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An algebraic combinatorial method is used to count higher-dimensional lattice walks in

Zm that are of length n ending at height k. As a consequence of using the method, Sands’

two-dimensional lattice walk counting problem is generalized to higher dimensions. In

addition to Sands’ problem, another subclass of higher-dimensional lattice walks is also

counted. Catalan type solutions are obtained and the first moments of the walks are

computed. The first moments are then used to compute the average heights of the

walks. Asymptotic estimates are also given.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

We use properties of the Riordan group to prove that certain matrix entries of an infinite two-dimensional array count
higher-dimensional lattice walks of length n ending at height k. The infinite array is constructed using Riordan matrices. A
Riordan matrix is a special infinite lower-triangular matrix where the columns of the matrix are coefficients of certain
formal power series. Furthermore, the set of all Riordan matrices forms a group called the Riordan group (Shapiro et al.,
1991). The walks are defined on the integral lattice Zm under the conditions that each walk starts at the origin, moves unit
steps according to specified restrictions, and never pass below certain hyperplanes. The length n of a walk is the number of
unitary steps and the height k, which corresponds to the endpoint of the walk, will either touch (but not pass below) a
particular hyperplane or be a certain distance above a particular hyperplane. The infinite two-dimensional array which is
denoted by

Li;j ¼ PiC0Ê
j

is a triple product of Riordan matrices Pi, C0, and Ê
j

where Pi is the i th power of the well-known Pascal (triangle) matrix P

(see Example 2.1 and Eq. (4)), C0 is the aerated Catalan matrix defined by Eq. (5), and Ê
j

(defined by Eq. (6)) is the j th power
of the infinite lower-triangular matrix Ê which has all 1’s on and below the main diagonal and 0’s everywhere else. See
Fig. 1 for the first few entries of the array Li;j.

The infinite array Li;j was initially constructed in Nkwanta (1997) where the first few entries are explicitly given
(also see Nkwanta, 2003). Some matrices that appear in Li;j have extensive combinatorial applications (e.g., the Pascal,
Catalan, Motzkin, hexagonal (Hex), and directed animal arrays). Combinatorial objects counted by these matrix entries of
Li;j include ballot sequences (Shapiro, 1976), random walks (Donaghey and Shapiro, 1977), lattice paths with various
restrictions (Guy, 2000; Guy et al., 1992), hexagonal graphs with certain restrictions (Harary and Read, 1972), directed
animals (Gouyou-Beauchamps and Viennot, 1988), and interval graphs (Hanlon, 1982). Thus, Li;j is of combinatorial
ll rights reserved.
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Fig. 1. Infinite array of Riordan matrices.
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interest. A remarkable characteristic of Li;j is that it unifies many well-known combinatorial arrays, generating functions,
and counting sequences (see Nkwanta, 2003). In addition, Li;j is itself a Riordan matrix (see Theorem 2.3).

The problem of counting random walks on lattices with unitary steps north, south, east, and west was first posed by
physicists as an approximate model for Brownian motion (Hughes, 1995). Sands (1990) asked for a simple counting
argument for the number of different walks with n steps such that each step moves one unit either north, south, east or
west, starting from the origin and remaining in the upper half-plane. Surprisingly, by moving down the leftmost column of
Li;j we find the solution of Sands’ problem. In addition, we extend Sands’ problem to higher dimensions where there are
countably many step directions and the walks never pass below certain hyperplanes. Moreover, a matrix solution is found
for this problem and the solution contains a simple choice argument. We also find an exact formula and asymptotic
estimate for the walks. Another subclass of walks called generalized (or partial-t) Motzkin walks is given since they are also
counted by the entries of the leftmost column. In addition, more results are also obtained by moving down the first column
of Li;j.

By moving down the first column we obtain another surprising result, this time for a more restrictive subset of Sands
type walks which we call power walks. These walks are also generalized to higher dimensions and a Motzkin analog is
given. Thus an interesting implication, in reference to the Motzkin analogs, is that the first two columns of Li;j model in an
extremely natural way generalized Motzkin walks (see Section 3). Given the higher-dimensional walks for the columns, the
weighted row sums of Li;j are computed and the first moments are established. Then, using the first moments, we compute
the average heights of the walks and obtain solutions involving the Catalan numbers cn given below by Eq. (1).

Algebraic combinatorics involves the use of techniques from algebra, topology, and geometry in the solution of
combinatorial problems, or the use of combinatorial methods to attack problems in these areas (Billera et al., 1999).
Because of this interplay with many fields of mathematics, algebraic combinatorics is an area in which a wide variety of
ideas and methods come together (Billera et al., 1999). The Riordan group method, which is both combinatorial and
algebraic, is the main method used in this paper. The algebraic concept involves the Riordan group and the combinatorial
concepts involve recurrences, generating functions, and bijections.

This paper is organized as follows. In Section 2, we make the paper self-contained by briefly outlining the Riordan group
and defining multiplication of Riordan matrices, defining the Riordan group method, and defining the first moments of a
Riordan matrix. Readers familiar with the Riordan group may skip these minor (but important) details and go directly to
Section 3. The results will begin here where we prove that the first two columns of Li;j count certain subclasses of higher-
dimensional lattice walks. Note that the higher-dimensional generalizations are the main results of this paper. In Section 4,
the moment generating function of the sequence associated with the entries of the weighted row-sum vector associated
with Li;j is computed and the average heights of the higher-dimensional walks are derived. Some discussion of other
approaches and open problems related to this work are mentioned in Section 5.
2. Riordan: group, matrices, and method

The Riordan group depends upon certain formal power series. Before the definition, let N denote the natural numbers
and C the complex numbers.

