Proceedings of the Tenth International Research Conference on Fibonacci numbers and their Applications, Applications of Fibonacci numbers 2004, vol. 9: 177-186

A GENERALIZATION OF EULER'S FORMULA AND ITS CONNECTION TO FIBONACCI NUMBERS

Jonathan F. Mason and Richard H. Hudson

1. INTRODUCTION

This paper began as a simple proof generalizing Euler's well-known formula for the vertices, faces, and edges of a cube in 3 dimensions, to a tessaract, and to higher dimensions. Let an n-cube with n-dimensional volume 1 consist of all n-tuples (x_1, x_2, \ldots, x_n) where each x_i , $i=1,\ldots,n$ satisfies $0 \le x_i \le 1$. The boundary points of the n-cube are the vertices, which we will call 0-cubes to indicate that they are 0-dimensional. For each such vertex, we clearly have x_i fixed to be 0 or 1. A 1-cube will be an edge of the n-cube. For an edge, we have exactly one of the x_i free to take on values between 0 and 1 (inclusive) and the other x_i fixed to be 0 or 1 for each $i=1,\ldots,n$. Similarly, a k-cube, $k \le n$, will have exactly k of the x_i free to take on values between 0 and 1 (inclusive) and n-k fixed to be 0 or 1.

By representing each vertex in this way, it is clear that there are 2^n vertices in an *n*-cube. For a *k*-cube, since n-k of the x_i are fixed, and *k* are not fixed, we must have exactly

$$\binom{n}{k} * 2^{n-k} \tag{1.1}$$

k-cubes in an n-cube. In particular, there are $n \cdot (2^{n-1})$ edges and $\binom{n}{2} \cdot (2^{n-2})$ faces. Thus,

Vertices + Faces - Edges =
$$2^n - n \cdot (2^{n-1}) + \binom{n}{2} \cdot (2^{n-2}) = 2^{n-3}(n^2 - 5n + 8),$$
 (1.2)

This paper is in final form and no version of it will be submitted for publication elsewhere.

177

F.T. Howard (ed.), Applications of Fibonacci Numbers, Volume 9: Proceedings of the Tenth International Research Conference on Fibonacci Numbers and their Applications, 177–185.

© 2004 Kluwer Academic Publishers.

which is a natural generalization of the well-known formula of Euler when n=3, namely V+F=E+2.

Note that it is an easy consequence of the binomial theorem (see, e.g., [1, p. 9]), that

$$\sum_{k=0}^{n} \binom{n}{k} \cdot (2^{n-k}) = (1+2)^n = 3^n \tag{1.3}$$

This gives the following table, which appears in [2, p. 89] when $n \ge 5$:

1	0	0	0	0	0	0	0		0
2	1	0	0	0	0	0	0		0
4	4	1	0	0	0	0	0	* * *	0
8	12	6	1	0	0	0	0		0
16	32	24	8	1	0	0	0		0
32	80	80	40	10	1	0	0		0
64	192	240	160	60	12	1	0		0
128	448	672	560	280	84	14	1		0
;	:	:	:	STORE .	:	1	:	٠.	:
$\binom{n}{0} \cdot 2^n$	$\binom{n}{1} \cdot 2^{n-1}$	$\binom{n}{2} \cdot 2^{n-2}$	$\binom{n}{3} \cdot 2^{n-3}$	$\binom{n}{4} \cdot 2^{n-4}$	$\binom{n}{5} \cdot 2^{n-5}$		$\binom{n}{k} \cdot 2^{n-k}$		1

Table 1.1

Looking carefully at Table 1.1, we note that there is a one-to-one correspondence between entries in the table and the sequence of Fibonacci numbers. In Section 2, we will show how to prove this correspondence, but it is a somewhat more complicated derivation than the similar well-known correspondence between the Fibonacci numbers and the diagonal's of Pascal's Triangle, so we will first illustrate it pictorially for small n in Tables 1.2 and 1.3 below:

