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Assuming the generalized Riemann hypothesis, we prove up-
per bounds for moments of arbitrary products of automorphic
L-functions and for Dedekind zeta-functions of Galois num-
ber fields on the critical line. As an application, we use these
bounds to estimate the variance of the coefficients of these
zeta- and L-functions in short intervals. We also prove upper
bounds for moments of products of central values of automor-
phic L-functions twisted by quadratic Dirichlet characters and
averaged over fundamental discriminants.
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1. Introduction

An important problem in analytic number theory is to understand the behavior of
L-functions on the critical line and at the central point. The Langlands program pre-
dicts that the most general L-functions are attached to automorphic representations of
GL(n) over a number field and further conjectures that these L-functions should be ex-
pressible as products of the Riemann zeta-function and L-functions attached to cuspidal
automorphic representations of GL(m) over the rationals. In this paper, we investigate
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the moments of such products on the critical line. We also prove estimates for moments
of Dedekind zeta-functions, ζK(s), of Galois extensions K over Q. In general, unless
Gal(K/Q) is solvable, it is not known whether ζK(s) can be written as a product of au-
tomorphic L-functions (though the Langlands reciprocity conjecture predicts that this
is the case).

An L-function is called primitive if it does not factor as a product of L-functions of
smaller degree. Given a primitive L-function, L(s, π), normalized so that �(s) = 1/2 is
the critical line, it has been conjectured that there exist constants C(k, π) such that

T∫
0

∣∣∣∣L(1
2 + it, π

)∣∣∣∣2k dt ∼ C(k, π)T (log T )k
2

(1.1)

for any k > 0 as T → ∞, see [11]. The case L(s, π) = ζ(s), the Riemann zeta-function,
has received the most attention. In addition to [11], see [12,15,23]. The conjecture in
(1.1) has only been established in a few cases and only for small values of k. For degree
one L-functions, the Riemann zeta-function and Dirichlet L-functions, the conjecture
is known to hold when k is 1 or 2. For degree two L-functions, many cases of the
conjecture have been established when k = 1. See, for instance, results of Good [16] and
Zhang [47,48]. For higher degree L-functions, and for higher values of k, the conjecture
seems to be beyond the scope of current techniques.

It is expected that the values of distinct primitive L-functions on the critical line
are uncorrelated. Therefore, given r distinct primitive L-functions, L(s, π1), . . . , L(s, πr),
normalized so that �(s) = 1/2 is the critical line, one might conjecture that for any
k1, . . . , kr > 0 we have

T∫
0

∣∣∣∣L(1
2 + it, π1

)∣∣∣∣2k1

· · ·
∣∣∣∣L(1

2 + it, πr

)∣∣∣∣2kr

dt ∼ C(�k, �π)T (log T )k
2
1+···+k2

r (1.2)

for some constant C(�k, �π) as T → ∞ where �k = (k1, . . . , kr) and �π = (π1, . . . , πr).
In the case where k1, . . . , kr are natural numbers, Heap [18] has recently modified the
approaches in [15] and [11] and made a precise conjecture for the constants C(�k, �π). Using
classical methods, the asymptotic formula in (1.2) can be established for products of two
Dirichlet L-functions in the case when k1 = k2 = 1, L(s, π1) = L(s, χ1), and L(s, π2) =
L(s, χ2) where χ1 and χ2 are distinct primitive Dirichlet characters. It seems that there
are no other cases where the asymptotic formula in (1.2) has been established. The
conjectural order of magnitude of the moments in (1.2) is consistent with the observation
that the logarithms of distinct primitive L-functions on the critical line, logL( 1

2 + it, π1)
and logL(1

2 + it, π2), are (essentially) statistically independent if π1 � π2 as t varies
under the assumption of Selberg’s orthogonality conjectures1 for the Dirichlet series
1 For automorphic L-functions, we state Selberg’s orthogonality conjectures in Section 2.
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coefficients of L(s, π1) and L(s, π2). This statistical independence can be made precise;
see, for instance, the work of Bombieri and Hejhal [4] and Selberg [42].

1.1. Moments of automorphic L-functions

In this paper, in support of the conjecture in (1.2), we prove the following mean-value
estimate for arbitrary products of primitive automorphic L-functions.

Theorem 1.1. Let L(s, π1), . . . , L(s, πr) be L-functions attached to distinct irreducible
cuspidal automorphic representations, πj, of GL(mj) over Q each with unitary central
character, and assume that these L-functions satisfy the generalized Riemann hypothesis.
Then, if max1�j�r mj � 4, we have

T∫
0

∣∣∣∣L(1
2 + it, π1

)∣∣∣∣2k1

· · ·
∣∣∣∣L(1

2 + it, πr

)∣∣∣∣2kr

dt � T (log T )k
2
1+···+k2

r+ε (1.3)

for any k1, . . . , kr > 0 and every ε > 0 when T is sufficiently large. The implied constant
in (1.3) depends on π1, . . . , πr, k1, . . . , kr, and ε. If max1�j�r mj � 5, then the inequality
in (1.3) holds under the additional assumption of Hypothesis H described in Section 2.

Some of the standard properties of the L-functions described in Theorem 1.1 are
reviewed in Section 2. Observe that the upper bound in Theorem 1.1 is nearly as sharp as
the conjectured asymptotic formula in (1.2). Moreover, note that we do not assume that
the L-functions in Theorem 1.1 satisfy the Ramanujan–Petersson conjecture. Instead, we
assume Hypothesis H of Rudnick and Sarnak [40]. This mild (but unproven) conjecture
is implied by the Ramanujan–Petersson conjecture and is known to hold for L-functions
attached to irreducible cuspidal automorphic representations on GL(m) over Q if m � 4.

Our proof of Theorem 1.1 builds upon techniques of Soundararajan [43] and is inspired
by the work of Chandee [8]. Corollary A of [43] states that for the Riemann zeta-function
the inequality

T (log T )k
2 �k

T∫
0

∣∣∣∣ζ(1
2 + it

)∣∣∣∣2k dt �k,ε T (log T )k
2+ε

holds for any k > 0 and every ε > 0 assuming the Riemann hypothesis. The upper bound
is due to Soundararajan, and the lower bound is due to Ramachandra [38]. In the case
r = 1, combining the result of Theorem 1.1 with the work of Pi [37], we deduce that

T (log T )k
2 �k,π

T∫ ∣∣∣∣L(1 + it, π

)∣∣∣∣2k dt �π,k,ε T (log T )k
2+ε (1.4)
0
2
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for any k > 0 and every ε > 0 where π is a self-contragredient irreducible cuspidal
automorphic representations of GL(m) over Q under the assumptions of the gener-
alized Riemann hypothesis and the Ramanujan–Petersson conjecture for L(s, π). As
mentioned above, the upper bound holds under weaker assumptions and for more general
L-functions. We may let L(s, π1) = ζ(s) in the proof of Theorem 1.1, so our theorem
generalizes Soundararajan’s result. As is the case in [43], it is possible to replace the
ε in Theorem 1.1 by a quantity which is O(1/ log log log T ); see Ivić [19]. Moreover, an
analogue of Theorem 1.1 for products of derivatives of L-functions can be proved using
the techniques in [31] or [32].