Definition 2.1. An infinite matrix L¼ ð‘n;kÞn;k2N with entries in C is called a Riordan matrix if the k th column satisfiesX
nZ0

‘n;kzn :¼ gðzÞðf ðzÞÞk;

where gðzÞ ¼ 1þg1zþg2z2þ � � � and f ðzÞ ¼ f1zþ f2z2þ f3z3þ � � � belong to the ring of formal power series C½½z�� and f1a0.
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The concept of representing columns of infinite matrices by coefficients of formal power series is not new and goes back
to Schur’s paper on Faber polynomials (Schur, 1945). A formal power series of the form

bðzÞ ¼ b0þb1zþb2z2þ � � � ¼
X
nZ0

bnzn;

where z is an indeterminate is called the ordinary generating function of the sequence {bn}. The Catalan generating function is

cðzÞ :¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffi
1�4z
p

2z
¼
X
nZ0

cnzn where cn ¼
1

nþ1

2n

n

� �
: ð1Þ

Here cn is the n th Catalan number. The numbers cn occur in a wide variety of combinatorial problems and algebraic
applications (see Stanley, 1999, pp. 219–229 and 231, respectively). A Riordan matrix can be defined by a pair of ordinary
generating functions as L=(g(z), f(z)).

Example 2.1. Pascal’s triangle (in lower triangular form) and Shapiro’s Catalan array in Shapiro (1976) denoted,
respectively, by

P¼ ð1=ð1�zÞ; z=ð1�zÞÞ and P2C0 ¼ ðc
2ðzÞ; zc2ðzÞÞ

are Riordan matrices.

Note that all the matrices presented in this paper are generated by using ordinary generating functions. However,
Riordan matrices can also be generated by using exponential generating functions. See Berry (2007) and He et al. (2007) for
new developments from this perspective.

We now give two important results for multiplying Riordan matrices. The first theorem is called the Fundamental

Theorem of the Riordan Group (Nkwanta and Shapiro, 2005). The second theorem follows from the first by applying the
fundamental theorem to an arbitrary Riordan matrix N, one column of N at a time.

Theorem 2.1 (Shapiro et al., 1991; Nkwanta and Shapiro, 2005). If L¼ ð‘n;kÞn;k2N ¼ ðgðzÞ; f ðzÞÞ is a Riordan matrix and h(z) is the

generating function of the sequence associated with the entries of the column vector h¼ ðhkÞk2N, then the product of L and h(z),
defined by L� hðzÞ ¼ gðzÞhðf ðzÞÞ, is the generating function of the sequence associated with the entries of the column vectorPn

k ¼ 0 ‘n;khk

� �
n2N

.

Proof. See Shapiro et al. (1991, Equation 5) or Nkwanta and Shapiro (2005, Proof of Theorem 2.1). &

Let us denote by L�N, or by simple juxtaposition LN, the row-by-column product of two Riordan matrices.

Theorem 2.2 (Shapiro et al., 1991; Sprugnoli, 1995). If

L¼ ð‘n;kÞn;k2N ¼ ðgðzÞ; f ðzÞÞ and N¼ ðvn;kÞn;k2N ¼ ðhðzÞ; lðzÞÞ

are Riordan matrices, then L�N is

L � N¼
Xn

j ¼ 0

‘n;jvj;k

0
@

1
A

n;k2N

¼ ðgðzÞhðf ðzÞÞ; lðf ðzÞÞÞ;

and the set R of all Riordan matrices is a group under the operation of matrix multiplication.

Proof. See Shapiro et al. (1991, Equation 6) and Sprugnoli (1995). &

Example 2.2. Consider the Pascal and Catalan matrices mentioned above. Then their product is the Hex matrix H given by

H¼ P3C0 ¼
1�3z�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�6zþ5z2
p

2z2
;
1�3z�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�6zþ5z2
p

2z

 !
:

See Figure 4 in Nkwanta (2003) for the first few entries.

The group, we denote by (R,�), is called the Riordan group. This noncommutative group is a generalization of the
renewal array theory that was introduced by Rogers (1978) to study generalizations of the ordinary Pascal, Catalan, and
Motzkin arrays. The Riordan group is still developing (Cameron and Nkwanta, 2005; He et al., 2007; Shapiro, 2003; Wilson,
2005) and finding applications in areas of mathematics outside of combinatorics (Berry, 2007; Egorychev and Zima, 2005;
1ln,k 2ln,k+1 1ln,k+2
↓↓ ↓

ln+1,k+1

Fig. 2. A-sequence.
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Huang, 2002; Nkwanta, 2008; Penson et al., 2004). For more details on the Riordan group see Shapiro et al. (1991) and
Sprugnoli (1994, 1995).

2.1. Riordan group method

For a selected class of combinatorial objects, a counting approach to using the Riordan group is outlined by the
following steps:
(1)
 Count a few cases and establish a sequence of numbers (integers).

(2)
 If possible set up the sequence as a Riordan matrix.

(3)
 Find and prove (combinatorially) the matrix formation rule.

(4)
 Use the formation rule to identify g(z) and f(z) for a given Riordan matrix L=(g(z), f(z)).

(5)
 Compute L� hðzÞ.
One key step of the method is to find the matrix formation rule. A formation rule, which we denote by [Z;A], is a
recurrence relation which defines the way entries of a Riordan matrix are computed. The notation [Z;A] means ‘‘Z’’
coincides with the formation of the zeroth column and ‘‘A’’ coincides with the formation of the other columns. In addition
to this notation, formation rules are also denoted by dot diagrams (see Fig. 2). Also, see Merlini et al. (1997) for dot
diagrams and related properties of Riordan matrices.

