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A GENERALIZATION OF EULER’S FORMULA
AND ITS CONNECTION TO FIBONACCI NUMBERS

Jonathan F. Mason and Richard H. Hudson

1. INTRODUCTION

This paper began as a simple proof generalizing Euler’s well-known formula for the ver-
tices, faces, and edges of a cube in 3 dimensions, to a tessaract, and to higher dimensions. Let
an n-cube with n-dimensional volume 1 consist of all n-tuples (z1,%a,...,%,) where each z;,
i=1,...,n satisfies 0 < z; < 1. The boundary points of the n-cube are the vertices, which we
will call 0-cubes to indicate that they arc 0-dimensional. For each such vertex, we clearly have
z; fixed to be 0 or 1. A 1-cube will be an edge of the n-cube. For an edge, we have exactly
one of the z; free to take on values between 0 and 1 (inclusive) and the other z; fixed to be 0
or 1 for each i = 1,...,n. Similarly, a k-cube, k¥ < n, will have exactly k of the z; free to take
on values between 0 and 1 (inclusive) and n — k fixed to be 0 or 1.

By representing each vertex in this way, it is clear that there are 2™ vertices in an n-cube.
For a k-cube, since n — k of the z; are fixed, and k are not fixed, we must have exactly

(2) o (1.1)

k-cubes in an n-cube. In particular, there are n - (2"!) edges and (3) - (2"~2) faces. Thus,

Vertices + Faces — Bdges = 2" —n . (2°71) + (g) (2 =23 (n? —5n 4+ 8), (1.2)
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which is a natural generalization of the well-known formula of Euler when n = 3, namely
V+F=FE+2.
Note that it is an easy consequence of the binomial theorem (see, e.g., [1, p. 9}), that

() e=a+r=a (19
k=0

This gives the following table, which appears in [2, p. 89] when n > 5:
& g ppe

0

i 0 1] 0 0 0 0 0
2 1 0 1] 0 0 0 0 0
4 4 1 0 0 t] 0 0 0
8 12 6 1 0 4] 0 0 0
16 32 24 8 1 0 0 0 0
32 80 80 40 10 1 0 0 0
64 192 240 160 60 12 1 0 0
128 448 672 560 280 84 14 1 0
©-2r (-2t ()22 (-2 (-2t G2 . (Bt o
Table 1.1

Looking carefully at Table 1.1, we note that there is a one-to-one correspondence between
entries in the table and the sequence of Fibonacci numbers. In Section 2, we will show how to
prove this correspondence, but it is a somewhat more complicated derivation than the similar
well-known correspondence between the Fibonacci numbers and the diagonal’s of Pascal’s
Triangle, so we will first illustrate it pictorially for small n in Tables 1.2 and 1.3 below:

IE ol B2 BB & k= Oinh 243
F=1 «+1 .00 O - ble—0 0«0
F:IZ e—’2/1 g_..Q'/Q I'}:l'/,Zf-'l/DeG
FS:S %.4’/4(,.—]/0 I;r3//4(~4"/1@‘9
F,=13 e—»s{/ze-o//; Fy=8 5&*’1256‘“’
k=34 ¢—~l6/321—24 g . /';=2lzf‘5*'32/24"'3
#,=89 «32780 80 40 - o =557 13280 80 40
. - . . [1_,:—t44( s : = b

Table 1.2 Table 1.3
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Following the arrows and adding we obtain each Fibonacci number F; exactly once.

