decomposition of τ. Given the canonical decomposition, we
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define the ith prefix of τ by πi = �τ0�m0� 	 	 	 � τ
i�mi� for 1 ≤ i ≤ r and

π0 = τ0, π−1 = 	. Furthermore, the ith suffix of τ is defined by σi =
�τi�mi� 	 	 	 � τ

r�mr� for 0 ≤ i ≤ r and σr+1 = 	. Strictly speaking, prefixes
and suffixes themselves are not patterns, since they are not permutations
(except for πr = σ0 = τ). However, any prefix or suffix is order-isomorphic
to a unique permutation, and in what follows we do not distinguish between
a prefix (or suffix) and the corresponding permutation.
Let fτ�n� denote the number of permutations in Sn�132� avoiding τ,

and let Fτ�x� = ∑
n≥0 fτ�n�xn be the corresponding generating function.

By f ρτ �n� we denote the number of permutations in Sn�132� avoiding τ and
containing ρ. The following proposition is the base of all the other results
in this section.

Theorem 2.1. For any τ ∈ Sk�132�, Fτ�x� is a rational function satisfying
the relation

Fτ�x� = 1+ x
r∑

j=0

(
Fπj �x� − Fπj−1�x�)Fσj �x�	

Proof. Let α ∈ Sn�132� τ�. Choose t so that αt = n, then α = �α′� n� α′′�,
and α avoids 132 if and only if α′ is a permutation of the numbers n− t +
1� n− t + 2� 	 	 	 � n, α′′ is a permutation of the numbers 1� 2� 	 	 	 � n− t, and
both α′ and α′′ avoid 132. On the other hand, it is easy to see that α contains
τ if and only if there exists i, 0 ≤ i ≤ r + 1, such that α′ contains πi−1 and
α′′ contains σi. Therefore, α avoids τ if and only if there exists i, 0 ≤ i ≤ r,
such that α′ avoids πi and contains πi−1, while α′′ avoids σi. We thus get
the following relation:

fτ�n� =
n∑
t=1

r∑
j=0

fπ
j−1

πj �t − 1�fσj �n− t�	

To obtain the recursion for Fτ�x� it remains to observe that

fπ
j−1

πj �l� + fπj−1�l� = fπj �l�
for any l and j, and to pass to generating functions. Rationality of Fτ�x�
follows easily by induction.

Though elementary, the above theorem enables us to derive easily various
known and new results for a fixed k.

Example 2.1 (see [SS, Proposition 11]). Let us find F321�x�. The
canonical decomposition of 321 is �	� 3�	� 2�	� 1�, so r = 2, and
hence Theorem 2.1 gives

F321�x� = 1+ xF32�x�F21�x� + x
(
F321�x� − F32�x�

)
F1�x�	
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Since evidently F1�x� = 1 and F21�x� = F32�x� = �1− x�−1, we finally get

F321�x� =
1− 2x+ 2x2

�1− x�3 	

Example 2.2 (see [W]). Let us find F3214�x�. The canonical decompo-
sition is �321� 4�, so r = 0, and hence F3214�x� = 1+ xF321�x�F3214�x�. Thus
finally

F3124�x� =
�1− x�3

1− 4x+ 5x2 − 3x3
	

A Maple program that calculates Fτ�x� for any given τ is available from
the authors on request.
The case of varying k is more interesting. As an extension of Example 2.1,

let us consider the case τ = �k
 = �k� k− 1� 	 	 	 � 1�. We denote by ��x� y�
the generating function

∑
k≥1 F�k
�x�yk.

Theorem 2.2.

��x� y� =
y�1+ x− xy� − y

√
�1+ x− xy�2 − 4x

2x�1− y� 	

Proof. Indeed, Theorem 2.1 yields

F�k
�x� = 1+ x
k−1∑
j=1

(
F�j+1
�x� − F�j
�x�

)
F�k−j
�x�

+xF�1
�x�F�k−1
�x�	
Multiplication by yk and summation over k ≥ 2 gives

��x� y� = y

1− y
+ x�1− y���x� y�

(
��x� y�

y
− 1−��x� y�

)

+xy��x� y��
and the result follows.