There are a couple of aspects which make the proof of Theorem 1.1 different than
the proof of the analogous result for the Riemann zeta-function. First of all, we need to
understand the correlations of the coefficients of distinct L-functions averaged over the
primes. Secondly, we need to handle the contribution of these coefficients at the prime
powers. In [43], assuming the Riemann hypothesis, an inequality for the real part of the
logarithm of the Riemann zeta-function is derived which depends only on the primes. In
the case of ζ(s), one can handle the contribution of the primes powers relatively easily. If
we were willing to assume the Ramanujan–Petersson conjecture and the generalized Rie-
mann hypothesis for the symmetric square L-functions, then we could similarly derive an
inequality involving only the primes for the real part of the logarithms of the L-functions
in Theorem 1.1. In order to circumvent these additional assumptions, we must estimate
the contribution from the prime powers in a different way. To this end, we use a partial
result toward the Ramanujan–Petersson conjecture for automorphic L-functions due to
Luo, Rudnick, and Sarnak [30] and also Hypothesis H (mentioned above) which is known
to hold for automorphic L-functions of small degree. Ideas similar to these were used for
degree two L-functions in [33].

Finally we remark that, assuming the generalized Riemann hypothesis and the
Ramanujan–Petersson conjecture, Pi [37] has shown that the integral in (1.4) is
� T (log T )k2 if π is self-contragredient for any fixed k satisfying 0 < k < 2

m . More-
over, lower bounds for the integral in (1.4) which are � T (log T )k2 for any positive
rational number k have been established by Akbary and Fodden [1] assuming unproven
bounds toward the Ramanujan–Petersson conjecture but without assuming the general-
ized Riemann hypothesis. The results in [1] are unconditional in the case m = 2.

After proving our main results, we learned that Harper [17] had refined Soundarara-
jan’s techniques. Assuming the Riemann hypothesis, he has shown that

T∫
0

∣∣∣∣ζ(1
2 + it

)∣∣∣∣2k dt �k T (log T )k
2
.

We note that Harper uses Soundararajan’s upper bounds for moments of ζ(s) in [43] to
prove this result. By combining the ideas and results of the present paper with Harper’s
techniques, it may be possible to prove a version of Theorem 1.1 with ε = 0. We are

investigating this possibility.
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1.2. Moments of Dedekind zeta-functions

Let K be an algebraic number field, and let OK denote its ring of integers. The
Dedekind zeta-function, ζK(s), is defined by

ζK(s) =
∑
a�=0

1
(Na)s =

∏
p

(
1 − 1

(Np)s

)−1

, �(s) > 1, (1.5)

where the sum runs over the nonzero ideals a of OK , the product runs over the prime
ideals p of OK , and N = NK/Q denotes the absolute norm on K. It is known that the
Dedekind zeta-function factors as a product of Artin L-functions. For instance, if K is a
Galois extension of Q then

ζK(s) =
∏
χ

L(s, χ)χ(1) (1.6)

where the product is over the irreducible characters χ of Gal(K/Q) and

∑
χ

χ(1)2 =
∣∣Gal(K/Q)

∣∣ = [K : Q]. (1.7)

The Langlands reciprocity conjecture implies that each L(s, χ) = L(s, π) for an irre-
ducible cuspidal automorphic representation π of GL(m) over Q where χ(1) = m. By
(1.2), (1.6), and (1.7), for Galois extensions K over Q, this leads to the conjecture that

T∫
0

∣∣∣∣ζK(
1
2 + it

)∣∣∣∣2k dt ∼ C(k,K)T (log T )[K:Q]k2
(1.8)

for any k > 0 as T → ∞. Here C(k,K) is a constant depending on k and the number
field K. The recent work of Heap [18] discusses this conjecture in more detail.

The conjectural asymptotic formula in (1.8) is known to hold when k = 1 for the
Dedekind zeta-functions of quadratic extensions of Q. Let d be a fundamental discrimi-
nant, and let K = Q[

√
d]. Then Motohashi [35] has shown that

T∫
0

∣∣∣∣ζK(
1
2 + it

)∣∣∣∣2 dt ∼ 6
π2L(1, χd)2

∏
p|d

(
1 + 1

p

)−1

T log2 T

as T → ∞ using the factorization ζK(s) = ζ(s)L(s, χd), where L(s, χd) is the Dirichlet
L-function associated to χd, the Kronecker symbol of d. Also in support of (1.8), for finite

Galois extensions K over Q, Akbary and Fodden [1] have shown that the inequality
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T∫
0

∣∣∣∣ζK(
1
2

+ it

)∣∣∣∣2k dt � T (log T )[K:Q]k2

holds for any rational number k > 0 as T → ∞.
Using results of Arthur and Clozel [2], the following mean-value estimate for Dedekind

zeta-functions is a consequence of Theorem 1.1.

Corollary 1.2. Let K be a finite solvable Galois extension of Q, and let ζK(s) be the
associated Dedekind zeta-function. Then, assuming the generalized Riemann hypothesis
for ζK(s), we have

T∫
0

∣∣∣∣ζK(
1
2 + it

)∣∣∣∣2kdt �K,k,ε T (log T )[K:Q]k2+ε

for any k, ε > 0 when T is sufficiently large.

Proof. If K is a finite solvable Galois extension of Q, then Arthur and Clozel have shown
that

ζK(s) =
r∏

j=1
L(s, πj)kj (1.9)

where the πj are irreducible cuspidal automorphic representations of the appropriate
degree over Q and the exponents kj are natural numbers satisfying k2

1+· · ·+k2
r = [K : Q].

See the concluding example in Chapter 3 of [2]. Moreover, since ζK(s) satisfies the
Ramanujan–Petersson conjecture, Murty [36] observed that each factor L(s, πj) satisfies
this conjecture, as well. Hence, Hypothesis H holds for each L-function in the product
(1.9), and thus Theorem 1.1 implies that

T∫
0

∣∣∣∣ r∏
j=1

L

(
1
2 + it, πj

)kj
∣∣∣∣2k dt � T (log T )(k

2
1+···+k2

r)k2+ε = T (log T )[K:Q]k2+ε. (1.10)

The corollary now follows from (1.9) and (1.10). �
The condition that Gal(K/Q) be a solvable group can be removed with a little more

work. In Section 5, we sketch how to modify the proof of Theorem 1.1 to prove the
following mean-value estimate.

Theorem 1.3. Let K be a finite Galois extension of Q. Then, assuming the generalized

Riemann hypothesis for ζK(s), we have



M.B. Milinovich, C.L. Turnage-Butterbaugh / J. Number Theory 139 (2014) 175–204 181
T∫
0

∣∣∣∣ζK(
1
2

+ it

)∣∣∣∣2k dt �K,k,ε T (log T )[K:Q]k2+ε

for any k, ε > 0 when T is sufficiently large.

Unlike the proof of Corollary 1.2, our proof of Theorem 1.3 does not rely on a factor-
ization of ζK(s) into automorphic L-functions.

1.3. Coefficients of zeta- and L-functions in short intervals

Let K be a number field and let rK(n) denote the number of ideals in K of norm n.
Then, by (1.5), we see that

ζK(s) =
∞∑

n=1

rK(n)
ns

, �(s) > 1.

When K is a Galois extension of Q, we can use Theorem 1.3 and a technique of Sel-
berg [41] to study the distribution of rK(n) in short intervals assuming the generalized
Riemann hypothesis for ζK(s). In order to state our result, recall that

Res
s=1

ζK(s) = lim
s→1

(s− 1)ζK(s) = 2r1(2π)r2hR
w
√
D

(1.11)

where r1 is the number of real embeddings of K, r2 is the number of pairs of complex
embeddings, h is the class number of K, R is the regulator, w is the number of roots of
unity in K, and D = |dK | is the absolute value of the discriminant. Landau’s classical
mean-value estimate for the arithmetic function rK(n) is

∑
n�x

rK(n) = 2r1(2π)r2hR
w
√
D

x + O
(
x1−2/([K:Q]+1)).