Following Rogers (1978) and Merlini et al. (1997), with minor adjustments, we give two useful characterizations
of a given Riordan matrix. The formation rules which determine Riordan matrices are called A- and Z-sequences.
The Z-sequence ðZ¼ fz0; z1; . . .gÞ characterizes the zeroth column. This means every element ‘nþ1;0 can be expressed as a
linear combination of all the elements in the preceding row, i.e.,

‘nþ1;0 ¼ z0‘n;0þz1‘n;1þz2‘n;2þ � � � :

The A-sequence ðA¼ fa0; a1; . . .g; a0a0Þ characterizes the other columns. In this case every element ‘nþ1;kþ1 can be
expressed as a linear combination with coefficients in A of the elements in the preceding row, starting from the preceding
column on, i.e.,

‘nþ1;kþ1 ¼ a0‘n;kþa1‘n;kþ1þa2‘n;kþ2þ � � � :

Thus, if A(y) and Z(y) are the generating functions (in indeterminate y) of the A- and Z-sequences, respectively, then for
a given Riordan matrix the generating functions g(z) and f(z) are the solutions of the functional equations

f ðzÞ ¼ zAðf ðzÞÞ and gðzÞ ¼
g0

1�zZðf ðzÞÞ
: ð2Þ

Conversely, A(y) and Z(y) can be determined by letting y= f(z) and eliminating z from

AðyÞ ¼ y=z and ZðyÞ ¼
gðzÞ�g0

zgðzÞ
: ð3Þ

Example 2.3. The formation rule of P2C0 is [2,1;1,2,1] where Z(y) =2+y and A(y) =1+2y+y2. In general, ‘nþ1;kþ1 is
computed as illustrated in Fig. 2.

Now consider the following Riordan matrices:

Pi ¼ ð1=ð1�izÞ; z=ð1�izÞÞ; ð4Þ

C0 ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4z2
p

2z2
;
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4z2
p

2z

 !
and ð5Þ

Ê
j
¼ ð1=ð1�zÞj; zÞ: ð6Þ

Then, Li;j is a Riordan matrix by the following theorem.

Theorem 2.3 (Nkwanta, 2003, 1997). For i; jZ0,

Li;j ¼ PiC0Ê
j
¼

kiðzÞ

ð1�zkiðzÞÞ
j
; zkiðzÞ

 !
where kiðzÞ ¼

1�iz�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�izÞ2�4z2

q
2z2

: ð7Þ

Proof. It is sufficient to apply the product rule for Riordan matrices. See Nkwanta (2003, Theorem 3.8) or Nkwanta
(1997). &
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Note that the generating function given by Eq. (7) is a generalized Catalan generating function since

kiðzÞ ¼
1

1�iz
c

z2

ð1�izÞ2

 !
;

where c(z) is given by Eq. (1). Thus, we call Li;j a generalized Catalan-type array. The A- and Z-sequences of Li;j are now
given.

Theorem 2.4 (Nkwanta, 2003). The generating functions of the A- and Z-sequences of Li;j are Ai,j(y) =1+ iy+y2 and

Zi;jðyÞ ¼
iþyþð1�ð1�yÞjÞ

y
;

respectively.

Proof. See (Nkwanta, 2003, Theorem 3.10). &

2.2. First moments

The first moments are given by the weighted row sums of a Riordan matrix.

Definition 2.2. The first moments of a Riordan matrix L are denoted and computed by

LðmoÞ ¼ g gf gf 2
� � � gf k

� � �

� � 0

1

^

0
B@

1
CA¼X

kZ0

kgf k;

where the column gfk is the k th column vector associated with the coefficients of the k th generating function g(z) f k(z) and
v2ð0;1; . . . ÞT is the column vector associated with the coefficients of the generating function v(z) = z/(1�z)2. Another way
of characterizing Riordan matrices and moments is to consider the bivariate generating function Gðt; zÞ ¼ gðzÞ=ð1�tf ðzÞÞ. The
first moments (averages) are then computed by

@G

@t

� �
t ¼ 1

¼
gðzÞf ðzÞ

ð1�f ðzÞÞ2
: ð8Þ

This is equivalent to L multiplied by ð0;1; . . . ÞT to obtain the moment vector L(mo). However, in this paper, we are interested
in using the bivariate generating function Hðt; zÞ ¼ tgðzÞ=ð1�tf ðzÞÞ. As a result of this generating function the moment count
starts at one. Thus, the first moments (averages) are computed by

@H

@t

� �
t ¼ 1

¼
gðzÞ

ð1�f ðzÞÞ2
: ð9Þ

This case, which we use to obtain the moment vector denoted LðmoÞ, is equivalent to L multiplied by the column vector
v2ð1;2; . . . ÞT . Note v denotes the column vector associated with the coefficients of the generating function
vðzÞ ¼ 1=ð1�zÞ2. The first moments of L, in this case, are computed by

LðmoÞ ¼ g gf gf 2
� � � gf k

� � �

� � 1

2

^

0
B@

1
CA¼X

kZ0

ðkþ1Þgf k:

Lemma 2.1. Let L= (g(z), f(z)) be a Riordan matrix. Then, the first moment generating functions of the sequences associated with

the entries of the moment vectors L(mo) and LðmoÞ of L are, respectively, denoted by ‘ðzÞðmoÞ and ‘ðzÞðmoÞ and given by

‘ðzÞðmoÞ ¼ L� vðzÞ ¼
gðzÞf ðzÞ

ð1�f ðzÞÞ2

and

‘ðzÞðmoÞ ¼ L� vðzÞ ¼
gðzÞ

ð1�f ðzÞÞ2
:

Proof. Use Theorem 2.1, Definition 2.2, and compare with Eqs. (8) and (9). Also see Sprugnoli (1994). &

Given the moment generating functions ‘ðzÞðmoÞ and ‘ðzÞðmoÞ, then

mðnÞ :¼
½zn�ð‘ðzÞðmoÞÞ

½zn�
gðzÞf ðzÞ

ð1�f ðzÞÞ2

 ! ð10Þ
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and

mðnÞ :¼
½zn�ð‘ðzÞðmoÞÞ

½zn�
gðzÞ

ð1�f ðzÞÞ2

 !: ð11Þ

These ratios are used to compute the expected value of the occurrence of a certain event of a certain combinatorial object
with n properties counted by the entries of a given Riordan matrix. The symbol [zn] denotes the n th coefficient of a
corresponding generating function. For the given cases, the generating functions of the sequences associated with the
entries of the moment vectors of a given Riordan matrix L= (g(z), f(z)) are g(z) f(z) /(1� f(z))2 and g(z)/(1� f(z))2.