Observe that as a consequence of Theorem 2.2 we get

lim
k→∞

F�k
�x� = lim
y→1

�1− y���x� y� = 1−√
1− 4x
2x

�

in which we recognize the generating function of Catalan numbers. This is a
predictable result, since as k tends to ∞ the restriction posed by τ vanishes,
and we end up with just 132-avoiding permutations, which are enumerated
by Catalans.
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Let us consider now a richer class of patterns τ. We say that τ ∈ Sk is a
layered pattern if it can be represented as τ = �τ0� τ1� 	 	 	 � τr�, where each of
τi is a nonempty permutation of the form τi = �mi+1 + 1�mi+1 + 2� 	 	 	 �mi�
with k = m0 > m1 > 	 	 	 > mr > mr+1 = 0; in this case we denote τ by
�m0� 	 	 	 �mr�. Observe that our definition differs slightly from the one used
in [B2, MV2]: their layered patterns are exactly the complements of our
layered patterns. It was revealed in several recent papers (see [CW, MV1,
Kr] and especially [MV2]) that layered restrictions are intimately related to
Chebyshev polynomials of the second kind Up�cos θ� = sin�p+ 1�θ/ sin θ.
Following [MV1], introduce

Rp�x� =
Up−1�z�√
xUp�z�

� where z = 1
2
√
x
	

It was proved by different methods in [CW, MV1, Kr] that F�k��x� = Rk�x�.
Our next result is an easy consequence of Theorem 2.1.

Theorem 2.3. Let r ≥ 1 and k = m0 > m1 > 	 	 	 > mr ; then(
1− xRm0−m1−1�x� − xRmr

�x�)F�m0� 			�mr ��x�
= 1− xRm0−m1−1�x�F�m1� 			�mr ��x�

+x
r∑

j=2
F�m0−mj� 			�mj−1−mj��x�

(
F�mj−1� 			�mr ��x� − F�mj� 			�mr ��x�

)
	

Proof. Evidently, �τ̃0�m0� 	 	 	 � τ̃
r�mr� with τ̃i = �mi+1 + 1� 	 	 	,mi − 1� is

the canonical decomposition of �m0� 	 	 	 �mr�. Next, Fσi�x� = F�mi� 			�mr ��x�
for 0 ≤ i ≤ r − 1, and Fπi�x� = F�m0−mi+1� 			�mi−mi+1��x� for 1 ≤ i ≤ r.
Besides, Fσr �x� = F�mr ��x� = Rmr

�x� and Fπ0�x� = F�m0−m1−1��x� =
Rm0−m1−1�x�. The rest follows from Theorem 2.1 via simple algebraic
transformations.

For small r one can find explicit expressions for F�m0� 			�mr ��x�.
For r = 1 we get the following generalization of [CW, Theorem 3.1, third

case], and [Kr, Theorem 6].

Theorem 2.4. For any k > m > 0,

F�k�m��x� = Rk�x�	
Proof. By Theorem 2.3,

(
1− xRk−m−1�x� − xRm�x�

)
F�k�m��x� = 1− xRk−m−1�x�F�m��x��

and the result follows immediately from Lemma 4.1(iv,v) for a = k−m− 1
and b = m.
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The case r = 2 is more complicated.

Theorem 2.5. For any k > m1 > m2 > 0,

F�k�m1�m2��x� =
Uα+β�z�Uα+γ−1�z�Uβ+γ�z� +Uβ−1�z�Uβ�z�√

xUα+β�z�Uα+γ�z�Uβ+γ�z�
�

where α = k−m1, β = m1 −m2, γ = m2, and z = 1/2
√
x.

Proof. Indeed, by Theorem 2.3,(
1− xRk−m1−1�x� − xRm2

�x�)F�k�m1�m2��x�
= 1− xRk−m1−1�x�F�m1�m2��x�

+xF�k−m2�m1−m2��x�
(
F�m1�m2��x� − F�m2��x�

)
	

Taking into account Theorem 2.4 one gets

F�k�m1�m2��x�

= 1− xRk−m1−1�x�Rm1
�x� + xRk−m2

�x�(Rm1
�x� − Rm2

�x�)
1− xRk−m1−1�x� − xRm2

�x� 	

By Lemma 4.1(iv) for a = k − m1 − 1 and b = m1, Lemma 4.1(vi) for
a = m1 and b = m2, and Lemma 4.1(v) for a = k −m1 − 1 and b = m2,
one has

