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Abstract

Let {S,} denote the sequence of polynomials orthogonal with respect to the Sobolev inner
product
+ o

+o0
(f,9)s = A S(x)g(x)x"e™ dx + 2, | S1(x)g (x)x e dx,

where > — 1, 1>0 and the leading coefficient of the S, is equal to the leading coefficient of

the Laguerre polynomial L,(f). In this work, a generating function for the Sobolev—Laguerre
polynomials is obtained.
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1. Introduction

Consider the Sobolev inner product

+ 0

o= " F)g(x)xte™ dx 4 2 [ g ore ax (1)
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with o> — 1 and 2>0. Let {S,,} denote the sequence of polynomials orthogonal with

respect to (1), normalized by the condition that S, and the Laguerre polynomial Lﬁ,“)
have the same leading coefficient (n =0,1,2, ...).

The special case « = 0 has already been studied by Brenner [1]. In [11], Schéfke
and Wolf introduced einfache verallgemeinerte klassische Orthogonalpolynome and
the above defined sequence {S,} is a special case of them. The inner product (1) can
also be studied as a special case of inner products defined by a coherent pair of
measures as introduced by Iserles et al. [4]. For a survey of possible applications and
results on Sobolev orthogonal polynomials, see [5,9].

The most complete treatment of the sequence {S,} orthogonal with respect to (1)
appears in a paper of Marcellan et al. [7]. The paper gives among others several

algebraic and differential relations with {Lgf‘) }, a four-term recurrence relation, a
Rodrigues-type formula and some properties concerning the zeros. An asymptotic
result for S,(x) with xe%¥\\[0,+00) and n— oo, has been obtained by Marcellan
et al. [6] in a recent paper.

Finally, we remark that asymptotic results for polynomials orthogonal with
respect to a Sobolev inner product defined by a coherent pair of measures has been
derived by Martinez-Finkelshtein et al. [8] in the Jacobi case and by Meijer et al. [10]
in the Laguerre case.

The aim of the present paper is to derive a generating function for the Laguerre—
Sobolev polynomials. Our result is a generalization of the generating function for the

Laguerre polynomials L,(,“)

> L () = (1-0) *exp(~ %) @)

n=0 -

(see Szegd [12, p. 101, (5.1.9)]). The particular case « = 0 has been studied by Wimp
and Kiesel [13] with a different technique.

Section 2, gives the basic relations on Laguerre-Sobolev polynomials. In
particular, it is shown that a generating function for the Laguerre—Sobolev
polynomials can be found from a generating function for the classical Laguerre
polynomials (Lemma 2.5). As a consequence, we refind the result of Wimp and
Kiesel (Theorem 2.1). In Section 3, a generating function for Laguerre—Sobolev
polynomials if a0 is derived. The main result is stated in Theorem 3.1. Finally, in
Section 4, some generalizations are discussed.

2. Laguerre—Sobolev orthogonal polynomials

Let {S,} denote the sequence of polynomials orthogonal with respect to the
Sobolev inner product

+ o0

195 = 0+°Of<x>g<x>x“ede+z [ e 3
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with > — 1 and A>0. The S, are normalized by the condition that the leading
coefficient of S, equals the leading coefficient of L,(f‘)‘

Observe that Sy = L(()“) and S; = L(l“).

Several authors obtained the following result, see e.g. [7].

Lemma 2.1. There exist positive constants a, depending on o and /., such that

LEV(x) = LY (x) = LY (x) = Su(x) — @y1Sp1(x),  n>1. 4)

Marcellan et al. [7] found the following recurrence relation.

Lemma 2.2. The sequence {a,} in (4) satisfies
_ n—+o
(24 2A) o —na,

ay , n=l1 (5)

with

a0:l.

In order to derive a generating function for S, we need more information on the
sequence {a,}.

Lemma 2.3. The sequence {a,} is convergent, and

A+2 -2+ 4
5 <1.

a= lim a, =
n— oo

(6)

Proof. First, we observe that a simple induction argument applied on Lemma 2.2
gives a, <1 for all n=0.
Suppose that a = lim,,_, », a, exists, then (5) implies

@ —a+72)+1=0.
Since a,<1 for all n=0, we have a<1. Hence
A2V
B 2
Now, we prove that {a,} is indeed convergent to a.
With (5) and a(2 + 1) = @* + 1 we have
o — oa + na(a,—| — a)
a= .
n(2+ 1) + o — na,_;

1.

ay —

Then, using a,_; <1,
ot — cal nala,| — aj
(1+2)+a n(l+4)+o

|an - a|<
n
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Hence
lim sup | |< 2 lims | |
up la, —a|<—— up |a, — al.
P 144 P |
Since 147 <1, the lemma follows. [J

From the sequence {a,} we construct a sequence {¢,(4)} of polynomials in A.