2. THE PROOF OF THE FIBONACCI CORRESPONDENCE
ILLUSTRATED IN TABLES 1.2 AND 1.3

We begin by defining A, to be the sum of the terms starting with (’(;) 2™ in the first

column plus ("7') - 2*3 in the third column. We continue summing by moving up one row
and over two columns each time. Note that we will encounter (’s when 2k > n —k or 3k > n.
Thus, there will only be [5] + 1 elements in the summation of A,, and

L

A, = (” - k) a3k s, (2.1)
<\ 2%

i
Yo

x>
fl

Similarly, we define B, to be the same sequences as A, but starting in the second column.
Therefore,

124

n—k _

Bn ) (Zk B 1) < 2n=3+1 p > 9 where By = By = 0. (2.2)
k=1

With these definitions now in place, we will show that A4, + B, = Fop1, n > 0, and
Ap—1+ By = Fy,, n > 1. A bit more generally, Apay +311FJ = F%i, n > 1, and therefore,

T I S« <L
Z( - )~21ﬂ-3’=+ 3 ( - )-21 ISt B (2.3)
k=0 k=1

To prove this we will argue by induction.

Initial Cases: n = 0 and n = 1: It is trivial to show by substitution that for n = 0 we get
Fy and for n =1 we get F3. Hence, the base cases both hold.

Now, we will assume that the result is true for both n = m —1 and n = m — 2, and we will
show that it is true for n = m. In other words, we will assume that Alﬂ,__aj + BL"'—;lj = By

and AL%—‘J +Bz| = Fp,, and we will show that AL’«;‘J‘*'BLQ;—‘J = Fip41. By our assumptions
we know that

ALE‘{__?}-*-Bl!EﬁTlJ_'_AlmFJ-FBL%J=Fm—1+Fm: m+1- (2.4)

We must now break this problem into two cases:
Case 1:  m =0 (mod 2)
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. m=0( mod 2), then | B2 = |B-1] = 2| — 1= |BfL]| — 1. Therefore, by (24),
we know that Algz—;jj + BL"‘—E—’J + Alm—z-‘ Byn) = Fpi1. Thus,

L1252 gl
[2]-k-1 el U"j k- i
= ( "o ) i +Z( )'2LTJ % +Big| = Fmns1. (25)

It will help us later to move the 2 into the first summation and then bring out the first
term of that summation. We are then left with

(L?JD ) 9l%l 4 l_zs:—J ( 1) _gLFI-3k

(2.6)
1! By .
+E ( 2k— ) i
We can make the substitution (l%‘-&-l) olEl = (1%5) .2L%) and obtain
[ e (=52 |m] — k-1 et
2. 2 -
(Ppam (3
@.7)
121 ,im
my_ g B
i (tzik ~1 ) 2 4 By = P
k=1
To progress further, we have three more cases to consider.
Case 1(a): m =0 (mod 6), so that | 22| = | 2] — 1. From (2.7), we have that
e
b LolZ -3k
( 2%l 4 ?:_; ok
(2.8)

L5
1l —k-1 B3k
+,§( a1 2FI 4 Big) = P
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Then, after we pull out the last term of the second sum, our two sums have the same
indices and we are free to combine them as follows

lgi—
{?J)“?l?g 3 KL%J —k- 1) N (L%J k- 1)} gl
( 0 g_l % 2% — 1

W™ _Im ==l
+ (L 22{L%LJ6_J1 ) +Big) = Fnpa

(2.9)

Again, using a result of Pascal, see [1, p. 8], we can simplify this to

(159 2 *?’: ‘ (H15) 2oy (B ) + B = Fu. 20)

Now, because

51131 =7 [0 ()= (),

it becomes evident that we can add the two terms on each side of the summation to the ends
of the summation. Then (2.10) becomes

Z ( 22k ) -ZLTJ_S‘;-{-BLJ‘?) =Fm+1‘ (2.12)
k=0

But, Z}jg (l?zjk_k) 2l3l-3k - Aygy. Therefore, Ajp; + Bmg1, = Frnyy, and our
theorem is proven when m = 0 (mod 6).

Case 1(b):  m # 0 (mod 6), but m = 0 (mod 2), so that m = 2 (mod 6) or m = 4 (mod 6).
Equation (2.7) will still hold, so

122 ,
(l'g"i)gw s (? 2“’“"1) olBl-3

k=1 k
(2.13)
Lg!
12I-k-1\ _inia
+k>:—1( k-1 ).2171 + Bz = Fau.
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However, this time | 2z%] = | 2|, so our first step will be to combine the summations.