$k = \begin{bmatrix} 0 & 1 & 2 & 3 \end{bmatrix}$	k	0 1 2 3
$F_1 = 1 \leftarrow 1 0 \leftarrow 0 0$	n n n	11-0 0-0
$F_3 = 2 \leftarrow 2^{2} \cdot 1 \leftarrow 0^{2} \cdot 0$	F ₂	=1
F5-5 + 4 4 4 1 0	. 4	=3 4 44 1 -0
F7 = 13 4 8 1246 1		=8 12 6 ←1
$F_9 = 34 \leftarrow 16^{16} 32 \leftarrow 24^{18}$	F ₈	= 21 16 - 32 24 - 8
F ₁₁ = 89 + 32 80 80 40		32 € 80 80 40
	F_1	,=1444 : : : :
and the same of the same of the same		er langue a constitue amprova t

Table 1.2

Table 1.3

Following the arrows and adding we obtain each Fibonacci number F_i exactly once.

2. THE PROOF OF THE FIBONACCI CORRESPONDENCE ILLUSTRATED IN TABLES 1.2 AND 1.3

We begin by defining A_n to be the sum of the terms starting with $\binom{n}{0} \cdot 2^n$ in the first

column plus $\binom{n-1}{2} \cdot 2^{n-3}$ in the third column. We continue summing by moving up one row and over two columns each time. Note that we will encounter 0's when 2k > n-k or 3k > n. Thus, there will only be $\lfloor \frac{n}{3} \rfloor + 1$ elements in the summation of A_n , and

$$A_n = \sum_{k=0}^{\lfloor \frac{n}{3} \rfloor} {n-k \choose 2k} \cdot 2^{n-3k}, \ n \ge 0.$$
 (2.1)

Similarly, we define B_n to be the same sequences as A_n but starting in the second column. Therefore,

$$B_n \sum_{k=1}^{\lfloor \frac{n+1}{3} \rfloor} {n-k \choose 2k-1} \cdot 2^{n-3k+1}, \ n \ge 2 \text{ where } B_0 = B_1 = 0.$$
 (2.2)

With these definitions now in place, we will show that $A_n+B_n=F_{2n+1},\ n\geq 0$, and $A_{n-1}+B_n=F_{2n},\ n\geq 1$. A bit more generally, $A_{\lfloor\frac{n}{2}\rfloor}+B_{\lfloor\frac{n+1}{2}\rfloor}=F_{\frac{n+1}{2}},\ n\geq 1$, and therefore,

$$\sum_{k=0}^{\left\lfloor \frac{n}{\delta} \right\rfloor} \binom{\left\lfloor \frac{n}{2} \right\rfloor - k}{2k} \cdot 2^{\left\lfloor \frac{n}{2} \right\rfloor - 3k} + \sum_{k=1}^{\left\lfloor \frac{n+3}{\delta} \right\rfloor} \binom{\left\lfloor \frac{n+1}{2} \right\rfloor - k}{2k - 1} \cdot 2^{\left\lfloor \frac{n+1}{2} \right\rfloor - 3k + 1} = F_{n+1}. \tag{2.3}$$

To prove this we will argue by induction.

Initial Cases: n = 0 and n = 1: It is trivial to show by substitution that for n = 0 we get F_1 and for n = 1 we get F_2 . Hence, the base cases both hold.

Now, we will assume that the result is true for both n=m-1 and n=m-2, and we will show that it is true for n=m. In other words, we will assume that $A_{\lfloor \frac{m-2}{2} \rfloor} + B_{\lfloor \frac{m-1}{2} \rfloor} = F_{m-1}$

and $A_{\lfloor \frac{m-1}{2} \rfloor} + B_{\lfloor \frac{m}{2} \rfloor} = F_m$, and we will show that $A_{\lfloor \frac{m}{2} \rfloor} + B_{\lfloor \frac{m+1}{2} \rfloor} = F_{m+1}$. By our assumptions we know that

$$A_{\lfloor \frac{m-2}{2} \rfloor} + B_{\lfloor \frac{m-1}{2} \rfloor} + A_{\lfloor \frac{m-1}{2} \rfloor} + B_{\lfloor \frac{m}{2} \rfloor} = F_{m-1} + F_m = F_{m+1}. \tag{2.4}$$