Example 2.4. Recall P2C0=(c2(z), zc2(z)). Then, the first moment generating function of the sequence associated with the
entries of the moment vector (P2C0)(mo) of Riordan matrix P2C0 is given by the moment generating function p2c0(z)(mo)

where

p2c0ðzÞðmoÞ ¼
c2ðzÞ

ð2�cðzÞÞ2
¼ 1þ4zþ16z2þ64z3þ � � � : ð12Þ

The ratio mðnÞ in closed form is

mðnÞ ¼
½zn�ðp2c0ðzÞðmoÞÞ

½zn�ðcðzÞ=
ffiffiffiffiffiffiffiffiffiffiffiffi
1�4z
p

Þ
¼

4n

2nþ1

n

� � ð13Þ

Eq. (12) was obtained by Shapiro et al. (1983) and a lattice path interpretation of Eq. (12) is given by Callan (1999). Using
Eq. (11), we see that Eq. (13) counts the average height above the line y=�1 of all walks counted by P2C0. Furthermore,
Eq. (13) is generalized in Section 5 (see Proposition 4.3). For more details on moments and ordinary generating functions,
see Sedgewick and Flajolet (1996, pp. 136–139) and Wilf (1990, pp. 108–109).

3. Lattice walks

The subject of counting walks on the lattice in Euclidean space is one of the most important areas of combinatorics
(Gessel et al., 1998). We consider counting walks on the lattice Zm for the first two columns of Li;j.

Definition 3.1. A lattice walk is a sequence of contiguous and reversible unit steps which traverses an m-dimensional
integral lattice Zm.

For m=2 and 3, the step directions are given in Fig. 3.
All walks begin at the origin and move unit steps according to the following conditions. In one and two dimensions the

walks are considered to be in the (x,y) plane and never pass below the x-axis. The length of each walk is the number of
unitary steps, and the height corresponds to the y value of the endpoint (x,y) of the walk. In three dimensions the walks are
considered to be in the three-dimensional Euclidean space and never pass below the (x,y) plane. The height of each walk
corresponds to the z value of the endpoint (x,y,z) of the walk. In higher dimensions, m43, the walks are considered to be in
the m-dimensional Euclidean space and never pass below the (m�1)th hyperplane x1þ � � � þxm�1 ¼ 0. The height of each
walk corresponds to the value xm of the endpoint ðx1; . . . ; xmÞ of the walk. The higher-dimensional step directions are
defined in Fig. 4.

To avoid confusion with notation, for the remainder of the paper we use m when counting walks on Zm and i=d when
counting walks given by the i th column of Li;j.

3.1. Lattice walks and the leftmost column

Lattice walk interpretations are given for the entries of Li;0 (recall Fig. 1). We start with C0, PC0, P2C0, P3C0, and P4C0 and
count walks of a given length n and height k where entries of each matrix are indexed n by k ð0rkrnÞ. In one dimension,
Fig. 3. Unit steps.
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the entries of C0 count NS walks. In two dimensions, the entries of PC0 and P2C0 count, respectively, NSE and NSEW walks.
In three dimensions, the entries of P3C0 and P4C0 count, respectively, NSEWF and NSEWFB walks. As earlier mentioned, the
solutions of these problems are known and can be found by using reflection and certain bijections that are constructed
between planar (NSEW) and linear (NS) lattice walks (Breckenridge et al., 1991; Guy et al., 1992; Sands, 1991).

In this paper we provide an alternative method which gives the solution to Sands’ problem and leads to higher-
dimensional analogs of this problem. Moreover, we give a unified combinatorial interpretation of the leftmost column of
Li;j. We start with Sands’ problem and illustrate the Riordan group method in the proof of this problem. We then conclude
this section with mentioning Motzkin walks since they are also counted by Li;0.

3.1.1. Sands’ problem

Proposition 3.1. The total number of NSEW walks of length n in Z2, beginning at the origin (0,0) and never passing below the

x-axis, is ð2nþ1
n Þ.

Proof (Sketch). The Riordan group method gives the following. Step (1): Let ‘ðnÞ denote the number of NSEW walks of
length n. By hand, the first few values of ‘ðnÞ are ‘ð0Þ ¼ 1; ‘ð1Þ ¼ 3; ‘ð2Þ ¼ 10; ‘ð3Þ ¼ 35, and ‘ð4Þ ¼ 126. Sloane (2001) and
Sloane and Plouffe (1995) suggest f‘ðnÞgnZ0 ¼ f1;3;10;35;126; . . .g, sequence # A001700. Hence, ‘ðnÞ is conjectured to
equal the central binomial coefficient ð2nþ1

n Þ. Step (2): We form a Riordan matrix by letting ‘ðn; kÞ denote the number of
NSEW walks of length n ending at height k. From this interpretation, we observe the first few entries of P2C0. Step (3): A
recurrence is defined. The initial condition is ‘ð0;0Þ ¼ 1. Then for n; kZ1; ‘ðn; kÞ satisfies

‘ðn; kÞ ¼ 1‘ðn�1; k�1Þþ2‘ðn�1; kÞþ1‘ðn�1; kþ1Þ;

‘ðn;0Þ ¼ 2‘ðn�1;0Þþ1‘ðn�1;1Þ and

‘ðn; kÞ ¼ 0 when kZnþ1:

From these recurrence relations we get the formation rule [2, 1; 1, 2, 1] which does indeed define P2C0. Step (4): By the
formation rule, we obtain