1− xRk−m1−1�x�Rm1
�x� = Uk−1�z�

Uk−m1−1�z�Um1
�z� �

xRk−m2
�x�(Rm1

�x� − Rm2
�x�) = Uk−m2−1�z�Um1−m2−1�z�

Uk−m2
�z�Um1

�z�Um2
�z� �

1
1− xRk−m1−1�x� − xRm2

�x� = Uk−m1−1�z�Um2
�z�√

xUk−m1+m2
�z� �

respectively, and we thus get

F�k�m1�m2��x�

= Uα+β�z�Uα+β+γ−1�z�Uγ�z� +Uα−1�z�Uβ−1�z�Uα+β−1�z�√
xUα+β�z�Uα+γ�z�Uβ+γ�z�

	

Finally, we use Lemma 4.1(i) for s = α+ γ − 1, t = β+ γ, and w = β and
Lemma 4.1(ii) for s = β, t = 0, and w = α− 1 to get the desired result.

For a further generalization of Theorem 2.4, consider the following def-
inition. We say that τ ∈ Sk is a wedge pattern if it can be represented as
τ = �τ1� ρ1� 	 	 	 � τr� ρr�, so that each of τi is nonempty, �ρ1� ρ2� 	 	 	 � ρr�
is a layered permutation of 1� 	 	 	 � s for some s, and �τ1� τ2� 	 	 	 � τr� =
�s + 1� s + 2� 	 	 	 � k�. For example, 645783912 and 456378129 are wedge
patterns. Evidently, �k�m� is a wedge pattern for any m.

Theorem 2.6. Fτ�x� = Rk�x� for any wedge pattern τ ∈ Sk�132�.
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Proof. We proceed by induction on r. If r = 1 then τ = �k�m� for some
m, and the result is true by Theorem 2.4. For an arbitrary r > 1, take the
canonical decomposition of τ. Evidently, it looks like τ = �τ′� k� ρ̃r�m�,
where �ρ̃r�m� = ρr , provided ρr is nonempty. Therefore, Theorem 2.1,
together with Fρr �x� = F�m��x� = Rm�x�, gives

Fτ�x� =
1− xFτ′ �x�Rm�x�

1− xFτ′ �x� − xRm�x�
	 (2.1)

If τr = �k�, then τ′ is itself a wedge pattern on k − m − 1 elements, so
by induction Fτ′ �x� = Rk−m−1�x�; hence the result follows from (2.1) and
Lemma 4.1(iv,v) for a = k −m − 1 and b = m. Let τr = �l + 1� 	 	 	 � k�;
then applying Theorem 2.1 repeatedly k− l − 1 times, we get

Fτ′ �x� =
1

1− x

1−
	 	 	

1− x

1− xFτ′′ �x�

�

where the height of the fraction equals k− l− 1 and τ′′ = �τ1� ρ1� 	 	 	 � τr−1�
ρr−1� is a wedge pattern on l − m elements. So, by induction, Fτ′′ �x� =
Rl−m�x�; applying Lemma 4.1(iii) repeatedly k− l − 1 times, we again get
Fτ′ �x� = Rk−m−1�x� and proceed exactly as in the previous case. The case
ρr = 	 is treated in a similar way.

Remark. A comparison of Theorem 2.6 with the main result of [MV2]
suggests that there should exist a bijection between the sets Sn�321� �k�m��
and Sn�132� τ� for any wedge pattern τ. However, we failed to produce
such a bijection, and finding it remains a challenging open question.

3. CONTAINING A PATTERN EXACTLY ONCE

Let gτ�n� denote the number of permutations in Sn�132� that contain
τ ∈ Sk�132� exactly once, and let gρτ �n� denote the number of permutations
in Sn�132� ρ� that contain τ ∈ Sk�132� exactly once. We denote by Gτ�x�
and G

ρ
τ�x� the corresponding ordinary generating functions.

The following statement is similar to Theorem 2.1.

Theorem 3.1. Let τ = �τ0�m0� 	 	 	 � τ
r�mr� be the canonical decomposi-

tion of τ ∈ Sk�132�; then
(
1− xFπ0�x� − xFσr �x�)Gτ�x� = x

r∑
j=1

Gπj

πj−1�x�Gσj−1
σj �x�
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for r ≥ 1, and

Gτ�x� =
xFτ�x�Gπ0�x�
1− xFπ0�x�

for r = 0.