(ygj) 211J+L§K "‘J* > (Lmik—kl )].2%—3& +Bip) = Fn1. (214)

As before, we may combine the two terms of the summand and add the first term of the
equation to the sum. This leaves us with

J

,..
of

‘L%‘j -k |Z]-3k =

k=0

i

Again, this just means Az + Blp-_lt_l_ | = Fpns1, and the formula is proven for m =0

{mod 2).
Case 2: =1 (mod 2)
Ifm= l (mod 2), then |52 | 4+ 1= (2t =2 = ml] — 1. Therefore, by (2.4), we

know that Akm— +BL"IJ + AlmJ +Bl_mj = fm41- Thus,

122 155
2] —-k-1 - -k
E (hz} ¥ )_2LTJ—3J=—1+2. z (L2J 7 ) LB 4wy = Fry. (2.16)

=0

.4

Now, we will move the 2 inside the second summation. Then,

3
|

1=

m —_— —_—
(l_ J ) 2[ Z|-3k— 1+ Z ( ) 2[-,—] 3k+2+A[ J—‘Fm+l; (2 17)

93

x
I

0

which becomes

3

1252 L=t

(Bl -k=1\ j121-3k—1 2] —k—1\ j|m)j-36-1
ok 22 + Z 2%k 41 22172 +Al-?l = Pony, (218)

1

o
Il
]

Case 2(a):  m =3 (mod 6).
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Then, |25%] = |252] - 1, so our first summation can be rewritten to produce the
equation

[R=J

tm -2 1 € m
511552 J‘l) PEIEIG TR (L?J“""l) L3 1-3k-1

. + L +

-

( 2tim6 ] £ 2%
l'mzj 1Bl —k—-1\ jimi-3k-1
k=0 ( 2k +1 )'2 z +A[%‘—j:Fm+l- (2.19)

However, | 2] = |

m=2| and since (L%J;_le_,i,gfj—l) LolZB1-3" 1252 -1 . 1 we may now

write (2.19) as

1252
% —f (lmJ - ‘“1) L3 )-3k-1

k=0
(2.20)
1=t

=1\ plzi-ak-1 _
' §) ( 2k+1 )'2L2 +Al%‘)"Fm+1'

We may also combine the two summations (o produce

1+ z [(Lmj" B ) (Lmé“_; )} QLRI 4 4in) = Fppa. (2.21)

Again, we may combine the two combinations as follows

|2 )=3k=1
1+ Z (%H) ol% +Apz) = Fosr (2.22)

Finally, we can add the one into the summation because

i“i'ij) "’j3[—i—]1
1 2.23
(2 =2 +1 =
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when m = 3 (mod 6). Therefore,

lmE Z:J (zl-* [3]-3k
2 R —-3k—1 =F .
it (2k+1 ) ’ + g = Ha

Now, we must rewrite the summation as

o (2] —k+1
p (Lz% - )'2{?1_3k+2+f‘1%1=1"m+1‘
k=1

However, |33 | = |m£2| 4 Jand [P | = |2 + 1,50

1=

mtl) gl
> (L 23:11 )'2[ T Al = P
k=1

Therefore,
Bimy ) +A12) = Fona-

and our theorem is proven for m = 3 {mod 6).
Case 2(b):  m = 1,5 (mod 6)
Then, ‘L"‘—;—‘! = [™=2| s0, by (2.18),

k=0

The two terms of this summation can be combined into

L752)
f L2] “k) LIl 4 = B,
= \ 2k+1 E

1282 ¢ im
2l ok—1\ [IB]-k-1 .
3 [(LZJ% )+(ink+1 )]'2% P4 Arg) = Fon

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

This equation can be easily transformed into (2.25). Therefore, our equation holds when
m = 1 (mod 6) and when m = 5 (mod 6). Thus it is true for m = 1 (mod 2), and this

completes the proof.
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