We prove the following conditional estimate for the variance of the arithmetic function
rK(n) in short intervals.

Theorem 1.4. Let K be a finite Galois extension of Q. Let y = y(x) be a positive and
increasing function such that y → ∞ and y/x → 0 as x → ∞. Then, assuming the
generalized Riemann hypothesis for ζK(s), we have

1
X

2X∫
X

∣∣∣∣ ∑
x<n�x+y

rK(n) − 2r1(2π)r2hR
w
√
D

y

∣∣∣∣2 dx � y(logX)[K:Q]+ε
for ε > 0 when X is sufficiently large. Here the implied constant depends on K and ε.
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Assuming the generalized Riemann hypothesis for ζK(s), it follows from Theorem 1.4
that ∑

x<n�x+y

rK(n) ∼ 2r1(2π)r2hR
w
√
D

y

for almost all x if we choose y to be a function of x satisfying y/(log x)[K:Q]+ε → ∞ but
y/x → 0 as x → ∞.

Using Theorem 1.1, we can similarly study the behavior of coefficients of products of
automorphic L-functions in short intervals. To state the results in this situation, we first
introduce some notation. For k � 0 an integer and k1, . . . , kr ∈ N, let

L(s) = ζ(s)k
r∏

j=1
L(s, πj)kj

be an (automorphic) L-function. Here we are assuming that the L-functions L(s, π1), . . . ,
L(s, πr) are as in Theorem 1.1 and that L(s, πj) 
= ζ(s) for all 1 � j � r. We distinguish
between the case k = 0, where L(s) is entire, and the case k � 1, where L(s) has a pole
of order k at s = 1. For �(s) > 1, we set

L(s) =
{∑∞

n=1
aL(n)
ns , if k = 0,∑∞

n=1
bL(n)
ns , if k ∈ N.

As is to be expected, the behavior of aL(n) and bL(n) in short intervals differs due to
the presence of the pole of the generating function when k � 1. For x > 0, we define

RL(x) = Res
s=1

(
L(s)x

s

s

)
.

Note that RL(x) = 0 if k = 0, that

RL(x) = x

r∏
j=1

L(1, πj)kj

if k = 1, and that

RL(x) = x(log x)k−1

(k−1)!

r∏
j=1

L(1, πj)kj + O
(
x(log x)k−2)

if k � 2. With this set-up, assuming the conditions of Theorem 1.1, the proof of Theo-
rem 1.4 can be modified to show that

1
2X∫ ∣∣∣∣ ∑

aL(n)
∣∣∣∣2 dx � y(logX)k

2
1+···+k2

r+ε
X
X x<n�x+y
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and

1
X

2X∫
X

∣∣∣∣ ∑
x<n�x+y

bL(n) −
(
RL(x + y) −RL(x)

)∣∣∣∣2 dx � y(logX)k
2+k2

1+···+k2
r+ε

for ε > 0 when X is sufficiently large. Here y is any function satisfying the conditions in
Theorem 1.4, and the implied constants depend on π1, . . . , πr, k, k1, . . . , kr, and ε. The
details are left to the interested reader.

1.4. Quadratic twists of automorphic L-functions

One can also use the methods of Soundararajan in [43] to study the moments of cen-
tral values of quadratic twists of automorphic L-functions. In this case, the conjecture
for the size of moments depends on the symmetry type of the family of these twists. Let
L(s, π) be an L-function attached to a self-contragredient irreducible cuspidal automor-
phic representation π on GL(m) over Q. (We assume the L-function is self-dual so that
the central value is real.) Then Katz and Sarnak [22] and Rubinstein [39] have conjec-
tured that the family of quadratic twists of L(s, π) has either symplectic or orthogonal
symmetry corresponding to whether or not the symmetric square L-function L(s, π,∧2)
has a pole at s = 1.

Following the notation in [39], we set δ(π) = 1 if L(s, π,∧2) does not have a pole at
s = 1 and set δ(π) = −1 if L(s, π,∧2) has a pole at s = 1. Then for each k > 0 it has
been conjectured (see [24,10]) that there are constants C�(k, π) > 0 such that

∑�

|d|�X

L

(
1
2 , π ⊗ χd

)k

∼ C�(k, π)X(logX)k(k−δ(π))/2

as X → ∞. Here the superscript � indicates that the sums run over fundamental dis-
criminants d, χd denotes the corresponding primitive quadratic Dirichlet character, and
(as before) we have normalized so that s = 1/2 is the central point. In the case of
quadratic Dirichlet L-functions and L-functions of quadratic twists of a fixed elliptic
curve E over Q, Soundararajan [43] proved that

∑�

|d|�X

L

(
1
2 , χd

)k

� X(logX)k(k+1)/2+ε (1.12)

and

∑�
L

(
1
, E ⊗ χd

)k

� X(logX)k(k−1)/2+ε (1.13)

|d|�X

2
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for every k > 0 and any ε > 0 assuming the generalized Riemann hypothesis for the
relevant L-functions. (Note that in the first example the L-functions have δ(π) = −1,
and in the second case the L-functions have δ(π) = 1.) We generalize these results and,
in analogy with our Theorem 1.1, we prove the following result for central values of
quadratic twists of arbitrary products of automorphic L-functions.

Theorem 1.5. Let d denote a fundamental discriminant, and let χd be a primitive
quadratic Dirichlet character of conductor |d|. Let L(s, π1), . . . , L(s, πr) be L-functions
attached to distinct self-contragredient irreducible cuspidal automorphic representations,
πj, of GL(mj) over Q each with unitary central character, and assume that the twisted
L-functions L(s, π1 ⊗ χd), . . . , L(s, πr ⊗ χd) satisfy the generalized Riemann hypothesis.
Then, if max1�j�r mj � 2, we have

∑�

|d|�X

L

(
1
2 , π1 ⊗ χd

)k1

· · ·L
(

1
2 , πr ⊗ χd

)kr

� X(logX)k1(k1−δ(π1))/2+···+kr(kr−δ(πr))/2+ε, (1.14)

for any k1, . . . , kr > 0 and every ε > 0 when X is sufficiently large. Here the superscript
� indicates that the sum is restricted to fundamental discriminants, and the implied con-
stant depends on π1, . . . , πr, k1, . . . , kr, and ε. If max1�j�r mj � 3, then the inequality
in (1.14) holds under the additional assumptions of Hypothesis H and Hypothesis E de-
scribed in Section 2.

We now give two examples which are consequences of Theorem 1.5 and generalize
Soundararajan’s results in (1.12) and (1.13) to biquadratic extensions of Q. Let d1 and
d2 be coprime fundamental discriminants, and let Kd1,d2 = Q[

√
d1,

√
d2] be the corre-

sponding biquadratic number field. Then the Dedekind zeta-function of Kd1,d2 factors
as

ζKd1,d2
(s) = ζ(s)L(s, χd1)L(s, χd2)L(s, χd1d2),

and similarly, given an elliptic curve E over Q, the Hasse–Weil L-function L(s,E/Kd1,d2)
of E over Kd1,d2 factors as

L(s,E/Kd1,d2) = L(s,E)L(s,E ⊗ χd1)L(s,E ⊗ χd2)L(s,E ⊗ χd1d2).