P2C0 ¼ ðc
2ðzÞ; zc2ðzÞÞ:

Step (5): Following Fundamental Theorem 2.1 and multiplying the pair by 1/(1�z), and using certain properties of c(z)
gives

c2ðzÞ

1�zc2ðzÞ
¼

cðzÞffiffiffiffiffiffiffiffiffiffiffiffi
1�4z
p :

This generating function represents the total number of NSEW walks. To find a closed form solution we use

cðzÞffiffiffiffiffiffiffiffiffiffiffiffi
1�4z
p ¼

1ffiffiffiffiffiffiffiffiffiffiffiffi
1�4z
p �1

� �
1

2z
;

the binomial theorem, and convolution to obtain ‘ðnÞ ¼ ð2nþ1
n Þ which is the desired solution. This settles the conjecture

made in Step (1) given above. &

Remark 3.1. A closed form solution of ‘ðnÞ can also be derived by using Pascal’s triangle or the Pfaff–Saalschutz identity.

An asymptotic estimate for ‘ðnÞ is now given.

Proposition 3.2. ‘ðnÞ � 4n
ð2=

ffiffiffiffiffiffi
pn
p
Þ as n-1.

Proof. Observe

2nþ1

n

� �
¼

2nþ1

nþ1

2n

n

� �

and use Stirling’s formula, or use Darboux’s approximation method (Lueker, 1980). &
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Remark 3.2. Also, observe

½zn�
c2ðzÞ

1�zc2ðzÞ

� �
¼ ½zn�

1

2z
ffiffiffiffiffiffiffiffiffiffiffiffi
1�4z
p �

1

2z

� �
¼

1

2

2nþ2

nþ1

 !
�

1

2
�

4nþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðnþ1Þ

p
is a classical result.

3.1.2. Higher dimensions

Definition 3.2. A higher-dimensional lattice walk is a sequence of contiguous and reversible unit steps which traverses an
m-dimensional integral lattice Zm. These walks start at the origin and never pass below the hyperplane x1þ � � � þxm�1 ¼ 0
for m43.

Moving down the leftmost column of Li;j, matrix relations connecting Catalan, Motzkin, Hex arrays, and other arrays as
well are derived. Considering the lattice walk interpretations previously mentioned for these matrices, we observed that
left multiplication by P takes NS walks to NSE walks, NSE walks to NSEW walks, and NSEW walks to NSEWF walks.
Geometrically, P acts as a matrix transformation in the sense that certain subsets of lattice walks of length n move from one
dimension to two dimensions to three dimensions and so forth. As illustrated in Fig. 5, we view each multiplication by P as
adding a half coordinate axis (first to the positive axis, then to the negative axis).

Continuing with left multiplication by P and moving down the leftmost column, the (m+1)th-dimensional lattice walk
counting problem arises. The unitary steps, given in Fig. 4, are denoted by N, S, and Ed ðdZ1Þ where E1= E, E2= W, E3= F,
E4 ¼ B; . . . ;Ed�1 ¼ T, and Ed= U. Note that the Ed steps are the different kind of unitary steps different from N and S that are
used to form the higher-dimensional walks. Thus, we have the following theorem.

Theorem 3.1. The number of NSE1; . . . ; Ed walks ‘ of length n in Zmþ1, beginning at the origin and never passing below the

hyperplane x1þ � � � þxm ¼ 0, is given by C0=(k0(z), zk0(z)) for i=d=0, m=0 and ‘ 2 Z1. If i¼ d40 and m40 then the walks are

given by

PdC0 ¼ ðkdðzÞ; zkdðzÞÞ, if ‘ 2 Zmþ1 s.t. the Edth step moves along coordinate axis in Zmþ1 in a positive direction, and

Pdþ1C0 ¼ ðkdþ1ðzÞ; zkdþ1ðzÞÞ, if ‘ 2 Zmþ1 s.t. the Edth step moves along coordinate axis in Zmþ1 in both positive and negative

directions.

Proof. By Theorems 2.3 and 2.4, matrix PdC0 has formation rule [d,1;1,d,1]. Let ‘�ðn; kÞ denote the number of NSE1; . . . ; Ed

lattice walks of length n ending at height k in Zmþ1. Then by the formation rule, for n; kZ1 the numbers ‘�ðn; kÞ are
recursively defined by ‘�ð0;0Þ ¼ 1 and

‘�ðn; kÞ ¼ 1‘�ðn�1; k�1Þþd‘�ðn�1; kÞþ1‘�ðn�1; kþ1Þ;

‘�ðn;0Þ ¼ d‘�ðn�1;0Þþ1‘�ðn�1;1Þ and

‘�ðn; kÞ ¼ 0 when kZnþ1:

We now want to prove the recurrence relations for the walks. To form a walk of length n and height k consider the
following cases and refer to Fig. 6. Case (i): If a walk has length n�1 and height k�1, then on the last step there is 1 choice
for height k�1 (the N step). In this case, all walks whose last step is N are counted by 1‘�ðn�1; k�1Þ. Case (ii): If a walk has
length n�1 and height k, then on the last step there are d choices for height k (the E1, E2; . . . ;Ed different kind of unitary
steps). In this case, all walks whose last step is either E1, E2; . . ., or Ed is counted by d‘�ðn�1; kÞ. Case (iii): If a walk has
length n�1 and height k+1, then on the last step there is 1 choice for height k+1 (the S step). In this case, all walks whose
last step is S are counted by 1‘�ðn�1; kþ1Þ. Combining all of the cases gives all possible ways of forming the walk of length
n ending at height k, and the step directions E1, E2; . . ., and Ed do not change the height. Again, see Fig. 6.