We must now break this problem into two cases:

Case 1: $m \equiv 0 \pmod{2}$

. If $m\equiv 0 \pmod{2}$, then $\lfloor \frac{m-2}{2} \rfloor = \lfloor \frac{m-1}{2} \rfloor = \lfloor \frac{m}{2} \rfloor - 1 = \lfloor \frac{m+1}{2} \rfloor - 1$. Therefore, by (2.4), we know that $A_{\lfloor \frac{m-2}{2} \rfloor} + B_{\lfloor \frac{m-2}{2} \rfloor} + A_{\lfloor \frac{m-2}{2} \rfloor} + B_{\lfloor \frac{m}{2} \rfloor} = F_{m+1}$. Thus,

$$2 \cdot \sum_{k=0}^{\lfloor \frac{m-2}{6} \rfloor} \left(\lfloor \frac{m}{2} \rfloor - k - 1 \atop 2k \right) \cdot 2^{\lfloor \frac{m}{2} \rfloor - 3k - 1} + \sum_{k=1}^{\lfloor \frac{m}{6} \rfloor} \left(\lfloor \frac{m}{2} \rfloor - k - 1 \atop 2k - 1 \right) \cdot 2^{\lfloor \frac{m}{2} \rfloor - 3k} + B_{\lfloor \frac{m}{2} \rfloor} = F_{m+1}. \tag{2.5}$$

It will help us later to move the 2 into the first summation and then bring out the first term of that summation. We are then left with

$$\left(\begin{bmatrix} \lfloor \frac{m}{2} \rfloor - 1 \\ 0 \end{bmatrix} \right) * 2^{\lfloor \frac{m}{2} \rfloor} + \sum_{k=1}^{\lfloor \frac{m-2}{2} \rfloor} \left(\lfloor \frac{m}{2} \rfloor - k - 1 \\ 2k \end{bmatrix} \cdot 2^{\lfloor \frac{m}{2} \rfloor - 3k}$$

$$+ \sum_{k=1}^{\lfloor \frac{m}{6} \rfloor} \left(\lfloor \frac{m}{2} \rfloor - k - 1 \\ 2k - 1 \right) \cdot 2^{\lfloor \frac{m}{2} \rfloor - 3k} + B_{\lfloor \frac{m}{2} \rfloor} = F_{m+1}.$$

$$(2.6)$$

We can make the substitution $\binom{\lfloor \frac{m}{2} \rfloor - 1}{0} \cdot 2^{\lfloor \frac{m}{2} \rfloor} = \binom{\lfloor \frac{m}{2} \rfloor}{0} \cdot 2^{\lfloor \frac{m}{2} \rfloor}$, and obtain

$$\begin{pmatrix} \left\lfloor \frac{m}{2} \right\rfloor \\ 0 \end{pmatrix} * 2^{\left\lfloor \frac{m}{2} \right\rfloor} + \sum_{k=1}^{\left\lfloor \frac{m-2}{6} \right\rfloor} \left(\left\lfloor \frac{m}{2} \right\rfloor - k - 1 \right) \cdot 2^{\left\lfloor \frac{m}{2} \right\rfloor - 3k}
+ \sum_{k=1}^{\left\lfloor \frac{m}{6} \right\rfloor} \left(\left\lfloor \frac{m}{2} \right\rfloor - k - 1 \right) \cdot 2^{\left\lfloor \frac{m}{2} \right\rfloor - 3k} + B_{\left\lfloor \frac{m}{2} \right\rfloor} = F_{m+1}.$$
(2.7)

To progress further, we have three more cases to consider.