Using Theorem 1.5, we can estimate moments of ζKd1,d2
(1
2 ) and L(1

2 , E/Kd1,d2) by aver-
aging over two sets of fundamental discriminants. (We note that under the assumption of
the generalized Riemann hypothesis for these zeta- and L-functions, these central values

are non-negative real numbers.) In particular, we have
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∑�

|d1d2|�X
(d1,d2)=1

ζKd1,d2

(
1
2

)k

� X(logX)3k(k+1)/2+1+ε (1.15)

and

∑�

|d1d2|�X
(d1,d2)=1

L

(
1
2 , E/Kd1,d2

)k

� X(logX)3k(k−1)/2+1+ε (1.16)

for any ε > 0. Here the superscript � indicates that the sum runs over two sets fun-
damental discriminants, d1 and d2. When k = 1, the conditional estimate in (1.15) is
consistent with a result of Chinta [9] who proved that, as X → ∞,

∑�

d1,d2 odd

a(d1, d2)ζKd1,d2

(
1
2

)
F

(
d1d2

X

)
∼ cX log4 X

for a constant c > 0, where F is a smooth compactly supported test function satisfying∫∞
0 F (x) dx = 1 and a(d1, d2) is a weighting factor satisfying a(d1, d2) = 1 if (d1, d2) = 1

and is (on average) small otherwise.
Since the condition (d1, d2) = 1 implies that χd1d2 = χd1χd2 , and δ(π) = −1 for any

degree one L-function, under the conditions of Theorem 1.5 we have

∑�

|d1d2|�X
(d1,d2)=1

ζKd1,d2

(
1
2

)k

= ζ

(
1
2

)k ∑�

|d1|�X

L

(
1
2 , χd1

)k

×
∑�

|d2|�X/|d1|
(d1,d2)=1

L

(
1
2 , χd2

)k

L

(
1
2 , χd1d2

)k

� X(logX)k(k+1)+ε
∑�

|d1|�X

L(1
2 , χd1)k

|d1|

� X(logX)3k(k+1)/2+1+ε

by two applications of (1.14) and summation by parts. This proves that the estimate in
(1.15) follows from Theorem 1.5.

To prove (1.16), we observe that the modularity theorems of Wiles [46], Wiles and
Taylor [45], and Breuil, Conrad, Diamond, and Taylor [5] imply that L(s,E) and its
quadratic twists correspond to L-functions attached to irreducible cuspidal automor-
phic representations of GL(2) over Q. Moreover, we have δ(π) = 1 for each of these

L-functions. Therefore, under the conditions of Theorem 1.5, we similarly have



186 M.B. Milinovich, C.L. Turnage-Butterbaugh / J. Number Theory 139 (2014) 175–204
∑�

|d1d2|�X
(d1,d2)=1

L

(
1
2 , E/Kd1,d2

)k

= L

(
1
2 , E

)k ∑�

|d1|�X

L

(
1
2 , E ⊗ χd1

)k

×
∑�

|d2|�X/|d1|
(d1,d2)=1

L

(
1
2 , E ⊗ χd2

)k

L

(
1
2 , E ⊗ χd1d2

)k

� X(logX)k(k−1)+ε
∑�

|d1|�X

L(1
2 , E ⊗ χd1)k

|d1|

� X(logX)3k(k−1)/2+1+ε

by two more applications of (1.14) and summation by parts. This shows that the estimate
in (1.16) also follows from Theorem 1.5.

1.5. Notation and conventions

Throughout the remainder of this article, we use ε to denote a small positive quantity
which may vary from line to line. The letter p is always used to denote a prime. The
superscript � is used to denote that a sum is restricted to fundamental discriminants.
Unless otherwise indicated, all implied constants are allowed to depend on the cuspidal
automorphic representations πj , the non-negative real numbers kj , and ε.

2. Properties of automorphic L-functions

In this section, we review standard properties of automorphic L-functions on GL(m)
over Q and their twists by Dirichlet characters. Some of this section overlaps with Sec-
tion 2 of Rudnick and Sarnak [40] and Section 3.6 of Rubinstein [39] (see also [20]).
Let π be an irreducible cuspidal automorphic representation of GL(m) over Q with
unitary central character. For �(s) > 1, we let

L(s, π) =
∞∑

n=1

aπ(n)
ns

=
∏
p

m∏
j=1

(
1 − αj(p)

ps

)−1

(2.1)

be the global L-function attached to π (as defined by Godement and Jacquet in [13] and
Jacquet and Shalika in [21]). Then L(s, π) is either the Riemann zeta-function or L(s, π)
analytically continues to an entire function of order 1 satisfying a functional equation of
the form

Φ(s, π) := Ns/2γ(s, π)L(s, π)

= επΦ(1 − s, π),
where N is a natural number, |επ| = 1, Φ(s, π) = Φ(s̄, π), and the gamma factor
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γ(s, π) =
m∏
j=1

ΓR(s + μj).

Here ΓR(s) = πs/2 Γ (s/2), and the μj are complex numbers. Logarithmically differenti-
ating the Euler product, we define

−L′

L
(s, π) := − d

ds
logL(s, π) =

∑
p�, ��1

(α�
1(p) + · · · + α�

m(p)) log p
p�s

=
∞∑

n=1

Λπ(n)
ns

for �(s) > 1. We note that Λπ(p) = aπ(p) log p.
Let χ be a primitive Dirichlet character modulo q satisfying (q,N) = 1, and define

L(s, π ⊗ χ) :=
∞∑

n=1

aπ(n)χ(n)
ns

=
∏
p

m∏
j=1

(
1 − αj(p)χ(p)

ps

)−1

for �(s) > 1. Then

−L′

L
(s, π ⊗ χ) := − d

ds
logL(s, π ⊗ χ) =

∞∑
n=1

Λπ(n)χ(n)
ns

,

when �(s) > 1. For q > 1, the function L(s, π ⊗ χ) continues to an entire function of
order 1 and satisfies a functional equation of the form

Φ(s, π ⊗ χ) :=
(
qmN

)s/2
γχ(s, π)L(s, π ⊗ χ)

= επ,χΦ(1 − s, π ⊗ χ),

where |επ,χ| = 1, Φ(s, π ⊗ χ) = Φ(s̄, π ⊗ χ), and the gamma factor

γχ(s, π) =
m∏
j=1

ΓR(s + μj,χ)

for complex numbers μj,χ.
The generalized Riemann hypothesis states that all the zeros of the completed

L-functions, Φ(s, f) and Φ(s, f ⊗ χ), are on the critical line �(s) = 1/2. We always
indicate the L-functions for which we are assuming this hypothesis. The Ramanujan–
Petersson conjecture states that the Euler coefficients αj(p) in (2.1) satisfy |αj(p)| = 1
for all but a finite number of primes p. In general, this conjecture is open. Towards the
Ramanujan–Petersson conjecture, Luo, Rudnick, and Sarnak [30] have shown that∣∣αj(p)

∣∣ � p1/2−1/(m2+1)
for all p. It follows that
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∣∣Λπ(n)
∣∣ < mΛ(n)n1/2−1/(m2+1) (2.2)

where Λ(n) is the von Mangoldt function, defined by Λ(n) = log p if n = pj , j � 1, and
Λ(n) = 0 otherwise. The bound in (2.2) is crucial to our proofs of Theorem 1.1 and
Theorem 1.5. Our proofs also assume Hypothesis H of Rudnick and Sarnak [40].

Hypothesis H. Let j � 2 be fixed, and let π be an irreducible cuspidal automorphic
representation of GL(m) over Q. Then we have

∑
p

|Λπ(pj)|2
pj

< ∞.

Hypothesis H is known to hold for automorphic L-functions of small degree.

Theorem 2.1. Hypothesis H is true for m � 4.