Proof. Let α ∈ Sn�132� contain τ exactly once, and take the same
decomposition α = �α′� n� α′′� as in the proof of Theorem 2.1. Similarly to
this proof, α contains τ exactly once if and only if either α′ avoids π0 and
α′′ contains σ0 exactly once, or α′ contains πr exactly once and α′′ avoids
σr , or there exists i, 1 ≤ i ≤ r, such that α′ avoids πi and contains πi−1

exactly once, while α′′ avoids σi−1 and contains σi exactly once. We thus
get the relation

gτ�n� =
n∑
t=1

fπ0�t − 1�gτ�n− t� +
n∑
t=1

gτ�t − 1�fσr �n− t�

+
n∑
t=1

r∑
j=1

gπ
j

πj−1�t − 1�gσj−1
σj �n− t��

and the result follows.

Remark. Strictly speaking, Theorem 3.1, unlike Theorem 2.1, is not a
recursion for Gτ�x�, since it involves functions of type G

ρ
τ (unless r = 0).

However, for these functions one can write further recursions involving
similar objects. For example,

(
1− xFτj �x� − xFπ0�x�)Gπj

πj−1�x� = x
j−1∑
i=1

Gπi

πi−1�x�Gσi−1
j−1

σi
j−1
�x��

where σi
j−1 is the ith suffix of πj−1. Though we have not succeeded in

writing down a complete set of equations in the general case, it is possible
to do this in certain particular cases.

Example 3.1 (see [MV1, Theorem 3.1]). Let τ = �k� = �1� 2� 	 	 	 � k�.
Then r = 0, and it follows from Theorem 3.1 that

G�k��x� =
xF�k��x�G�k−1��x�
1− xF�k−1��x�

	

Since F�k��x� = Rk�x� and Rk�x��1 − xRk−1�x�� = 1 (see Lemma 4.1(iii)
below), we get G�k��x� = xR2

k�x�G�k−1��x�, which together with G�0��x� = 1
gives

G�k��x� =
1

U2
k�z�

� where z = 1
2
√
x
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Similarly to Section 2, we consider now the case τ = �k
 = �k� k −
1� 	 	 	 � 1� and denote by '�x� y� the generating function

∑
k≥1G�k
�x�yk.

The following statement is a counterpart of Theorem 2.2.

Theorem 3.2.

'�x� y� =
�1− x��1− xy� −

√
�1− x�2�1− xy�2 − 4x2�1− x�y

2x
	

Proof. Indeed, Theorem 3.1 yields

�1− x�G�k
�x� = xG
�2

�0
�x�G

�k

�k−1
�x� + x

k−1∑
j=2

G
�j+1

�j
 �x�G�k−j+1


�k−j
 �x�	

Observe that if α contains �j + 1
 then it contains at least j + 1 copies of
�j
; hence G

�j+1

�j
 �x� = G�j
�x� for any j ≥ 1. Besides, G�2


�0
�x� = 1 and
G�1
�x� = x. Therefore, multiplication of the above equation by yk and
summation over k ≥ 2 gives

�1− x�('�x� y� − xy
) = x'2�x� y� + x�1− x�y'�x� y��

and the result follows.

In the case of a layered τ we get the following counterpart of
Theorem 2.3.

Theorem 3.3. Let r ≥ 1 and k = m0 > m1 > 	 	 	 > mr > mr+1 = 0;
then

(
1− xRd01−1�x� − xRmr

�x�)G�m0� 			�mr ��x�
= xG

�d02� d12�
�d01−1� �x�G�m0� 			�mr �

�m1� 			�mr ��x�

+x
r∑

j=2
G

�d0� j+1� 			� dj� j+1�
�d0j � 			� dj−1� j� �x�G�mj−1� 			�mr �

�mj� 			�mr � �x��

where dij = mi −mj .

The proof is similar to that of Theorem 2.3.
For the case r = 1 one gets the following counterpart of Theorem 2.4,

which is a generalization of [Kr, Theorem 7].