Case 1(a): $m \equiv 0 \pmod{6}$, so that $\lfloor \frac{m-2}{6} \rfloor = \lfloor \frac{m}{6} \rfloor - 1$. From (2.7), we have that

$$\left(\begin{bmatrix} \frac{m}{2} \end{bmatrix} \right) * 2^{\left\lfloor \frac{m}{2} \right\rfloor} + \sum_{k=1}^{\left\lfloor \frac{m}{6} \right\rfloor - 1} \left(\begin{bmatrix} \frac{m}{2} \end{bmatrix} - k - 1 \\ 2k \end{bmatrix} \cdot 2^{\left\lfloor \frac{m}{2} \right\rfloor - 3k}$$

$$+ \sum_{k=1}^{\left\lfloor \frac{m}{6} \right\rfloor} \left(\begin{bmatrix} \frac{m}{2} \end{bmatrix} - k - 1 \\ 2k - 1 \end{bmatrix} \cdot 2^{\left\lfloor \frac{m}{2} \right\rfloor - 3k} + B_{\left\lfloor \frac{m}{2} \right\rfloor} = F_{m+1}.$$

$$(2.8)$$

Then, after we pull out the last term of the second sum, our two sums have the same indices and we are free to combine them as follows

$$\begin{pmatrix} \left\lfloor \frac{m}{2} \right\rfloor \\ 0 \end{pmatrix}^* 2^{\left\lfloor \frac{m}{2} \right\rfloor} + \sum_{k=1}^{\left\lfloor \frac{m}{6} \right\rfloor - 1} \left[\begin{pmatrix} \left\lfloor \frac{m}{2} \right\rfloor - k - 1 \\ 2k \end{pmatrix} + \begin{pmatrix} \left\lfloor \frac{m}{2} \right\rfloor - k - 1 \\ 2k - 1 \end{pmatrix} \right] \cdot 2^{\left\lfloor \frac{m}{2} \right\rfloor - 3k}$$

$$+ \begin{pmatrix} \left\lfloor \frac{m}{2} \right\rfloor - \left\lfloor \frac{m}{6} \right\rfloor - 1 \\ 2^* \left\lfloor \frac{m}{6} \right\rfloor - 1 \end{pmatrix} + B_{\left\lfloor \frac{m}{2} \right\rfloor} = F_{m+1}$$

$$(2.9)$$

Again, using a result of Pascal, sec [1, p. 8], we can simplify this to

Now, because

$$\left\lfloor \frac{m}{2} \right\rfloor - \left\lfloor \frac{m}{6} \right\rfloor - 1 = 2^* \left\lfloor \frac{m}{6} \right\rfloor - 1, \ \binom{\left\lfloor \frac{m}{2} \right\rfloor - \left\lfloor \frac{m}{6} \right\rfloor - 1}{2^* \left\lfloor \frac{m}{6} \right\rfloor - 1} = 1 = \binom{\left\lfloor \frac{m}{2} \right\rfloor - \left\lfloor \frac{m}{6} \right\rfloor}{2^* \left\lfloor \frac{m}{6} \right\rfloor}, \tag{2.11}$$

it becomes evident that we can add the two terms on each side of the summation to the ends of the summation. Then (2.10) becomes

$$\sum_{k=0}^{\lfloor \frac{m}{2} \rfloor} {\lfloor \frac{m}{2} \rfloor - k \choose 2k} \cdot 2^{\lfloor \frac{m}{2} \rfloor - 3k} + B_{\lfloor \frac{m}{2} \rfloor} = F_{m+1}.$$
 (2.12)

But, $\sum_{k=0}^{\lfloor \frac{m}{6} \rfloor} {\lfloor \frac{m}{2} \rfloor - k \choose 2k} \cdot 2^{\lfloor \frac{m}{2} \rfloor - 3k} = A_{\lfloor \frac{m}{2} \rfloor}$. Therefore, $A_{\lfloor \frac{m}{2} \rfloor} + B_{\lfloor \frac{m+1}{2} \rfloor} = F_{m+1}$, and our

theorem is proven when $m \equiv 0 \pmod{6}$.