Proof. The case m = 1 is trivial, the case m = 2 follows from the work of Kim and
Sarnak [26], the case m = 3 is due to Rudnick and Sarnak [40], and the case m = 4 is
due to Kim [25]. �

Given distinct automorphic L-functions L(s, π) and L(s, π′), we need to understand
the correlation of their Dirichlet series coefficients averaged over the primes. Selberg [42]
has made the following conjecture (in a different context).

Selberg’s Orthogonality Conjectures. Let π and π′ be two irreducible unitary cuspidal
automorphic representations of GL(m) and GL(m′) over Q, respectively, and let x � 3.
Then

∑
p�x

aπ(p)aπ′(p)
p

=
∑
p�x

Λπ(p)Λπ′(p)
p log2 p

=
{

log log x + O(1), if π ∼= π′,

O(1), if π � π′.

The following result allows us to use Selberg’s orthogonality conjectures in the proofs
of Theorem 1.1 and Theorem 1.5.

Theorem 2.2. Let π and π′ be two irreducible unitary cuspidal automorphic repre-
sentations of GL(m) and GL(m′) over Q, respectively. If L(s, π) and L(s, π′) satisfy
Hypothesis H, then the coefficients of these L-functions satisfy Selberg’s orthogonality
conjectures. In particular, Selberg’s orthogonality conjectures hold if max(m,m′) � 4.

Proof. This was proved in the special case where at least one of π or π′ is self-
contragredient in [27,28], and in full generality by Liu and Ye in [29]. See also Avdispahić

and Smajlović [3]. �
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In order to prove Theorem 1.5, we need to understand the behavior of the Dirichlet
series coefficients of automorphic L-functions averaged over the squares of primes. Let
L(s, π) be an L-function attached to a self-contragredient irreducible cuspidal automor-
phic representation π of GL(m) over Q (i.e. π = π̃). The Rankin–Selberg L-function
L(s, π ⊗ π̃) = L(s, π ⊗ π) factors as the product of the symmetric and exterior square
L-functions

L(s, π ⊗ π̃) = L
(
s, π,∨2) · L(s, π,∧2)

and has a simple pole at s = 1, see [6]. This pole must be carried by one of the factors
on the right-hand side. Following [39], we denote the order of the pole of L(s, π,∧2) as
(1 + δ(π))/2. Then it is known that

∑
p�x

Λπ

(
p2) ∼ −δ(π)x (2.3)

as x → ∞. We use this estimate, in a different form, in Section 6.
The proof of Theorem 1.5 also requires an assumption on the coefficients of the

L-functions which is stronger than Hypothesis H.

Hypothesis E. Let j � 2 be a fixed integer, and let π be an irreducible cuspidal auto-
morphic representation of GL(m) over Q. Then we have

∑
p

|Λπ(p2j)|
pj

< ∞.

Note that Hypothesis E only applies to even powers of primes, and the power of
the prime in the denominator differs from the corresponding exponent in Hypothesis H.
Hypothesis E, though stronger than Hypothesis H, is still considerably weaker than the
Ramanujan–Petersson conjecture. Indeed, it would follow if the Euler product coefficients
in (2.1) satisfied a bound of the form |αj(p)| � p1/4−ϑ for some ϑ > 0. Such a bound
trivially holds when m = 1 and follows from the work of Kim and Sarnak [26] when
m = 2. Therefore, in the proof of Theorem 1.5, we only need to assume Hypothesis E
when max1�j�r mj � 3.

3. Lemmas

In this section, we state three lemmas that will be used in the proof of Theorem 1.1.

Lemma 3.1. If {bn} is a sequence of complex numbers such that
∑

|bn| and
∑

n|bn|2 are

convergent, then
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T∫
0

∣∣∣∣∣
∞∑

n=1
bnn

−it

∣∣∣∣∣
2

dt = T
∞∑

n=1
|bn|2 + O

( ∞∑
n=1

n|bn|2
)

where the implied constant is absolute.

Proof. This is Montgomery and Vaughan’s mean-value theorem for Dirichlet polynomials
(see Corollary 3 of [34]). �
Lemma 3.2. Let T be large, x � 2, and let � and j be natural numbers satisfying x� � T j.
Then for any complex numbers b(p) we have

1
T

2T∫
T

∣∣∣∣∑
pj�x

b(p)
pj(σ+it)

∣∣∣∣2� dt � �!
{∑

pj�x

|b(p)|2
p2jσ

}�

where j is fixed and the sum runs over the primes p.

Proof. This is a consequence of Lemma 3.1. The case j = 1 essentially corresponds to
Lemma 3 of Soundararajan [43]. For any s ∈ C, write{∑

p�y

b(p)
ps

}�

=
∑
n�y�

βy,�(n)
ns

,

where βy,�(n) = 0 unless n is the product of � (not necessarily distinct) primes, all less
than or equal to y. Thus, we have

2T∫
T

∣∣∣∣∑
p�y

b(p)
pj(σ+it)

∣∣∣∣2� dt =
2T∫
T

∣∣∣∣∑
n�y�

βy,�(n)
njσ+jit

∣∣∣∣2 dt = 1
j

2jT∫
jT

∣∣∣∣∑
n�y�

βy,�(n)
njσ+iu

∣∣∣∣2 du,
where in the last step we have made the variable change u = jt. If y� � T , then
Lemma 3.1 implies that

2T∫
T

∣∣∣∣∑
p�y

b(p)
pj(σ+it)

∣∣∣∣2� dt � 2jT − jT

j

∑
n�y�

|βy,�(n)|2
n2jσ � T

∑
n�y�

|βy,�(n)|2
n2jσ .

By modifying the combinatorial argument appearing in the proof of Lemma 3 of [43] in
a straightforward manner, it follows that

∑
n�y�

|βy,�(n)|2
n2jσ � �!

{∑
p�y

|b(p)|2
p2jσ

}�

.

Combining estimates, the lemma follows. �
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Lemma 3.3. Assume that either L(s, π) is the Riemann zeta-function or that Φ(s, π) has
no pole or zero at s = 0, 1. Let λ0 = 0.4912 . . . denote the unique positive real number
satisfying e−λ0 = λ0 + λ2

0/2. Then, assuming the generalized Riemann hypothesis for
L(s, π), for all λ0 � λ � log x/2 and log x � 2, we have

log
∣∣∣∣L(1

2 + it, π

)∣∣∣∣ � �
∑
n�x

Λπ(n)
n

1
2+ λ

log x+it logn
log x/n
log x + (1 + λ)

2
m log T
log x + O

(
1

log x

)

for T � t � 2T and T sufficiently large, where the implied constant in the error term
depends only on π.

Proof. The case where L(s, π) corresponds to the Riemann zeta-function is due
to Soundararajan [43], and the other cases are a consequence of Theorem 2.1 of
Chandee [7]. �
4. Proof of Theorem 1.1

In this section, we state and prove a value distribution result for a linear combination of
distinct primitive L-functions and use this to deduce Theorem 1.1. This value distribution
result is an analogue of the main theorem in [43]. Let L(s, π1), . . . , L(s, πr) be r distinct
primitive L-functions (as in Theorem 1.1) of degrees m1, . . . ,mr, respectively, let

Δ = max
{
m2

1 + 1, . . . ,m2
r + 1

}
,

and let

B = k1m1 + · · · + krmr + 1. (4.1)

Define the set

A(T, V ) =
{
t ∈ [T, 2T ]: k1 log

∣∣∣∣L(1
2 + it, π1

)∣∣∣∣ + · · · + kr log
∣∣∣∣L(1

2 + it, πr

)∣∣∣∣ � V

}
and the quantity

W =
(
k2
1 + · · · + k2

r

)
log log T.