Applying the addition principle, recurrence ‘�ðn; kÞ is proved. By similar reasoning, recurrence ‘�ðn;0Þ is also proved. The

boundary condition ‘�ðn; kÞ ¼ 0 is trivial since there are no walks of length n ending at height n+1. This proves the

formation rule and gives Li;0 a lattice walk interpretation. &

Theorem 3.2. The total number of NSE1; . . . ;Ed walks of length n counted by Li;0 is given by

X
nZ0

‘�i ðnÞz
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ði�2Þz

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðiþ2Þz

p �1

 !
1

2z
where
Fig. 5. One and two dimension step directions.
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Fig. 6. Possible step directions at height k.
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‘�i ðnÞ ¼
X
kZ0

ð�1Þkðiþ2Þn�k n

k

� �
ck: ð14Þ

Proof. Use the Fundamental Theorems 2.1 and 3.1 to obtain the generating function. Then, recall that c(z) is the Catalan
generating function given by Eq. (1) and use

k�i ðzÞ ¼
1

ð1�ðiþ2ÞzÞ

� �
c

�z

ð1�ðiþ2ÞzÞ

� �
; ð15Þ

composition of formal power series, binomial coefficients, and convolution to obtain the final result. &

Some special cases of Theorems 3.1 and 3.2 are as follows. For i=d=2 and Ed moves along both positive and negative
coordinate axes in Zmþ1 we get Sands’ problem. The case i=d=4 and Ed moves along both positive and negative coordinate
axes in Zmþ1 was proposed by Deutsch (2000) and solved by Brawner (2001). Another special case of interest is i=d=1 and
Ed moves along both positive and negative coordinate axes in Zmþ1 which gives Motzkin walks (Donaghey and Shapiro,
1977). These Motzkin walks and a generalization called partial t-Motzkin walks are subsequently given below since they
are also counted by Li;0.

Asymptotic estimates are now given for ‘�i ðnÞ and ‘�i ðn;0Þ. Note, recurrence ‘�i ðn;0Þ denotes the NSE1; . . . ;Ed lattice walks
of length n that return to the x-axis.

Proposition 3.3. ‘�i ðnÞ � ðiþ2Þnððiþ2Þ=pnÞ1=2 as n-1.

Proof. Rewrite (15) in the form

k�i ðzÞ ¼ �
1

2z

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ði�2Þz

p
2z

1�
z

1=ðiþ2Þ

� ��1=2

:

Then, applying Darboux’s method (simple version) (Lueker, 1980) gives

‘�i ðnÞ ¼
1

n
�

g1
1

ðiþ2Þ

� � ffiffiffi
n
p

Gð1=2Þ
1

iþ2

� �n þo
1

iþ2

� ��n

n�1=2

� �
� ðiþ2Þn

iþ2

pn

� �1=2

:

where g1ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ði�2Þz

p
=2z and Gð1=2Þ ¼

ffiffiffiffi
p
p

is the gamma function. Also see Sprugnoli (1994). &

Proposition 3.4. ‘�i ðn;0Þ � ðiþ2Þnþ3=2
ð1=pn3Þ

3=2 as n-1.

Proof. Rewrite ki(z) (from Eq. (7)), use Darboux’s method, and arguments similar to those used to prove Proposition
3.3. &

3.1.3. Partial t-Motzkin walks

Definition 3.3. Motzkin walks are walks in the first quadrant that begin at the origin (0,0), end on the x-axis, and consist of
the step set S={(1,1), (1,�1), (1,0)}. If the level steps (1,0) come in t colors, then these walks are called t-Motzkin walks. If
in addition, they end at (n,k), they are called partial t-Motzkin walks (Getu and Shapiro, 1998; Sulanke, 2000).

The generating function for partial t-Motzkin walks according to size (i.e., number of steps) is

mðzÞ ¼ 1þtzmðzÞþz2m2ðzÞ: ð16Þ

Indeed, every t-Motzkin walk is either a point or a level step of any of the t colors followed by a t-Motzkin walk or an
elevated t-Motzkin walk.

The A- and Z-sequences of Li;0

Ai;0ðyÞ ¼ 1þ iyþy2 and Zi;0ðyÞ ¼ iþy

follow from Theorem 2.4. The recurrence relations implied by these generating functions show that the (n,k)-entry of P iC0

is equal to the number of partial t-Motzkin walks that end at the point (n,k). The walks are of length n and end at height k.
For instance when t=d= i for i=1,2, and 3, PiC0 counts 1,2, and 3-colored Motzkin walks of length n and end at height k.
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Thus, PiC0 is intimately related to the partial t-Motzkin walks. Another way of seeing this is to recall PiC0 has formation rule
[i,1; 1,i,1] and compare Ai,0(y) and Eq. (16).

3.2. Lattice walks and the first column

Computing partial row sums of the matrices of the 0th column gives the first column Li;1 of the array Li;j. Lattice walk
interpretations are given for the entries of Li;1 (recall Fig. 1 to see the entries). We start with C0Ê, PC0Ê, P2C0Ê, and P3C0Ê

and count walks of a given length n and height k where entries of each matrix are indexed n by k ð0rkrnÞ. In two
dimensions, the entries of C0Ê and PC0Ê count, respectively, NS ~E and NSE ~W walks. The NS ~E walks are NSE walks such that
all ~E steps are restricted at height zero. The NSE ~W walks are NSEW walks such that all ~W steps are restricted at height zero.
In three dimensions, the entries of P2C0Ê and P3C0Ê count, respectively, NSEW ~F and NSEWF ~B walks. The NSEW ~F walks
denote NSEWF walks such that all ~F steps are restricted at height zero. The NSEWF ~B walks denote NSEWFB walks such that
all ~B steps are restricted at height zero. A more restrictive subset of higher-dimensional lattice walks called power walks is
now defined for column Li;j.

Definition 3.4. Let N and S be steps as previously defined and ~Edþ1 ¼
~U denote power walk steps where for dZ0, ~E1 ¼

~E,
~E2 ¼

~W , ~E3 ¼
~F , etc. are additional different kinds of unitary steps restricted to height zero. A power walk ~‘ is a

NSE1; . . . ; Ed
~U walk of length n.