Theorem 3.4. For any k > m > 0,

G�k�m��x� =
√
x

Uk�z�Um�z�Uk−m−1�z�
�

where z = 1/2
√
x.
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Proof. Indeed, by Theorem 3.3 we have
(
1− xRk−m−1�x� − xRm�x�

)
G�k�m��x� = xG

�k�m�
�k−m−1��x�G�k�m�

�m� �x�	
Without loss of generality we can assume that 2m ≥ k; otherwise it is
enough to replace �k�m� by �k�m�−1 = �k� k−m�, since �132�−1 = �132�.
Under this restriction, one has G�k�m�

�k−m−1��x� = G�k−m−1��x�, and it remains

to find G
�k�m�
�m� �x�. Given a decomposition α = �α′� n� α′′� ∈ Sn�132� as

before, it is easy to see that α avoids �k�m� and contains �m� exactly once
if and only if either α′ avoids �k−m− 1� while α′′ avoids �k�m� and con-
tains �m� exactly once, or α′ contains �m− 1� exactly once while α′′ avoids
�m�. We thus get

g
�k�m�
�m� �n� =

n∑
t=1

f�k−m−1��t − 1�g�k�m�
�m� �n− t�

+
n∑
t=1

g�m−1��t − 1�f�m��n− t��

which on the level of generating functions means

G
�k�m�
�m� �x� = xF�k−m−1��x�G�k�m�

�m� �x� +G�m−1��x�F�m��x�	
Plugging in the expression for G�m−1��x� calculated in Example 3.1 and
using Lemma 4.1(iii) we get

G
�k�m�
�m� �x� = Uk−m−1�z�

xUm�z�Um−1�z�Uk−m�z�
�

where z = 1/2
√
x. This, together with (3.1) and Lemma 4.1(iv,v) for a =

k−m− 1 and b = m, yields the desired result.

One can try to obtain results similar to Theorems 2.5 and 2.6, but the
expressions involved become extremely cumbersome. So we just consider a
simplest wedge pattern, which is not layered.

Example 3.2. Let k > m > p > 0, and let τ = �k�m�p� = �p +
1� p + 2� 	 	 	 �m� 1� 2� 	 	 	 � p�m + 1�m + 2� 	 	 	 � k�. To find G�k�m�p��x� we
use Theorem 3.1 for r = 0 repeatedly k−m times and get

G�k�m�p��x� = xk−mR2
k�x� · · ·R2

m+1�x�G�m�p��x�	
Now Theorem 2.4 yields

G�k�m�p��x� =
√
xUm�z�

U2
k�z�Um−p−1�z�Up�z�

with z = 1/2
√
x.
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4. IDENTITIES INVOLVING CHEBYSHEV POLYNOMIALS

In this section we present several identities involving Chebyshev poly-
nomials of the second kind used in the two previous sections. We do not
supply the proofs, since any identity which is rational in z and Up�z� can be
proved routinely by a computer program. Indeed, it is enough to perform
the following steps:

(1) Replace z by cos θ, and Up�z� by sin�p+ 1�θ/ sin θ
(2) Since cos θ = �eiθ + e−iθ�/2, and sin θ = �eiθ − e−iθ�/2i, replace

cos θ by �w +w−1�/2, and Up�cos θ� by �wp+1 −w−p−1�/�w −w−1�
(3) The obtained identity is rational in w and can be checked by any

computer algebra program.

In the following lemma we assume that Rp�x�, p ≥ 1, is defined by

Rp�x� =
Up−1�z�√
xUp�z�

with z = 1/2
√
x.

Lemma 4.1. (i) For any s +w − 1 ≥ t ≥ w ≥ 1,

Us�z�Ut�z� −Us+w�z�Ut+w�z� = Uw−1�z�Us−t+w−1�z�	
(ii) For any s� t ≥ 0 and w ≥ 1,

Us+w�z�Ut+w�z� −Us�z�Ut�z� = Uw−1�z�Us+t+w+1�z�	
(iii) For any p ≥ 1,

Rp+1�x� =
1

1− xRp�x�
	

(iv) For any a� b ≥ 1,

1− xRa�x�Rb�x� =
Ua+b�z�

Ua�z�Ub�z�
	

(v) For any a� b ≥ 1,

1− xRa�x� − xRb�x� =
√
xUa+b+1�z�
Ua�z�Ub�z�

	

(vi) For any a ≥ b+ 1 ≥ 2,

Ra�x� − Rb�x� =
Ua−b−1�z�√
xUa�z�Ub�z�
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