Note that

2T∫
T

∣∣∣∣L(1
2 + it, π1

)∣∣∣∣2k1

· · ·
∣∣∣∣L(1

2 + it, πr

)∣∣∣∣2kr

dt

= −
∞∫

exp(2V ) dmeas
(
A(T, V )

)

−∞
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= 2
∞∫

−∞

exp(2V ) meas
(
A(T, V )

)
dV. (4.2)

To prove Theorem 1.1, it suffices to estimate the measure of A(T, V ) for all V � 3
when T is large. Note that the definitions of A(T, V ) and W depend on our choices of
k1, . . . , kr, which we consider to be fixed throughout the proof of Proposition 4.1 below.

We prove estimates for the size of A(T, V ) using Lemma 3.2 and Lemma 3.3. The con-
tribution to the size of A(T, V ) coming from the primes in the sum on the right-hand
side of the inequality in Lemma 3.3 is estimated following the method of Soundararajan
in [43], and the contribution from the prime powers pj with j > Δ is estimated triv-
ially. More care is necessary to handle the contribution from the prime powers pj with
2 � j � Δ, and this is where we appeal to (2.2) and Hypothesis H. This allows us to
circumvent using the Ramanujan–Petersson conjecture.

As might be expected, the proof of Theorem 1.1 relies on understanding the corre-
lations between coefficients of distinct automorphic L-functions. The key ingredient to
the proof of the proposition below (and hence Theorem 1.1) is the fact that the Selberg
orthogonality conjectures imply that

∑
p�z

|k1Λπ1(p) + · · · + krΛπr
(p)|2

p log2 p
=

(
k2
1 + · · · + k2

r

)
log log z + O(1) (4.3)

as z → ∞, which can be seen by expanding the square on the left hand side of (4.3).

Proposition 4.1. Let L(s, π1), . . . , L(s, πr) be L-functions attached to distinct irreducible
cuspidal automorphic representations, πj, of GL(mj) over Q with unitary central char-
acter, and assume that these L-functions satisfy the generalized Riemann hypothesis. If
max1�j�r mj � 4 or each of the L-functions satisfies Hypothesis H, then the following
inequalities hold. If

√
W � V � W

B2 , we have

meas
(
A(T, V )

)
� T

V√
W

exp
(
−V 2

W

(
1 − 4

logW

))
;

if W
B2 � V � 1

2B2W logW , we have

meas
(
A(T, V )

)
� T

V√
W

exp
(
−V 2

W

(
1 − 7B2V

4W logW

)2)
;

and if 1
2B2W logW � V , we have

meas
(
A(T, V )

)
� T exp

(
− 1

129B2V log V
)

for any k1, . . . , kr > 0 when T is sufficiently large.
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Proof. Our proof is similar to the proof of the main theorem of Soundararajan in [43], and
our notation follows that of [43] and Chandee [8]. Let L(s, π) be a primitive L-function
of degree m. Choosing x = (log T )1−ε and λ = λ0 < 1

2 , it follows from Lemma 3.3 and
(2.2) that

log
∣∣∣∣L(1

2 + it, π

)∣∣∣∣ � m(log T )1−ε + (1 + λ0)m log T
2(1 − ε) log log T + O

(
1

(1 − ε) log log T

)
� 3m

4
log T

log log T

for sufficiently large T . Therefore, we see that

k1 log
∣∣∣∣L(1

2 + it, π1

)∣∣∣∣ + · · · + kr log
∣∣∣∣L(1

2 + it, πr

)∣∣∣∣ � 3(k1m1 + · · · + krmr)
4

log T
log log T

when T is large. Recalling the definition of B in (4.1), we may assume that

√
W � V � 3(B − 1)

4
log T

log log T

while proving the proposition. Note that B > 1 (a fact that is useful when deriving the
estimates below).

Define a parameter A as

A =

⎧⎨⎩
B
2 logW, if

√
W � V � W

B2 ,
1

2BV W logW, if W
B2 < V � 1

2B2W logW,

B, if V > 1
2B2W logW,

and let x = TA/V and z = x1/ log log T . Choosing λ = 1/2 in Lemma 3.3, we deduce that

k1 log
∣∣∣∣L(1

2 + it, π1

)∣∣∣∣ + · · · + kr log
∣∣∣∣L(1

2 + it, πr

)∣∣∣∣
�

∣∣S1(t)
∣∣ +

∣∣S�
1 (t)

∣∣ +
∑

2�j�Δ

∣∣Sj(t)
∣∣ + 3(B − 1)

4
V

A
+ O(1), (4.4)

where

S1(t) =
∑
p�z

(k1Λπ1(p) + · · · + krΛπr
(p))

p
1
2+ λ

log x+it log p
log(x/p)

log x ,

S�
1 (t) =

∑
z<p�x

(k1Λπ1(p) + · · · + krΛπr
(p))

p
1
2+ λ

log x+it log p
log(x/p)

log x ,
and
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Sj(t) =
∑
pj�x

(k1Λπ1(pj) + · · · + krΛπr
(pj))

pj(
1
2+ λ

log x+it) log pj
log(x/pj)

log x

for 2 � j � Δ. The coefficient bound in (2.2) implies that the error term in (4.4) is O(1)
since

∑
j>Δ

∣∣Sj(t)
∣∣ � ∑

j>Δ

∑
pj�x

|k1Λπ1(pj) + · · · + krΛπr
(pj)|

jpj/2 log p
� 1.

Let

V1 := V

(
1 − 7(B − 1)

8A

)
, V �

1 = Vj := (B − 1)V
8ΔA

for 2 � j � Δ. Note that if t ∈ A(T, V ), then at least one of the following inequalities
holds: ∣∣S�

1 (t)
∣∣ � V �

1 or
∣∣Sj(t)

∣∣ � Vj

for some j = 1, 2, . . . ,Δ. If we define

Nj(T, Vj) := meas
{
t ∈ [T, 2T ]:

∣∣Sj(t)
∣∣ � Vj

}
for j = 1, 2, . . . ,Δ and define N�

1 (T, V �
1 ) similarly, then we can bound Nj(T, Vj) and

N�
1 (T, V �

1 ) using Lemma 3.2 since Chebyshev’s inequality implies that

Nj(T, Vj) � (Vj)−2�
2T∫
T

∣∣Sj(t)
∣∣2� dt

and

N�
1
(
T, V �

1
)

�
(
V �

1
)−2�

2T∫
T

∣∣S�
1 (t)

∣∣2� dt
for every non-negative integer �.

Let us first estimate N1(T, V1). Letting � be any natural number such that z� � T ,
Lemma 3.2 and (4.3) imply that

2T∫
T

∣∣S1(t)
∣∣2� dt � T�!

(∑
p�z

|k1Λπ1(p) + · · · + krΛπr
(p)|2

p log2 p

)�

� T�!
((
k2
1 + · · · + k2

r

)
log log z + O(1)

)�(( ) )�
� T�! k2
1 + · · · + k2

r log log T
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� T
√
�

(
�(k2

1 + · · · + k2
r) log log T

e

)�

� T
√
�

(
�W

e

)�

.

Thus we have

N1(T, V1) � T
√
�

(
�W

eV 2
1

)�

. (4.5)

We consider separately the two cases where V � W 2

B4 and V > W 2

B4 . In the first case, we
choose � = �V

2
1

W � in (4.5) and find that

N1(T, V1) � T
V√
W

exp
(
−V 2

1
W

)
.

In the case, where V > W 2

B4 , we choose � = �10V � in (4.5) and find that

N1(T, V1) � T exp(−4V log V ).