Case 1(b): $m \not\equiv 0 \pmod{6}$, but $m \equiv 0 \pmod{2}$, so that $m \equiv 2 \pmod{6}$ or $m \equiv 4 \pmod{6}$. Equation (2.7) will still hold, so

However, this time $\lfloor \frac{m-2}{6} \rfloor = \lfloor \frac{m}{6} \rfloor$, so our first step will be to combine the summations.

$$\begin{pmatrix} \lfloor \frac{m}{2} \rfloor \\ 0 \end{pmatrix} \cdot 2^{\lfloor \frac{m}{2} \rfloor} + \sum_{k=1}^{\lfloor \frac{m}{6} \rfloor} \left[\begin{pmatrix} \lfloor \frac{m}{2} \rfloor - k - 1 \\ 2k \end{pmatrix} + \begin{pmatrix} \lfloor \frac{m}{2} \rfloor - k - 1 \\ 2k - 1 \end{pmatrix} \right] \cdot 2^{\lfloor \frac{m}{2} \rfloor - 3k} + B_{\lfloor \frac{m}{2} \rfloor} = F_{m+1}. \quad (2.14)$$

As before, we may combine the two terms of the summand and add the first term of the equation to the sum. This leaves us with

$$\sum_{k=0}^{\lfloor \frac{m}{6} \rfloor} {\binom{\lfloor \frac{m}{2} \rfloor - k}{2k} \cdot 2^{\lfloor \frac{m}{2} \rfloor - 3k} + B_{\lfloor \frac{m}{2} \rfloor} = F_{m+1}}.$$
 (2.15)

Again, this just means $A_{\lfloor \frac{m+1}{2} \rfloor} + B_{\lfloor \frac{m+1}{2} \rfloor} = F_{m+1}$, and the formula is proven for $m \equiv 0$

Case 2: $m \equiv 1 \pmod 2$ If $m \equiv 1 \pmod 2$, then $\lfloor \frac{m-2}{2} \rfloor + 1 = \lfloor \frac{m-1}{2} \rfloor = \lfloor \frac{m}{2} \rfloor = \lfloor \frac{m+1}{2} \rfloor - 1$. Therefore, by (2.4), we know that $A_{\lfloor \frac{m-2}{2} \rfloor} + B_{\lfloor \frac{m}{2} \rfloor} + A_{\lfloor \frac{m}{2} \rfloor} + B_{\lfloor \frac{m}{2} \rfloor} + B_{\lfloor \frac{m}{2} \rfloor} = F_{m+1}$. Thus,

$$\sum_{k=0}^{\lfloor \frac{m-2}{6} \rfloor} \binom{\lfloor \frac{m}{2} \rfloor - k - 1}{2k} \cdot 2^{\lfloor \frac{m}{2} \rfloor - 3k - 1} + 2^* \sum_{k=1}^{\lfloor \frac{m+2}{6} \rfloor} \binom{\lfloor \frac{m}{2} \rfloor - k}{2k - 1} \cdot 2^{\lfloor \frac{m}{2} \rfloor - 3k + 1} + A_{\lfloor \frac{m}{2} \rfloor} = F_{m+1}. \quad (2.16)$$

Now, we will move the 2 inside the second summation. Then,

$$\sum_{k=0}^{\lfloor \frac{m-2}{6} \rfloor} {\lfloor \frac{m}{2} \rfloor - k - 1 \choose 2k} \cdot 2^{\lfloor \frac{m}{2} \rfloor - 3k - 1} + \sum_{k=1}^{\lfloor \frac{m+2}{6} \rfloor} {\lfloor \frac{m}{2} \rfloor - k \choose 2k - 1} \cdot 2^{\lfloor \frac{m}{2} \rfloor - 3k + 2} + A_{\lfloor \frac{m}{2} \rfloor} = F_{m+1}, \quad (2.17)$$

which becomes

$$\sum_{k=0}^{\lfloor \frac{m-2}{6} \rfloor} \binom{\lfloor \frac{m}{2} \rfloor - k - 1}{2k} \cdot 2^{\lfloor \frac{m}{2} \rfloor - 3k - 1} + \sum_{k=0}^{\lfloor \frac{m-4}{6} \rfloor} \binom{\lfloor \frac{m}{2} \rfloor - k - 1}{2k + 1} \cdot 2^{\lfloor \frac{m}{2} \rfloor - 3k - 1} + A_{\lfloor \frac{m}{2} \rfloor} = F_{m+1}. \tag{2.18}$$

Case 2(a): $m \equiv 3 \pmod{6}$.