Lemma 2.4. Define the sequence {q,(1)} by

X A Y
W) =1, qun(l) = q—“ >0,
n

Then q,(1) is a polynomial in A, degq, =n—1 if n=1, satisfying the three-term
recurrence relation

(n+ )1 (2) = (1(A+2) + 0)4u(2) = ngu1(2), n>1 (7)
with initial conditions qo(1) = q1(A) = 1.
Proof. The recurrence relation (7) is just relation (5) rewritten in terms of ¢,. Since

ap =1, g1 = 1 and then (7) implies that, for n>1, ¢, is a polynomial in 4 of degree
n—1. O

The convergence of a series involving the Laguerre-Sobolev orthogonal
polynomials can be reduced to the convergence of a series involving Laguerre
polynomials.

Lemma 2.5. For |o|<a<1 we have

> S0 = 3 (L (s)
n=0 n=0

Proof. Since

lim q}’l+l(/b> :l
n—ow Qn(l) a

and the series in (2) converges for |w|< 1, the series in the right-hand side of (8) is
convergent for |w|<a.
Now, Eq. (4) gives

(ALY (x) = gu(2)Sa(x) = gu-1(2)Sn-1(x) ©)

and therefore
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In this way, we can write

n

G(A)Su(x)0" =3 (gA)LY (x)0 )
i=0

and thus, the series
o0
z qn(A)Sp(x) "
n=0
converges, because it is the Cauchy product of the two convergent series
— 1
oty
n=0 o
and

Y ALV (x)e.

n=0
Moreover, we conclude
o0 1 o0
qn(i)Sn(x)wn = ? Z qn(i)Ll(;x_l)(x)wn' 0

@ n=0

3
(=}

115

We have now to distinguish = 0 and «#0. The generating function if a#0 will
be derived in the next section. The generating function if o« =0 is stated in the
following theorem; it is the result given by Wimp and Kiesel [13] using the expression

of the Laguerre—Sobolev polynomials in terms of determinants.

Theorem 2.1. Let oo = 0. Let {S,} denote the sequence of polynomials orthogonal with
respect to the Sobolev inner product (3) with o = 0 and normalized by the condition that

the leading coefficient of S, equals the leading coefficient of quo). Let the sequence of

polynomials {q,(1)} be defined by the recurrence relation
qnr1(4) = (A +2)qn(2) = gu-1(4)

with the initial conditions qo(A) = q1(4) = 1.
Then, for |o|<a<1,

> IS0 =i
X {exp (— lx_w:)a) + aexp (— lx_w(f:;aﬂ )
where

P Rl e

2

(10)



116 H.G. Meijer, M.A. Piriar | Journal of Approximation Theory 120 (2003) 111-123

Proof. If o = 0 the three-term recurrence relation (7) reduces to (10). Thus, we can
give an explicit representation of ¢,(4), in fact, we have

, 1 _
an(A) = ] +a(a" +aa™).

Then the theorem follows from Lemma 2.5 and (2). O

3. Generating function if a0

In this section, always o> — 1, a#0. We will derive a generating function for the
polynomials {S,} starting from relation (8). It is possible to give an explicit
representation for the polynomials ¢,(4). However, we need a generating function
for the ¢,(A) rather than the g,(4) itself.

Lemma 3.1. Let o> — 1, a#0 and let the polynomials q,(1) be defined by the
recurrence relation (7) with initial conditions qy = q; = 1. Put

FO) =3 a0 %, (12)
with |w|<a<1. Then B

F(w) = I'#)(1 _aw)—f‘(1 _%) g (13)
where

ﬁzlia’ V:ﬁ (14)

and

aix+2—\/22+4;t

2

Proof. Observe that the ratio test shows that the series in the right-hand side of (12)
is convergent if |o|<a<1.
To simplify write
Mr
ha(0) = q”()—w7 n>0,
n!
then
o0
Flo) =Y h(i)o".
n=0
From the three-term recurrence relation (7) for the polynomials ¢,(4) we obtain
the recurrence relation for /,(1)

(4 Dhyir(A) = {n(+2) + abha(2) — (n+ 0. — Dhy_1(2), n>1, (15)

with ho(A) = I'(a), hy(2) = I'(a+1).
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Multiply (15) with " and sum over n = 1,2, ... then
F'(0) —hi (1) = (A4 2)oF (0) + a(F(w) — hy(1) — o’ F' (o) — aoF (o).

Hence

F(0){1 - (+2)o+ 0’} =aF(0)(1 — o).
Observe

1
;L+2:Cl+—,
a

then

Fo)o-a (o) =) -o)

a
and
Flo) v p
F(w) (w—a) (o-—1/a)
where
o o
P=1va "1+ 1/a

and the lemma follows from F(0) = hy(A) = I'(x). O

Remark 3.1. Relation (15) is the recurrence relation for the Pollaczek polynomials
with suitable choice of the parameters. In fact,

A+2 oo
_ 0,/2 L
hy = I(3) P (2, 2,2>

and Lemma 3.1 can be derived from the generating function of the Pollaczek
polynomials, see [2, p. 184].