Hence

N1(T, V1) � T
V√
W

exp
(
−V 2

1
W

)
+ T exp(−4V log V ) (4.6)

for all V .
Next, we find an upper bound for N�

1 (T, V �
1 ). For any natural number � with x� � T ,

Lemma 3.2 and (4.3) imply that

2T∫
T

∣∣S�
1 (t)

∣∣2� dt � T�!
( ∑

z�p�x

|k1Λπ1(p) + · · · + krΛπr
(p)|2

p log2 p

)�

� T�!
((
k2
1 + · · · + k2

r

)
(log log x− log log z) + O(1)

)�
� T

(
�
(
k2
1 + · · · + k2

r

)
log log log T + O(1)

)�
� T

(
2�
(
k2
1 + · · · + k2

r

)
log log log T

)�
when T is large. Choosing � = �VA �, we have that

N�
1
(
T, V �

1
)
� T

(
8ΔA

(B − 1)V

)2�(
2�
(
k2
1 + · · · + k2

r

)
log log log T

)�
(

V log V
)

� T exp − 2A . (4.7)
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Finally, we find an upper bound for Nj(T, Vj) for each 2 � j � Δ. For x1/j � T ,
Lemma 3.2 and Hypothesis H imply that

2T∫
T

∣∣Sj(t)
∣∣2� dt � T�!

(∑
pj�x

|k1Λπ1(pj) + · · · + krΛπr
(pj)|2

j2pj log2 p

)�

� T
(
�Cj

(
k2
1 + · · · + k2

r

))�
,

for each fixed j, where Cj is a constant (depending on j). Let

Cmax = max
2�j�Δ

Cj

be an absolute constant. Then for every 2 � j � Δ, we have

2T∫
T

∣∣Sj(t)
∣∣2� dt � T

(
�Cmax

(
k2
1 + · · · + k2

r

))�
.

Comparing this upper bound to the upper bound for
∫ 2T
T

|S�
1 (t)|2� dt, we conclude that

Nj(T, Vj) � T exp
(
−V log V

2A

)
, (4.8)

for each 2 � j � Δ. The proposition now follows by combining the estimates in (4.6),
(4.7), and (4.8). �

We now use Proposition 4.1 and (4.2) to prove Theorem 1.1.

Proof of Theorem 1.1. Proposition 4.1 implies that

meas
(
A(T, V )

)
�

{
T (log T )ε exp(−V 2

W ), if 3 � V � 256W
B2 ,

T (log T )ε exp(−4V
B2 ), if V > 256W

B2 .

Inserting these bounds into (4.2) and estimating the range V < 3 trivially, we deduce
that

2T∫
T

∣∣∣∣L(1
2 + it, π1

)∣∣∣∣2k1

· · ·
∣∣∣∣L(1

2 + it, πr

)∣∣∣∣2kr

dt

� T (log T )εeW 256W � T (log T )k
2
1+···k2

r+ε.

Theorem 1.1 now follows by summing this estimate over the dyadic intervals [T2 , T ],
T T T T
[ 4 , 2 ], [ 8 , 4 ], . . . . �
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5. Sketch of the proof of Theorem 1.3

We now sketch how to modify the proof of Theorem 1.1 to deduce Theorem 1.3.
Throughout this section, let K be a finite extension of Q, and let ζK(s) be the associated
Dedekind zeta-function. As before, our starting point is the observation that

2T∫
T

∣∣∣∣ζK(
1
2 + it

)∣∣∣∣2k dt = 2
∞∫

−∞

exp(2V ) meas
(
A(T, V )

)
dV (5.1)

where

A(T, V ) =
{
t ∈ [T, 2T ]: k log

∣∣∣∣ζK(
1
2 + it

)∣∣∣∣ � V

}
.

In order to bound the measure of A(T, V ), we need analogues of Lemma 3.3 and (4.3)
for ζK(s). For �(s) > 1, define

ζ ′K
ζK

(s) := d

ds
log ζK(s) = −

∞∑
n=1

ΛK(n)
ns

.

Since ζK(s) satisfies the Ramanujan–Petersson conjecture, we have

∣∣ΛK(n)
∣∣ � [K : Q]Λ(n).

Then the following analogue of Lemma 3.3 holds.

Lemma 5.1. Let λ0 = 0.4912 . . . denote the unique positive real number satisfying e−λ0 =
λ0 + λ2

0/2. Then, assuming the generalized Riemann hypothesis for ζK(s), for all λ0 �
λ � log x/2 and log x � 2, we have

log
∣∣∣∣ζK(

1
2 + it

)∣∣∣∣ � �
∑
n�x

ΛK(n)
n

1
2+ λ

log x+it logn
log x/n
log x + (1 + λ)

2
[K : Q] log T

log x + O

(
1

log x

)

for T � t � 2T and T sufficiently large, where the implied constant in the error term
depends only on K.

Proof. This is a consequence of Theorem 2.1 of Chandee [7]. �
The analogue of (4.3) follows from the Chebotarev density theorem.

Lemma 5.2. Let K be a finite Galois extension of Q, and let p denote a rational prime.

Then
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∑
p�x

rK(p)2 ∼ [K : Q]
∑
p�x

1

as x → ∞, and in particular

∑
p�x

rK(p)2

p
∼ [K : Q] log log x. (5.2)

Proof. Let (p) denote the principal ideal in OK generated by p. Then

(p) = P
e1
1 · · ·Per

r ,

where the Pi are the distinct prime ideals in OK lying above p with norm pfi . It follows
that

r∑
i=1

eifi = [K : Q].

If p is unramified in K, then e1 = · · · = er = 1. Since K is Galois, all the Pi lying above
p are conjugate. Thus f1 = · · · = fr = f , say. Therefore, for unramified primes p, we see
that rK(p) 
= 0 if and only if f = 1. In this case, p completely splits, r = [K : Q], and
hence rK(p) = [K : Q]. That is, for unramified primes p, we have

rK(p) =
{

[K : Q], if and only if p splits completely,
0, otherwise.

Since there are only a finite number of ramified primes, it follows that∑
p�x

rK(p)2 =
∑
p�x

p unramified

rK(p)2 + O(1) =
∑
p�x

p splits completely

[K : Q]2 + O(1).

On the other hand, the Chebotarev density theorem implies that

∑
p�x

p splits completely

1 ∼ 1
[K : Q]

∑
p�x

1,

as x → ∞. Thus, ∑
p�x

rK(p)2 ∼ [K : Q]
∑
p�x

1,

proving the first assertion of the lemma. Using this estimate, the prime number theorem

and partial summation imply (5.2), completing the proof of the lemma. �
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We now indicate how to prove Theorem 1.3. Choosing W = k2[K : Q] log log T ,
B = k[K : Q] + 1, Δ = 2 (since the Ramanujan–Petersson conjecture holds for ζK(s)),
and A as before, a straightforward modification of the analysis in the previous section
implies that

meas
(
A(T, V )

)
�

{
T (log T )ε exp(−V 2

W ), if 3 � V � 256W
B2 ,

T (log T )ε exp(−4V
B2 ), if V > 256W

B2 .

Inserting these bounds into (5.1), we deduce Theorem 1.3.

Remark. In order to prove Theorem 1.3, it is not necessary to derive an asymptotic
formula for the sum in (5.2). An upper bound of [K : Q] log log x + O(1) for the sum
in (5.2) would be sufficient and is more easily derived. For instance, since 0 � rK(p) �
[K : Q], we see that

∑
p�x

rK(p)2

p
� [K : Q]

∑
p�x

rK(p)
p

� [K : Q] log log x + O(1)

by Landau’s prime ideal theorem.