Then, $\lfloor \frac{m-4}{6} \rfloor = \lfloor \frac{m-2}{6} \rfloor - 1$, so our first summation can be rewritten to produce the equation

$$\begin{pmatrix}
\lfloor \frac{m}{2} \rfloor - \lfloor \frac{m-2}{6} \rfloor - 1 \\
2^* \lfloor \frac{m-2}{6} \rfloor
\end{pmatrix} \cdot 2^{\lfloor \frac{m}{2} \rfloor - 3^* \lfloor \frac{m-2}{6} \rfloor - 1} + \sum_{k=0}^{\lfloor \frac{m-4}{6} \rfloor} \binom{\lfloor \frac{m}{2} \rfloor - k - 1}{2k} \cdot 2^{\lfloor \frac{m}{2} \rfloor - 3k - 1} + \sum_{k=0}^{\lfloor \frac{m-4}{6} \rfloor} \binom{\lfloor \frac{m}{2} \rfloor - k - 1}{2k + 1} \cdot 2^{\lfloor \frac{m}{2} \rfloor - 3k - 1} + A_{\lfloor \frac{m}{2} \rfloor} = F_{m+1}.$$
(2.19)

However, $\lfloor \frac{m}{6} \rfloor = \lfloor \frac{m-2}{6} \rfloor$, and since $\binom{\lfloor \frac{m}{2} \rfloor - \lfloor \frac{m-2}{6} \rfloor - 1}{2^* \lfloor \frac{m}{6} \rfloor} \cdot 2^{\lfloor \frac{m}{2} \rfloor - 3^* \lfloor \frac{m-2}{6} \rfloor - 1} = 1$, we may now write (2.19) as

$$1 + \sum_{k=0}^{\lfloor \frac{m-4}{6} \rfloor} {\lfloor \frac{m}{2} \rfloor - k - 1 \choose 2k} \cdot 2^{\lfloor \frac{m}{2} \rfloor - 3k - 1}$$

$$+ \sum_{k=0}^{\lfloor \frac{m-4}{6} \rfloor} {\lfloor \frac{m}{2} \rfloor - k - 1 \choose 2k + 1} \cdot 2^{\lfloor \frac{m}{2} \rfloor - 3k - 1} + A_{\lfloor \frac{m}{2} \rfloor} = F_{m+1}.$$
(2.20)

We may also combine the two summations to produce

$$1 + \sum_{k=0}^{\lfloor \frac{m-4}{6} \rfloor} \left[\binom{\lfloor \frac{m}{2} \rfloor - k - 1}{2k} + \binom{\lfloor \frac{m}{2} \rfloor - k - 1}{2k + 1} \right] \cdot 2^{\lfloor \frac{m}{2} \rfloor - 3k - 1} + A_{\lfloor \frac{m}{2} \rfloor} = F_{m+1}. \tag{2.21}$$

Again, we may combine the two combinations as follows

$$1 + \sum_{k=0}^{\lfloor \frac{m-4}{6} \rfloor} {\lfloor \lfloor \frac{m}{2} \rfloor - k \choose 2k+1} \cdot 2^{\lfloor \frac{m}{2} \rfloor - 3k - 1} + A_{\lfloor \frac{m}{2} \rfloor} = F_{m+1}.$$
 (2.22)