Lemma 3.2. Let a> — 1, a#0 and |w|<a<]1. Then

where 8 and y are defined by (14).
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Proof. Using the explicit representation of the Laguerre polynomials (see [12, p. 101,
(5.1.6)]) we get

n=0
- n - F(I’l + OC) (_x)k
= gn(A)w
; @) ; (n=k)(a+k) k!
_y e S a@lnta)
c= k(o + k) &= (n—k)! '
We now apply Lemma 3.1
< (—X)kwk (k)
K=y —~2 __F
£ k!I'(o0 + k) (
- % (—x k(Uk k k / —B k-1 w Y
—I'(x) ey ; ;| —aw) "D (1 a)

2 kgk k —p a ) a \*'
2 Ttk 2 ( 1 )(m)l<k—/l> (1 —1/w/a>

k=0 1=0
~I(@)(1-aw) P(1-2)"
* (R IZ -7 / e
SIS (7)) e

Substituting k = / + m in the last series, we arrive at the lemma. [
The following lemma enables us to give the sum of the double series in Lemma 3.2.

Lemma 3.3. Suppose f+y¢{0,—1,-2,...}, then

0 —,B ; 0 —y "
Z( ! ) 2 <m>m
= F(;;_:V)IF1<.B§13+V§U_”):F(;;_:y)lFl(V;ﬁ+V§“_v)'
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Proof.

; 0 —y o
)“ m; <m )F(ﬁ+y+l+m)

_ﬂ ul - (y)m(_v)m
( I JT(B+y+1) 2 mi(f+y+1),

m=0
<_lﬁ>l“(ﬁ—fly+l) 1Fi(y; B+ +1;—v).
Using Kummer’s first relation
1Fi(a;c;z) = eiFi(c — a; ¢; —z), (16)
we obtain

ST m gy
1 JTB+y+n"" P

_ e v 0 ([))) (_u)] . |
- T(B+) ;Z!(é+y)11Fl(ﬁ+l,ﬁ+q/+l’v)
. e v 0 (_u)l d i | )
CT(B+y) e N (dv) 1F1(Bs B+ 0).

The last series is the Taylor expansion of | Fi(f; f + y; v — u), which proves the first
assertion of the lemma. The second equality follows with (16). [

Remark 3.2. Lemma 3.3 can also be derived from [3, Section 5.10 (1) and Section
5.7.1 (6)]. By the first relation

Fi(apyp+y—o—2) = (1+§)‘”F(a,ﬁ;ﬁ+%%>

and taking limit as ¢ — oo the first equality of Lemma 3.3 follows.

From Lemmas 2.5, 3.2 and 3.3 we obtain our main result. Observe that  and y in
(14) satisty f+y = o.

Theorem 3.1. Let o> —1, a#0. Let {S,} denote the sequence of polynomials
orthogonal with respect to the Sobolev inner product (3), normalized by the condition

that the leading coefficient of S, equals the leading coefficient of LY. Let the sequence
of polynomials {q,(1)} be defined by the recurrence relation (7) with go(2) = q1 (1) = 1.
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Then, for |o|<a<]1,

(1-o) f; (DS ()" = (1= a0) " (1=2) "e 1 Fi(Bimo—u)

= (1—aw) (1 —%)_ye*” Fi(sosu—v),  (17)

where
o o
P=1%e "T 15/
and
- Yoa _ xw/a _1—5—2—\/&2—1—41 (18)

T 1-od Uﬁl—w/a’ 2

Remark 3.3. If k>1, then substitution of « =0 in % reduces it to 1i_a Hence,
substitution of o = 0 in | F(f; ;v — u) gives

L&, 1 . a
1 - _ _ v—u
e mt Y e T

and we arrive at (11), the result of Wimp and Kiesel.

Remark 3.4. For 2 =0, we have ¢, =1 for all n>0, S, :Lﬁ,“), a=1, so the
confluent hypergeometric function reduces to 1Fi(};;0) =1 and the theorem
reduces to (2), the generating function of the classical Laguerre polynomials.

4. Generalizations

The results of the preceding sections can be generalized to Sobolev inner products
of the form
+ o0

+ 0
(f.9)s = A S (x)g(x) dipo(x) + 2 | f'(x)g'(x)x"e™ dx, (19)
with >0, «>0 and

(a) if o = 0, then dyy(x) = e dx + M5(0), with M >0;
(b) if 20, then diy(x) = (x — &)x* e~ dx, with £<0.