Example 3.1. ~W ENNESS ~W NEE is a two-dimensional NSE ~W walk of length 11 and height 1 counted by PC0Ê. Note ~W is an
additional step at height zero that never leaves the x-axis.

A matrix solution of the power walk problem is then given by the following theorem.

Theorem 3.3. The number of NSE1; . . . ;Ed
~U power walks ~‘ of length n in Zmþ2, beginning at the origin and never pass below the

hyperplane x1þ � � � þxmþ1 ¼ 0, are given by

P2dC0Ê ¼ ðk�2dðzÞ; zk2dðzÞÞ, if ~‘ 2 Zmþ2 s.t. the ~U ¼ ~Edþ1th step moves along coordinate axis in Zmþ2 in a positive direction, and

P2dþ1C0Ê ¼ ðk�2dþ1ðzÞ; zk2dþ1ðzÞÞ, if ~‘ 2 Zmþ2 s.t. the ~U ¼ ~Edþ1th step moves along coordinate axis in Zmþ2 in both positive

and negative directions.

Proof. Recall that the generating function k�2dðzÞ is defined by Eq. (15). Use Theorems 2.3 and 2.4 and arguments similar to
those used to prove Theorem 3.1. &

Theorem 3.4. The total number of power walks of length n of the ith entry of the first column of Li;j isX
nZ0

~‘ iðnÞz
n ¼

1

1�ðiþ2Þz
;

where ~‘ iðnÞ ¼ ðiþ2Þn.

Proof. Use Riordan multiplication and Theorem 3.3. &

Remark 3.3. The asymptotic estimate for ~‘ iðn;0Þ, which denote power walks of length n ending at height zero of Li;1, is the
same as given by Proposition 3.3 since these walks are also represented by generating function k�i ðzÞ.

3.2.1. Modified partial t-Motzkin walks

The Motzkin analog is now given. The A- and Z-sequences of Li;1 are as follows:

Ai;1ðyÞ ¼ 1þ iyþy2 and Zi;1ðyÞ ¼ iþ1þy:

Thus the recurrence relations in the matrix Li;1, implied by these generating functions, show that the (n,k)-entry of Li;1 is
equal to the number of certain ‘‘modified’’ partial t-Motzkin walks that end at the point (n,k). The modification consists in
the fact that at level zero we have i+1 types of level steps. For instance, if t= i and i=1,2,and 3, then PiC0Ê counts 2,3, and
4-colored modified Motzkin walks of length n and end at height k where at level zero there are additional types of level
steps. It is easy to see that Example 3.1 is a 2-colored modified Motzkin walk since there are two different types of level
steps at height 0.

4. The first moments of Li;j

The average heights of walks given by the first two columns of Li;j are computed. Recall P2C0 counts NSEW walks
(see Proposition 3.1) and there are three walks of length 1 and four steps are associated with the weighted row sums
(see Eq. (12)). The weighted steps are the number of steps above the line y=�1. They are indicated by the double arrows
given below in Fig. 7. Although measuring distances above the x-axis is a natural measure, we consider distances above the
line y=�1. Recall that the first moments are computed according to Eq. (9). Thus by Eq. (11), mð1Þ ¼ 4

3 is the average
distance above the line y=�1 of all NSEW walks of length 1. See Fig. 7.
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Fig. 7. Steps and moments.
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For higher-dimensional walks of length n in Zm and m43, the first moments give the distances above certain
hyperplanes. Assuming all walks of length n are equally probable and using Eq. (11) yields

mðnÞ ¼ #ðdistance of all walksÞ

#ðnumber of walks of length nÞ
:

This ratio gives the average heights of certain walks. The first moments of Li;j are computed and the average heights of the
walks are now derived. Starting with

ðL0;0ÞðzÞðmoÞ ¼
1

1�2z
2f2n

g;

ðL1;0ÞðzÞðmoÞ ¼
1

1�3z
2f3n

g;

ðL2;0ÞðzÞðmoÞ ¼
1

1�4z
2f4n

g;

ðL3;0ÞðzÞðmoÞ ¼
1

1�5z
2f5n

g

gives a nice pattern which leads to finding the first moments of Li;0.

Proposition 4.1.

ðL i;0ÞðzÞðmoÞ ¼
1

1�ðiþ2Þz
;

and the first moments of Li;0 equal (i+2)n.

Proof. Use Theorem 2.3 and Lemma 2.1. &

Similarly, the first moments of Li;1 are derived.

Proposition 4.2.

ðL i;1ÞðzÞðmoÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ði�2Þz

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðiþ2Þz

p þ1

 !
1

2ð1�ðiþ2ÞzÞ
:

Proof. Use Theorem 2.3 and Lemma 2.1. &

Corollary 4.1. The first moments of Li;1 are

X
‘Z0

X
rZ0

ð�1Þrðiþ2Þn�1�r n�‘�1

r

� �
cr :

Proof. Recall that cr denotes the r th Catalan number given by Eq. (1). Consider ðL i;1ÞðzÞðmoÞ (above) as the product of two
generating functions. Then, using

k�i ðzÞ ¼
kiðzÞ

1�zkiðzÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ði�2Þz

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðiþ2Þz

p �1

 !
1

2z
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replacing n with n�1 in Eq. (14), and using convolution of formal power series we obtain

1þzk�i ðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ði�2Þz

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðiþ2Þz

p þ1

 !
1

2
¼ 1þ

X
nZ0

X
rZ0

ð�1Þrðiþ2Þn�r n

r

� �
cr

 !
znþ1 ¼ 1þ

X
nZ1

‘�i ðn�1Þzn:

Then, the n th coefficients of each factor of ðL i;1ÞðzÞðmoÞ are

½zn�ð1þzk�i ðzÞÞ ¼ ‘
�
i ðn�1Þ and ½zn�

1

1�ðiþ2Þz

� �
¼ ðiþ2Þn:

Finally, use the convolution property to obtain ½zn�ððLi;1ÞðzÞðmoÞÞ which gives the result. &

The first moment generating function of the moment vector ðLi;jÞmo is now derived.