6. Sketch of the proof of Theorem 1.5

We now sketch how to modify the proof of Theorem 1.1 to deduce Theorem 1.5. In
this case, the starting point is the observation that

∑�

|d|�X

L

(
1
2 , π1 ⊗ χd

)k1

· · ·L
(

1
2 , πr ⊗ χd

)kr

=
∞∫

−∞

exp
(
V − k1δ(π1) + · · · + krδ(πr)

2 log logX
)
N (X,V ) dV, (6.1)

where N (X,V ) denotes the number of fundamental discriminants d with |d| � X such
that

k1 log
∣∣∣∣L(1

2 , π1 ⊗ χd

)∣∣∣∣ + · · · + kr log
∣∣∣∣L(1

2 , πr ⊗ χd

)∣∣∣∣
� V −

(
k1δ(π1) + · · · + krδ(πr)

2

)
log logX. (6.2)

We can bound N (X,V ) with the following analogues of Lemma 3.2 and Lemma 3.3. (Note
that the definition of N (X,V ) takes into account the contribution from the squares of

primes in Lemma 6.2, below.)
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Lemma 6.1. Let X and y be real numbers, and let � be a natural number with y� �
X1/2/ logX. For any complex numbers b(p) we have

∑�

|d|�X

∣∣∣∣ ∑
2<p�y

b(p)χd(p)
p1/2

∣∣∣∣2� � X
(2�)!
�!2�

(∑
p�y

|b(p)|2
p

)
,

where the implied constant is absolute.

Proof. This is Lemma 6.3 of Soundararajan and Young [44]. �
Lemma 6.2. Let L(s, π) be an L-function attached to an irreducible cuspidal automorphic
representation π on GL(m) over Q and let d be a fundamental discriminant. Let λ0 =
0.4912 . . . denote the unique positive real number satisfying e−λ0 = λ0 + λ2

0/2. Then,
assuming the generalized Riemann hypothesis for L(s, π ⊗ χd), for all λ0 � λ � log x/2
and log x � 2, we have

log
∣∣∣∣L(1

2 , π ⊗ χd

)∣∣∣∣ �
∣∣∣∣∑
n�x

Λπ(n)χd(n)
n

1
2+ λ

log x log n
log x/n
log x

∣∣∣∣ + (1 + λ)
2

m log |d|
log x + O

(
1

log x

)
,

where the implied constant depends only on π.

Proof. This follows from Theorem 2.1 of Chandee [7]. �
We now indicate how to prove Theorem 1.5. The primary difference between the proof

of this theorem and the proof of Theorem 1.1 is how we handle the contribution from
the prime powers. By (2.3), the contribution from the prime squares to the inequality in
Lemma 6.2 is

∑
p2�x

Λπ(p2)χd(p2)
p1+ 2λ

log x log p2
∼ −δ(π)

2 log log x,

giving rise to the extra term on the right-hand side of (6.2) in the definition of N (X,V ).
In this way, the squares of primes contribute to our bounds for the size of these moments.

In contrast to the proof of Theorem 1.1, we must handle prime powers pj with j > 2
differently depending on whether j is odd or even. When j is odd, χd(pj) = χd(p),
and hence we can average over fundamental discriminants using Lemma 6.1, (2.2), and
Hypothesis H in a manner analogous to the analysis in Section 4. If j is even, then
χd(pj) = 1 for p � d, and therefore we cannot average over discriminants to estimate
their contribution. Instead, we use Hypothesis E to show that the contribution of these
primes to Lemma 6.2 is O(1).

With these changes, choosing B, Δ, and A as in Section 4 and W = (k2
1 + · · · +

k2
r) log log x, a relatively straightforward modification of the proof of Proposition 4.1
gives
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N (X,V ) �
{
X(logX)ε exp(− V 2

2W ), if 3 � V � 512W
B2 ,

X(logX)ε exp(−4V
B2 ), if V > 512W

B2 .

Theorem 1.5 now follows by inserting these bounds into (6.1).

7. Proof of Theorem 1.4

We follow the proof of Theorem 1 of Selberg [41], who studied the distribution of
primes in short intervals using upper bounds for moments of the logarithmic derivative of
ζ(s) near the critical line. (See also Section 4 of Goldston, Gonek, and Montgomery [14].)
For K a finite Galois extension of Q, let

cK = 2r1(2π)r2hR
w
√
D

, S(x) =
∑
n�x

rK(n), and S0(x) = 1
2 lim

ε→0

(
S(x + ε) + S(x− ε)

)
so that S(x) = S0(x) for almost all x. Perron’s formula implies that

S0(x) = 1
2πi

2+i∞∫
2−i∞

ζK(s)x
s

s
ds.

Assuming the generalized Riemann hypothesis (GRH) for ζK(s), we move the contour
left from �(s) = 2 to �(s) = 1/2 passing over a pole of the integrand at s = 1 and no
other singularities. Here we are implicitly using the generalized Lindelöf hypothesis for
ζK(s) in t-aspect (which follows from GRH) to justify the contour shift. Thus by the
residue calculation in (1.11) and a variable change, we have

S0(x) − cKx = 1
2πi

1/2+i∞∫
1/2−i∞

ζK(s)x
s

s
ds = 1

2π

∞∫
−∞

ζK

(
1
2 + it

)(
x

1
2+it

1
2 + it

)
dt.

Applying this formula twice with the values x = eτ+κ and x = eτ , it follows that

S0(eκ+τ ) − S0(eτ ) − cK(eκ − 1)eτ

eτ/2
= 1

2π

∞∫
−∞

ζK

(
1
2 + it

)(
eκ( 1

2+it) − 1
1
2 + it

)
eiτt dt,

giving a Fourier transform relation for all τ ∈ R. By Plancherel’s theorem, since
S0(x) = S(x) almost everywhere, we have

∞∫ ∣∣S(eκ+τ
)
− S

(
eτ
)
− cK

(
eκ − 1

)
eτ
∣∣2 dτ

τ
= 1

∞∫ ∣∣∣∣ζK(
1 + it

)∣∣∣∣2∣∣∣∣eκ( 1
2+it) − 1
1

∣∣∣∣2 dt.

−∞

e 2π
−∞

2 2 + it
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Observing that the integrand on the left-hand side is even and letting x = eτ , X � T � 2,
and eκ = 1 + 1/T , we derive that

2X∫
X

∣∣∣∣S(x + x

T

)
− S(x) − cK

x

T

∣∣∣∣2 dxx2 �
∞∫
0

∣∣∣∣S(x + x

T

)
− S(x) − cK

x

T

∣∣∣∣2 dxx2

= 1
π

∞∫
0

∣∣∣∣ζK(
1
2 + it

)∣∣∣∣2∣∣∣∣eκ( 1
2+it) − 1
1
2 + it

∣∣∣∣2 dt
= 1

π

∞∑
�=0

(2�+1−1)T∫
(2�−1)T

∣∣∣∣ζK(
1
2 + it

)∣∣∣∣2∣∣∣∣eκ( 1
2+it) − 1
1
2 + it

∣∣∣∣2 dt

�
∞∑
�=0

1
(2�T )2

(2�+1−1)T∫
0

∣∣∣∣ζK(
1
2 + it

)∣∣∣∣2 dt.
It follows from this and Theorem 1.3 that

1
X2

2X∫
X

∣∣∣∣S(x + x

T

)
− S(x) − cK

x

T

∣∣∣∣2 dx �
∞∑
�=0

1
2�T (log T )[K:Q]+ε � (log T )[K:Q]+ε

T

for any ε > 0. Theorem 1.4 now follows by choosing y = x/T .
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