The pair {dy(x),x"e " dx} is a coherent pair of Laguerre type I studied in [10].
Let {S,} denote the sequence of polynomials orthogonal with respect to (19) with

leading coefficient of S, equal to the leading coefficient of Lf,“)‘ Relations (4) and (6)
are still satisfied; for a proof we refer to [10].
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Lemma 4.1. There exist positive constants a, depending on o, A and M or &, such that

L<a_l)(x) = Sn(x) - anflSnfl(x% nzl; (20)

n

the sequence {a,} is convergent and

. JA2 -2 4
a= lim a, = 3 <1.

n— oo

Define as in Section 2 the {g,(4)} by

X A Y
W) =1, qun(l) = q”a( ) a0,
n

Then (20) implies
%1(;“)14;(1“71)()6) = qu(A)Sn(x) = gu-1(A)Sp-1(x), n=1.

This is the starting formula (9) in the proof of Lemma 2.5. Hence, Lemma 2.5 is still
satisfied.

The recurrence relation for the a, in (20), however, is somewhat different from the
recurrence relation in Lemma 2.2. We distinguish « = 0 and o> 0.

Theorem 4.1. Let oo = 0. Let {S,,} denote the sequence of polynomials orthogonal with
respect to (19) with diry(x) = e dx + M0(0) where M >0 and the leading coefficient

of S, be equal to the leading coefficient of LY. Let the sequence of polynomials {q,(1)}
be defined by

Gn1(4) = (24 2)qu(2) = gur(2), n=1, (1)

with the initial conditions qo(1) =1, q1(1) = M + 1.
Then, for |o|<a<1,

0 . 1 xwa xw/a
nz:; q,,(/l)Sn(X)CU - 1 — w[A eXp<_ 1 — CUCZ) —I—Bexp(— 1— w/a)}

where

1 a a a

A= - B4 mL
1+a 1 —a? 1+a+ 1 —a?

(22)

Proof. The recurrence relation for the a, in (20) reads (see [10])
1 1
“2vi-ay "l T
then the recurrence relation for the g, becomes (21) with go(4) =1, ¢1(1) = M + 1.
The recurrence relation (21) can be solved explicitly and
gn(2) = Ad" + Ba™"
with 4 and B given by (22). Then (2) and Lemma 2.5 give the desired result. [

an
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Remark 4.1. For M =0 Theorem 4.1 reduces to Theorem 2.1, the result of Wimp
and Kiesel [13].

We now turn to the case a>0, diy(x) = (x — &)x* le ™ dx, with ¢<0. The
recurrence relation for the a, in (20) reads (see [10])
n—+a

n — s >1
n n(2+24) +o—&—na, "
and ay = 1%{
This implies the recurrence relation for the g,(4):
(n+o)gui1(2) = {n(A +2) + o — E}gn(L) —ngp—1(4), n=1, (23)

with initial conditions ¢o(1) =1, ¢1(4) =1 —g. Lemma 3.1 on the generating
function of the {g,(4)} has to be modified.

Lemma 4.2. Let >0 and let the polynomials q,(1) be defined by the recurrence
relation (23) with initial conditions qy(1) =1, q;(1) =1 — g Put
60"

Fo)=) a0+
n=0 .

with |w|<a<1. Then

_ R SR AN
F(w) = I'@)(1 - ao) (1 a) : (24)
where
o Ea o ¢a
= = - 2
b=t i—e "Tivie e (25)
and
A+ 2- V44
a= 7 .
Proof. With
h”(i):W’ n=0,

relation (23) is transformed in
(n+Dhp(4) = {n(2+2)+a—E h(A) — (n+ o — ), (4), n=1,

with ho(1) = I'(a), hi(2) = [(a)(a— &).
This implies
Fl(w) = () = (A+ 2)oF (w) + (& = &)(F(w) = ho(4))
— 0*F'(0) — awF(w).

Hence
Fl(o){1 = (A+2)o+ o’} = F(o)(a — & — an).
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Then
Fl(w) ? p

Flo) (@-a) (o—1/a)
where f and y are defined in (25). With F(0) = I'(«) we arrive at (24). O

Relation (24) equals (13) with the f and y in (14) replaced by their values in (25).
Observe that they still satisfy 4+ y = «. The calculations in the proof of Lemma 3.2
do not depend on the special values ff and y. So Lemma 3.2 is still satisfied with the
values of § and y given in (25). Finally, we arrive at the generating function for .S,
stated in the following theorem.

Theorem 4.2. Let o>0. Let {S,} denote the sequence of polynomials orthogonal with
respect to (19) with dy(x) = (x — &)x*le ™~ dx, where ¢<0, and the leading
coefficient of S, be equal to the leading coefficient of Lﬁ,@. Let the sequence of
polynomials {q,(2.)} be defined by (23) with qo(A) =1, q1(A) =1— g Then, for
|w|<a< 1, the generating function relation (17) is satisfied with  and vy given by (25)
and u,v and a given by (18).
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