Theorem 4.1. For i; jZ0,

ðLi;jÞðzÞðmoÞ ¼
kiðzÞ

ð1�zkiðzÞÞ
jþ2

:

Proof. Let D¼ z=ð1�izÞ. Then, by Lemma 2.1, Eq. (1), Theorem 2.3, and simplifying we have

ðLi;jÞðzÞðmoÞ ¼Li;j �
1

1�z
¼
ð1�izÞj�1cðD2

Þ

ð1�iz�zcðD2
ÞÞ

j
�

ð1�izÞ2

ð1�iz�zcðD2
ÞÞ

2
¼
ð1�izÞjþ1cðD2

Þ

ð1�iz�zcðD2
ÞÞ

jþ2
¼

kiðzÞ

ð1�zkiðzÞÞ
jþ2

:

Thus, the result is obtained. &

The expected value of certain combinatorial objects with n properties given by Li;j is obtained by computing

mði; jÞðnÞ ¼
½zn� ðL i;jÞðzÞðmoÞ

� �
½zn� ðLi;jÞ �

1

1�z

� � ¼
½zn�

kiðzÞ

ð1�zkiðzÞÞ
jþ2

 !

½zn�
kiðzÞ

ð1�zkiðzÞÞ
jþ1

 ! : ð17Þ

This equation follows by Eq. (11) and Theorems 2.3 and 4.1. A consequence of Eq. (17) is that this ratio gives a unified
approach to finding expected values for combinatorial objects counted by Li;j. The following propositions, which give
Catalan results, are special cases of Eq. (17).

Proposition 4.3. The average distance of all NSE1; . . . ;Ed walks ‘ of length n in Zmþ1 that are above the hyperplane

x1þ � � � þxm ¼ 0 is

mðd;0ÞðnÞ ¼
ðdþ2ÞnP

rZ0ð�1Þrðdþ2Þn�r n

r

� �
cr

:

Proof. Use Theorem 3.4, Eq. (17), and Proposition 4.1. &

Proposition 4.4. The average distance of all NSE1; . . . ;Ed
~Edþ1 walks ~‘ of length n in Zmþ2 that are above the hyperplane

x1þ � � � þxmþ1 ¼ 0 is

mðd;1ÞðnÞ ¼

P
‘Z0

P
rZ0ð�1Þrðdþ2Þn�1�r n�‘�1

r

� �
cr

ðdþ2Þn
:

Proof. Use Theorem 3.4, Eq. (17), Corollary 4.1, and Proposition 4.2. &

Related topics on moments of Dyck and generalized Motzkin paths are given by Chapman (1999) and Sulanke (2000),
respectively. See Nkwanta (1997), Merlini et al. (1996), Sprugnoli (1994) and Getu and Shapiro (1998) for other
applications, and Shapiro et al. (1983) for moment computations other than those involving first moments.

5. Other approaches and open problems

We have provided an alternative method called the Riordan method. Although the method is not new, we give a
systematic approach to using the Riordan group, recurrence relations, and generating functions. We used the method to
count higher-dimensional lattice walks for the first two columns of the infinite two-dimensional array Li;j: Some
remarkable characteristics of Li;j are that this infinite array compresses a wealth of combinatorial information into a
generalized Riordan matrix, models higher-dimensional lattice walks, and unifies a large collection of combinatorial arrays,
generating functions, and counting sequences. If we look at the first two columns of Li;j as sequences of matrices fLi;0giZ0

and fLi;1giZ0, then finding lattice walk interpretations for the columns is equivalent to finding combinatorial
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interpretations for sequences of integer-valued matrices (or arrays). This generalizes the notion of finding a combinatorial
interpretation for specific sequences of integers. More work is of combinatorial interest in this area. We are working on a
lattice walk interpretation of the second column Li;2 of the array Li;j: We are also working on another related infinite two-
dimensional array that contains column entries that count a less restrictive subset of higher-dimensional lattice walks and
unify more combinatorial arrays, generating functions, and counting sequences. There is also a matrix connection between
the forthcoming array and Li;j. Thus unified lattice walk interpretations will be subsequently given for more sequences of
infinite lower-triangular matrices.

Some open problems related to this paper are listed below.
(1)
 Find bijections between the generalized Sands walks and other combinatorial objects such as rooted binary trees,
interval graphs, edge rooted polyhexes, and/or directed animals.
(2)
 Find the n th moments of Li;j and other statistics for the higher-dimensional walks such as variance, standard deviation,
and limit distributions.
(3)
 Find combinatorial interpretations for all columns of Li;j and interpretations for the corresponding moments ðLi;jÞðmoÞ.
In particular finding combinatorial interpretations for the first moments for the cases j=0 and 1 would be of interest
(see Callan, 1999, for the case when j=2).
(4)
 Find a q-analogue of the entries of Li;j: In particular finding q-analogues for the cases j=0 and 1 would be of interest.

(5)
 Find an asymptotic estimate for Li;j: In particular finding estimates for the cases j=0 and 1 would be of interest. See

Wilson (2005).

(6)
 Find connections to linkage folding (Demaine and O’Rourke, 2005), and connections to fractal geometry (Barnsley,

1993).

(7)
 Find connections to the umbral calculus, see Barnabei et al. (1982) and Roman (1984, pp. 6–31).

(8)
 Find a non-combinatorial proof for the change of coordinate axes which occurs when moving down Li;0: This may lead

to areas of mathematics outside of combinatorics.
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