Finally, we can add the one into the summation because

$$\begin{pmatrix}
\lfloor \frac{m}{2} \rfloor - \lfloor \frac{m+2}{6} \rfloor \\
2 \cdot \lfloor \frac{m+2}{6} \rfloor + 1
\end{pmatrix} \cdot 2^{\lfloor \frac{m}{2} \rfloor - 3 \cdot \lfloor \frac{m+2}{6} \rfloor - 1} = 1$$
(2.23)

when $m \equiv 3 \pmod{6}$. Therefore,

$$\sum_{k=0}^{\left\lfloor \frac{m+2}{6} \right\rfloor} \binom{\left\lfloor \frac{m}{2} \right\rfloor - k}{2k+1} \cdot 2^{\left\lfloor \frac{m}{2} \right\rfloor - 3k - 1} + A_{\left\lfloor \frac{m}{2} \right\rfloor} = F_{m+1}. \tag{2.24}$$

Now, we must rewrite the summation as

$$\sum_{k=1}^{\left\lfloor \frac{m+2}{6}\right\rfloor+1} \binom{\left\lfloor \frac{m}{2} \right\rfloor - k + 1}{2k-1} \cdot 2^{\left\lfloor \frac{m}{2} \right\rfloor - 3k + 2} + A_{\left\lfloor \frac{m}{2} \right\rfloor} = F_{m+1}. \tag{2.25}$$

However, $\lfloor \frac{m+3}{6} \rfloor = \lfloor \frac{m+2}{6} \rfloor + 1$ and $\lfloor \frac{m+1}{2} \rfloor = \lfloor \frac{m}{2} \rfloor + 1$, so

$$\sum_{k=1}^{\lfloor \frac{m+3}{6} \rfloor} {\lfloor \frac{m+1}{2} \rfloor - k \choose 2k - 1} \cdot 2^{\lfloor \frac{m+1}{2} \rfloor - 3k + 1} + A_{\lfloor \frac{m}{2} \rfloor} = F_{m+1}. \tag{2.26}$$

Therefore,

$$B_{\lfloor \frac{m+1}{2} \rfloor} + A_{\lfloor \frac{m}{2} \rfloor} = F_{m+1}. \tag{2.27}$$

and our theorem is proven for $m \equiv 3 \pmod{6}$.

Case 2(b): $m \equiv 1,5 \pmod{6}$ Then, $\lfloor \frac{m-4}{6} \rfloor = \lfloor \frac{m-2}{6} \rfloor$, so, by (2.18),

$$\sum_{k=0}^{\lfloor \frac{m-2}{6} \rfloor} \left[\binom{\lfloor \frac{m}{2} \rfloor - k - 1}{2k} + \binom{\lfloor \frac{m}{2} \rfloor - k - 1}{2k + 1} \right] \cdot 2^{\lfloor \frac{m}{2} \rfloor - 3k - 1} + A_{\lfloor \frac{m}{2} \rfloor} = F_{m+1}. \tag{2.28}$$

The two terms of this summation can be combined into

$$\sum_{k=0}^{\lfloor \frac{m-2}{6} \rfloor} {\lfloor \frac{m}{2} \rfloor - k \choose 2k+1} \cdot 2^{\lfloor \frac{m}{2} \rfloor - 3k-1} + A_{\lfloor \frac{m}{2} \rfloor} = F_{m+1}.$$
 (2.29)

This equation can be easily transformed into (2.25). Therefore, our equation holds when $m \equiv 1 \pmod 6$ and when $m \equiv 5 \pmod 6$. Thus it is true for $m \equiv 1 \pmod 2$, and this completes the proof.

REFERENCES

- [1] Burton, David M. <u>Elementary Number Theory</u>. New York, NY: The McGraw-Hill Companies, Inc., 1998.
- [2] Pickover, Clifford A. <u>Surfing through Hyperspace</u>. New York, NY: Oxford University Press, 1999.

AMS Classification Numbers: 11B39, 11A99

en egge skalt er er til 18 km en en skalt skylder i en sky Ritter en skylder i en skylder i

Biggs of the second of the second